
Ito Process

• The stochastic process X = {Xt, t ≥ 0 } that solves

Xt = X0 +

∫ t

0

a(Xs, s) ds+

∫ t

0

b(Xs, s) dWs, t ≥ 0

is called an Ito process.

– X0 is a scalar starting point.

– { a(Xt, t) : t ≥ 0 } and { b(Xt, t) : t ≥ 0 } are

stochastic processes satisfying certain regularity

conditions.

• The terms a(Xt, t) and b(Xt, t) are the drift and the

diffusion, respectively.
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Ito Process (continued)

• A shorthanda is the following stochastic differential

equation for the Ito differential dXt,

dXt = a(Xt, t) dt+ b(Xt, t) dWt. (48)

– Or simply

dXt = at dt+ bt dWt.

– This is Brownian motion with an instantaneous drift

at and an instantaneous variance b2t .

• X is a martingale if at = 0 (Theorem 17 on p. 485).

aPaul Langevin (1904).
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Ito Process (concluded)

• dW is normally distributed with mean zero and

variance dt.

• An equivalent form of Eq. (48) is

dXt = at dt+ bt
√
dt ξ, (49)

where ξ ∼ N(0, 1).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 491



Euler Approximation

• The following approximation follows from Eq. (49),

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t+ b(X̂(tn), tn)∆W (tn),

(50)

where tn ≡ n∆t.

• It is called the Euler or Euler-Maruyama method.

• Recall that ∆W (tn) should be interpreted as

W (tn+1)−W (tn), not W (tn)−W (tn−1).

• Under mild conditions, X̂(tn) converges to X(tn).
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More Discrete Approximations

• Under fairly loose regularity conditions, Eq. (50) on

p. 492 can be replaced by

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t+ b(X̂(tn), tn)
√
∆t Y (tn).

– Y (t0), Y (t1), . . . are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

• An even simpler discrete approximation scheme:

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t+ b(X̂(tn), tn)
√
∆t ξ.

– Prob[ ξ = 1 ] = Prob[ ξ = −1 ] = 1/2.

– Note that E[ ξ ] = 0 and Var[ ξ ] = 1.

• This is a binomial model.

• As ∆t goes to zero, X̂ converges to X.
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Trading and the Ito Integral

• Consider an Ito process dSt = µt dt+ σt dWt.

– St is the vector of security prices at time t.

• Let ϕt be a trading strategy denoting the quantity of

each type of security held at time t.

– Hence the stochastic process ϕtSt is the value of the

portfolio ϕt at time t.

• ϕt dSt ≡ ϕt(µt dt+ σt dWt) represents the change in the

value from security price changes occurring at time t.
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Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

GT (ϕ) ≡
∫ T

0

ϕt dSt =

∫ T

0

ϕtµt dt+

∫ T

0

ϕtσt dWt,

measures the gains realized by the trading strategy over

the period [ 0, T ].
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Ito’s Lemma

A smooth function of an Ito process is itself an Ito process.

Theorem 18 Suppose f : R → R is twice continuously

differentiable and dX = at dt+ bt dW . Then f(X) is the

Ito process,

f(Xt)

= f(X0) +

∫ t

0

f ′(Xs) as ds+

∫ t

0

f ′(Xs) bs dW

+
1

2

∫ t

0

f ′′(Xs) b
2
s ds

for t ≥ 0.
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Ito’s Lemma (continued)

• In differential form, Ito’s lemma becomes

df(X) = f ′(X) a dt+ f ′(X) b dW +
1

2
f ′′(X) b2 dt.

(51)

• Compared with calculus, the interesting part is the third

term on the right-hand side.

• A convenient formulation of Ito’s lemma is

df(X) = f ′(X) dX +
1

2
f ′′(X)(dX)2.
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Ito’s Lemma (continued)

• We are supposed to multiply out

(dX)2 = (a dt+ b dW )2 symbolically according to

× dW dt

dW dt 0

dt 0 0

– The (dW )2 = dt entry is justified by a known result.

• Hence (dX)2 = (a dt+ b dW )2 = b2 dt.

• This form is easy to remember because of its similarity

to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 19 (Higher-Dimensional Ito’s Lemma) Let

W1,W2, . . . ,Wn be independent Wiener processes and

X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt+
∑n

j=1 bij dWj. Then

df(X) is an Ito process with the differential,

df(X) =
m∑
i=1

fi(X) dXi +
1

2

m∑
i=1

m∑
k=1

fik(X) dXi dXk,

where fi ≡ ∂f/∂Xi and fik ≡ ∂2f/∂Xi∂Xk.
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Ito’s Lemma (continued)

• The multiplication table for Theorem 19 is

× dWi dt

dWk δik dt 0

dt 0 0

in which

δik =

 1 if i = k,

0 otherwise.
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Ito’s Lemma (continued)

• In applying the higher-dimensional Ito’s lemma, usually

one of the variables, say X1, is time t and dX1 = dt.

• In this case, b1j = 0 for all j and a1 = 1.

• Assume dXt = at dt+ bt dWt.

• Consider the process f(Xt, t).
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Ito’s Lemma (continued)

• Then

df =
∂f

∂Xt
dXt +

∂f

∂t
dt+

1

2

∂2f

∂X2
t

(dXt)
2

=
∂f

∂Xt
(at dt+ bt dWt) +

∂f

∂t
dt

+
1

2

∂2f

∂X2
t

(at dt+ bt dWt)
2

=

(
∂f

∂Xt
at +

∂f

∂t
+

1

2

∂2f

∂X2
t

b2t

)
dt

+
∂f

∂Xt
bt dWt. (52)
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Ito’s Lemma (continued)

Theorem 20 (Alternative Ito’s Lemma) Let

W1,W2, . . . ,Wm be Wiener processes and

X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt+ bi dWi. Then df(X) is the

following Ito process,

df(X) =
m∑
i=1

fi(X) dXi +
1

2

m∑
i=1

m∑
k=1

fik(X) dXi dXk.
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Ito’s Lemma (concluded)

• The multiplication table for Theorem 20 is

× dWi dt

dWk ρik dt 0

dt 0 0

• Above, ρik denotes the correlation between dWi and

dWk.
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Geometric Brownian Motion

• Consider geometric Brownian motion Y (t) ≡ eX(t)

– X(t) is a (µ, σ) Brownian motion.

– Hence dX = µdt+ σ dW by Eq. (46) on p. 467.

• As ∂Y/∂X = Y and ∂2Y/∂X2 = Y , Ito’s formula (51)

on p. 498 implies

dY = Y dX + (1/2)Y (dX)2

= Y (µdt+ σ dW ) + (1/2)Y (µdt+ σ dW )2

= Y (µdt+ σ dW ) + (1/2)Y σ2 dt.
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Geometric Brownian Motion (concluded)

• Hence

dY

Y
=

(
µ+ σ2/2

)
dt+ σ dW. (53)

• The annualized instantaneous rate of return is µ+ σ2/2

not µ.
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Product of Geometric Brownian Motion Processes

• Let

dY/Y = a dt+ b dWY ,

dZ/Z = f dt+ g dWZ .

• Consider the Ito process U ≡ Y Z.

• Apply Ito’s lemma (Theorem 20 on p. 504):

dU = Z dY + Y dZ + dY dZ

= ZY (a dt+ b dWY ) + Y Z(f dt+ g dWZ)

+Y Z(a dt+ b dWY )(f dt+ g dWZ)

= U(a+ f + bgρ) dt+ Ub dWY + Ug dWZ .
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Product of Geometric Brownian Motion Processes
(continued)

• The product of two (or more) correlated geometric

Brownian motion processes thus remains geometric

Brownian motion.

• Note that

Y = exp
[(
a− b2/2

)
dt+ b dWY

]
,

Z = exp
[(
f − g2/2

)
dt+ g dWZ

]
,

U = exp
[ (

a+ f −
(
b2 + g2

)
/2
)
dt+ b dWY + g dWZ

]
.
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Product of Geometric Brownian Motion Processes
(concluded)

• lnU is Brownian motion with a mean equal to the sum

of the means of lnY and lnZ.

• This holds even if Y and Z are correlated.

• Finally, lnY and lnZ have correlation ρ.
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Quotients of Geometric Brownian Motion Processes

• Suppose Y and Z are drawn from p. 508.

• Let U ≡ Y/Z.

• We now show thata

dU

U
= (a− f + g2 − bgρ) dt+ b dWY − g dWZ .

(54)

• Keep in mind that dWY and dWZ have correlation ρ.

aExercise 14.3.6 of the textbook is erroneous.
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Quotients of Geometric Brownian Motion Processes
(concluded)

• The multidimensional Ito’s lemma (Theorem 20 on

p. 504) can be employed to show that

dU

= (1/Z) dY − (Y/Z2) dZ − (1/Z2) dY dZ + (Y/Z3) (dZ)2

= (1/Z)(aY dt+ bY dWY )− (Y/Z2)(fZ dt+ gZ dWZ)

−(1/Z2)(bgY Zρ dt) + (Y/Z3)(g2Z2 dt)

= U(a dt+ b dWY )− U(f dt+ g dWZ)

−U(bgρ dt) + U(g2 dt)

= U(a− f + g2 − bgρ) dt+ Ub dWY − Ug dWZ .
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Forward Price

• Suppose S follows

dS

S
= µdt+ σ dW.

• Consider F (S, t) ≡ Sey(T−t).

• Observe that

∂F

∂S
= ey(T−t),

∂2F

∂S2
= 0,

∂F

∂t
= −ySey(T−t).
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Forward Prices (concluded)

• Then

dF = ey(T−t) dS − ySey(T−t) dt

= Sey(T−t) (µdt+ σ dW )− ySey(T−t) dt

= F (µ− y) dt+ Fσ dW

by Eq. (52) on p. 503.

• Thus F follows

dF

F
= (µ− y) dt+ σ dW.

• This result has applications in forward and futures

contracts.a

aIt is also consistent with p. 458.
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Ornstein-Uhlenbeck Process

• The Ornstein-Uhlenbeck process:

dX = −κX dt+ σ dW,

where κ, σ ≥ 0.

• It is known that

E[X(t) ] = e
−κ(t−t0)

E[ x0 ],

Var[X(t) ] =
σ2

2κ

(
1 − e

−2κ(t−t0)
)
+ e

−2κ(t−t0)
Var[x0 ],

Cov[X(s), X(t) ] =
σ2

2κ
e
−κ(t−s)

[
1 − e

−2κ(s−t0)
]

+e
−κ(t+s−2t0)

Var[x0 ],

for t0 ≤ s ≤ t and X(t0) = x0.
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Ornstein-Uhlenbeck Process (continued)

• X(t) is normally distributed if x0 is a constant or

normally distributed.

• X is said to be a normal process.

• E[x0 ] = x0 and Var[x0 ] = 0 if x0 is a constant.

• The Ornstein-Uhlenbeck process has the following mean

reversion property.

– When X > 0, X is pulled toward zero.

– When X < 0, it is pulled toward zero again.
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Ornstein-Uhlenbeck Process (continued)

• A generalized version:

dX = κ(µ−X) dt+ σ dW,

where κ, σ ≥ 0.

• Given X(t0) = x0, a constant, it is known that

E[X(t) ] = µ+ (x0 − µ) e−κ(t−t0), (55)

Var[X(t) ] =
σ2

2κ

[
1− e−2κ(t−t0)

]
,

for t0 ≤ t.
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Ornstein-Uhlenbeck Process (concluded)

• The mean and standard deviation are roughly µ and

σ/
√
2κ , respectively.

• For large t, the probability of X < 0 is extremely

unlikely in any finite time interval when µ > 0 is large

relative to σ/
√
2κ .

• The process is mean-reverting.

– X tends to move toward µ.

– Useful for modeling term structure, stock price

volatility, and stock price return.
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Square-Root Process

• Suppose X is an Ornstein-Uhlenbeck process.

• Ito’s lemma says V ≡ X2 has the differential,

dV = 2X dX + (dX)2

= 2
√
V (−κ

√
V dt+ σ dW ) + σ2 dt

=
(
−2κV + σ2

)
dt+ 2σ

√
V dW,

a square-root process.
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Square-Root Process (continued)

• In general, the square-root process has the stochastic

differential equation,

dX = κ(µ−X) dt+ σ
√
X dW,

where κ, σ ≥ 0 and X(0) is a nonnegative constant.

• Like the Ornstein-Uhlenbeck process, it possesses mean

reversion: X tends to move toward µ, but the volatility

is proportional to
√
X instead of a constant.
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Square-Root Process (continued)

• When X hits zero and µ ≥ 0, the probability is one

that it will not move below zero.

– Zero is a reflecting boundary.

• Hence, the square-root process is a good candidate for

modeling interest rates.a

• The Ornstein-Uhlenbeck process, in contrast, allows

negative interest rates.

• The two processes are related (see p. 519).

aCox, Ingersoll, and Ross (1985).
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Square-Root Process (concluded)

• The random variable 2cX(t) follows the noncentral

chi-square distribution,a

χ

(
4κµ

σ2
, 2cX(0) e−κt

)
,

where c ≡ (2κ/σ2)(1− e−κt)−1.

• Given X(0) = x0, a constant,

E[X(t) ] = x0e
−κt + µ

(
1− e−κt

)
,

Var[X(t) ] = x0
σ2

κ

(
e−κt − e−2κt

)
+ µ

σ2

2κ

(
1− e−κt

)2
,

for t ≥ 0.

aWilliam Feller (1906–1970) in 1951.
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Modeling Stock Prices

• The most popular stochastic model for stock prices has

been the geometric Brownian motion,

dS

S
= µdt+ σ dW.

• The continuously compounded rate of return X ≡ lnS

follows

dX = (µ− σ2/2) dt+ σ dW

by Ito’s lemma.a

aCompare it with Eq. (53) on p. 507.
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Modeling Stock Prices (concluded)

• The more general deterministic volatility model posits

dS

S
= µdt+ σ(S, t) dW,

where σ(S, t) is called the local volatility function.a

• The trees for the deterministic volatility model are

called implied trees.b

• Their construction requires option prices at all strike

prices and maturities.

• How to construct an efficient implied tree without

invalid probabilities remains open.
aDerman and Kani(1994).
bDerman and Kani (1994) and Rubinstein (1994).
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Continuous-Time Derivatives Pricing
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I have hardly met a mathematician

who was capable of reasoning.

— Plato (428 B.C.–347 B.C.)

Fischer [Black] is the only real genius

I’ve ever met in finance. Other people,

like Robert Merton or Stephen Ross,

are just very smart and quick,

but they think like me.

Fischer came from someplace else entirely.

— John C. Cox, quoted in Mehrling (2005)
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Toward the Black-Scholes Differential Equation

• The price of any derivative on a non-dividend-paying

stock must satisfy a partial differential equation (PDE).

• The key step is recognizing that the same random

process drives both securities.

• As their prices are perfectly correlated, we figure out the

amount of stock such that the gain from it offsets

exactly the loss from the derivative.

• The removal of uncertainty forces the portfolio’s return

to be the riskless rate.

• PDEs allow many numerical methods to be applicable.
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Assumptions

• The stock price follows dS = µS dt+ σS dW .

• There are no dividends.

• Trading is continuous, and short selling is allowed.

• There are no transactions costs or taxes.

• All securities are infinitely divisible.

• The term structure of riskless rates is flat at r.

• There is unlimited riskless borrowing and lending.

• t is the current time, T is the expiration time, and

τ ≡ T − t.
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Black-Scholes Differential Equation

• Let C be the price of a derivative on S.

• From Ito’s lemma (p. 500),

dC =

(
µS

∂C

∂S
+

∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt+ σS

∂C

∂S
dW.

– The same W drives both C and S.

• Short one derivative and long ∂C/∂S shares of stock

(call it Π).

• By construction,

Π = −C + S(∂C/∂S).
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Black-Scholes Differential Equation (continued)

• The change in the value of the portfolio at time dt isa

dΠ = −dC +
∂C

∂S
dS.

• Substitute the formulas for dC and dS into the partial

differential equation to yield

dΠ =

(
−∂C

∂t
− 1

2
σ2S2 ∂2C

∂S2

)
dt.

• As this equation does not involve dW , the portfolio is

riskless during dt time: dΠ = rΠ dt.

aMathematically speaking, it is not quite right (Bergman, 1982).
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Black-Scholes Differential Equation (concluded)

• So (
∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt = r

(
C − S

∂C

∂S

)
dt.

• Equate the terms to finally obtain

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC.

• When there is a dividend yield q,

∂C

∂t
+ (r − q)S

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC.
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Rephrase

• The Black-Scholes differential equation can be expressed

in terms of sensitivity numbers,

Θ + rS∆+
1

2
σ2S2Γ = rC. (56)

• Identity (56) leads to an alternative way of computing

Θ numerically from ∆ and Γ.

• When a portfolio is delta-neutral,

Θ +
1

2
σ2S2Γ = rC.

– A definite relation thus exists between Γ and Θ.
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[Black] got the equation [in 1969] but then

was unable to solve it. Had he been a better

physicist he would have recognized it as a form

of the familiar heat exchange equation,

and applied the known solution. Had he been

a better mathematician, he could have

solved the equation from first principles.

Certainly Merton would have known exactly

what to do with the equation

had he ever seen it.

— Perry Mehrling (2005)
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PDEs for Asian Options

• Add the new variable A(t) ≡
∫ t

0
S(u) du.

• Then the value V of the Asian option satisfies this

two-dimensional PDE:a

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
+ S

∂V

∂A
= rV.

• The terminal conditions are

V (T, S,A) = max

(
A

T
−X, 0

)
for call,

V (T, S,A) = max

(
X − A

T
, 0

)
for put.

aKemna and Vorst (1990).
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PDEs for Asian Options (continued)

• The two-dimensional PDE produces algorithms similar

to that on pp. 352ff.

• But one-dimensional PDEs are available for Asian

options.a

• For example, Večeř (2001) derives the following PDE for

Asian calls:

∂u

∂t
+ r

(
1− t

T
− z

)
∂u

∂z
+

(
1− t

T − z
)2

σ2

2

∂2u

∂z2
= 0

with the terminal condition u(T, z) = max(z, 0).

aRogers and Shi (1995); Večeř (2001); Dubois and Lelièvre (2005).
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PDEs for Asian Options (concluded)

• For Asian puts:

∂u

∂t
+ r

(
t

T
− 1− z

)
∂u

∂z
+

(
t
T − 1− z

)2
σ2

2

∂2u

∂z2
= 0

with the same terminal condition.

• One-dimensional PDEs lead to highly efficient numerical

methods.
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Heston’s Stochastic-Volatility Modela

• Heston assumes the stock price follows

dS

S
= (µ− q) dt+

√
V dW1, (57)

dV = κ(θ − V ) dt+ σ
√
V dW2. (58)

– V is the instantaneous variance, which follows a

square-root process.

– dW1 and dW2 have correlation ρ.

– The riskless rate r is constant.

• It may be the most popular continuous-time

stochastic-volatility model.

aHeston (1993).
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Heston’s Stochastic-Volatility Model (continued)

• Heston assumes the market price of risk is b2
√
V .

• So µ = r + b2V .

• Define

dW ∗
1 = dW1 + b2

√
V dt,

dW ∗
2 = dW2 + ρb2

√
V dt,

κ∗ = κ+ ρb2σ,

θ∗ =
θκ

κ+ ρb2σ
.

• dW ∗
1 and dW ∗

2 have correlation ρ.
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Heston’s Stochastic-Volatility Model (continued)

• Under the risk-neutral probability measure Q, both W ∗
1

and W ∗
2 are Wiener processes.

• Heston’s model becomes, under probability measure Q,

dS

S
= (r − q) dt+

√
V dW ∗

1 ,

dV = κ∗(θ∗ − V ) dt+ σ
√
V dW ∗

2 .
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Heston’s Stochastic-Volatility Model (continued)

• Define

ϕ(u, τ) = exp { ıu(lnS + (r − q) τ)

+θ∗κ∗σ−2

[
(κ∗ − ρσuı− d) τ − 2 ln

1− ge−dτ

1− g

]
+

vσ−2(κ∗ − ρσuı− d)
(
1− e−dτ

)
1− ge−dτ

}
,

d =
√

(ρσuı− κ∗)2 − σ2(−ıu− u2) ,

g = (κ∗ − ρσuı− d)/(κ∗ − ρσuı+ d).
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Heston’s Stochastic-Volatility Model (concluded)

The formulas area

C = S

[
1

2
+

1

π

∫ ∞

0

Re

(
X−ıuϕ(u− ı, τ)

ıuSerτ

)
du

]
−Xe−rτ

[
1

2
+

1

π

∫ ∞

0

Re

(
X−ıuϕ(u, τ)

ıu

)
du

]
,

P = Xe−rτ

[
1

2
− 1

π

∫ ∞

0

Re

(
X−ıuϕ(u, τ)

ıu

)
du

]
,

−S

[
1

2
− 1

π

∫ ∞

0

Re

(
X−ıuϕ(u− ı, τ)

ıuSerτ

)
du

]
,

where ı =
√
−1 and Re(x) denotes the real part of the

complex number x.
aContributed by Mr. Chen, Chun-Ying (D95723006) on August 17,

2008 and Mr. Liou, Yan-Fu (R92723060) on August 26, 2008.
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Stochastic-Volatility Models and Further Extensionsa

• How to explain the October 1987 crash?

• Stochastic-volatility models require an implausibly

high-volatility level prior to and after the crash.

• Merton (1976) proposed jump models.

• Discontinuous jump models in the asset price can

alleviate the problem somewhat.

aEraker (2004).
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Stochastic-Volatility Models and Further Extensions
(continued)

• But if the jump intensity is a constant, it cannot explain

the tendency of large movements to cluster over time.

• This assumption also has no impacts on option prices.

• Jump-diffusion models combine both.

– E.g., add a jump process to Eq. (57) on p. 537.
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Stochastic-Volatility Models and Further Extensions
(concluded)

• But they still do not adequately describe the systematic

variations in option prices.a

• Jumps in volatility are alternatives.b

– E.g., add correlated jump processes to Eqs. (57) and

Eq. (58) on p. 537.

• Such models allow high level of volatility caused by a

jump to volatility.c

aBates (2000) and Pan (2002).
bDuffie, Pan, and Singleton (2000).
cEraker, Johnnes, and Polson (2000).
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Complexities of Stochastic-Volatility Models

• A few stochastic-volatility models suffer from

subexponential tree size.

• Examples include the Hull-White model (1987) and the

Hilliard-Schwartz model (1996).a

• Future research may extend this negative result to more

stochastic-volatility models.

– We suspect many GARCH option pricing models

entertain similar problems.b

aChiu (R98723059) (2012).
bChen (R95723051) (2008); Chen (R95723051), Lyuu, and Wen

(D94922003) (2011).
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Hedging
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When Professors Scholes and Merton and I

invested in warrants,

Professor Merton lost the most money.

And I lost the least.

— Fischer Black (1938–1995)
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Delta Hedge

• The delta (hedge ratio) of a derivative f is defined as

∆ ≡ ∂f/∂S.

• Thus ∆f ≈ ∆×∆S for relatively small changes in the

stock price, ∆S.

• A delta-neutral portfolio is hedged as it is immunized

against small changes in the stock price.

• A trading strategy that dynamically maintains a

delta-neutral portfolio is called delta hedge.
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Delta Hedge (concluded)

• Delta changes with the stock price.

• A delta hedge needs to be rebalanced periodically in

order to maintain delta neutrality.

• In the limit where the portfolio is adjusted continuously,

perfect hedge is achieved and the strategy becomes

self-financing.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 549



Implementing Delta Hedge

• We want to hedge N short derivatives.

• Assume the stock pays no dividends.

• The delta-neutral portfolio maintains N ×∆ shares of

stock plus B borrowed dollars such that

−N × f +N ×∆× S −B = 0.

• At next rebalancing point when the delta is ∆′, buy

N × (∆′ −∆) shares to maintain N ×∆′ shares with a

total borrowing of B′ = N ×∆′ × S′ −N × f ′.

• Delta hedge is the discrete-time analog of the

continuous-time limit and will rarely be self-financing.
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Example

• A hedger is short 10,000 European calls.

• σ = 30% and r = 6%.

• This call’s expiration is four weeks away, its strike price

is $50, and each call has a current value of f = 1.76791.

• As an option covers 100 shares of stock, N = 1,000,000.

• The trader adjusts the portfolio weekly.

• The calls are replicated well if the cumulative cost of

trading stock is close to the call premium’s FV.a

aThis example takes the replication viewpoint.
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Example (continued)

• As ∆ = 0.538560, N ×∆ = 538, 560 shares are

purchased for a total cost of 538,560× 50 = 26,928,000

dollars to make the portfolio delta-neutral.

• The trader finances the purchase by borrowing

B = N ×∆× S −N × f = 25,160,090

dollars net.a

• The portfolio has zero net value now.

aThis takes the hedging viewpoint — an alternative. See an exercise

in the text.
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Example (continued)

• At 3 weeks to expiration, the stock price rises to $51.

• The new call value is f ′ = 2.10580.

• So the portfolio is worth

−N × f ′ + 538,560× 51−Be0.06/52 = 171, 622

before rebalancing.
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Example (continued)

• A delta hedge does not replicate the calls perfectly; it is

not self-financing as $171,622 can be withdrawn.

• The magnitude of the tracking error—the variation in

the net portfolio value—can be mitigated if adjustments

are made more frequently.

• In fact, the tracking error over one rebalancing act is

positive about 68% of the time, but its expected value is

essentially zero.a

• It is furthermore proportional to vega.

aBoyle and Emanuel (1980).
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Example (continued)

• In practice tracking errors will cease to decrease beyond

a certain rebalancing frequency.

• With a higher delta ∆′ = 0.640355, the trader buys

N × (∆′ −∆) = 101, 795 shares for $5,191,545.

• The number of shares is increased to N ×∆′ = 640, 355.
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Example (continued)

• The cumulative cost is

26,928,000× e0.06/52 + 5,191,545 = 32,150,634.

• The portfolio is again delta-neutral.
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Option Change in No. shares Cost of Cumulative

value Delta delta bought shares cost

τ S f ∆ N×(5) (1)×(6) FV(8’)+(7)

(1) (2) (3) (5) (6) (7) (8)

4 50 1.7679 0.53856 — 538,560 26,928,000 26,928,000

3 51 2.1058 0.64036 0.10180 101,795 5,191,545 32,150,634

2 53 3.3509 0.85578 0.21542 215,425 11,417,525 43,605,277

1 52 2.2427 0.83983 −0.01595 −15,955 −829,660 42,825,960

0 54 4.0000 1.00000 0.16017 160,175 8,649,450 51,524,853

The total number of shares is 1,000,000 at expiration

(trading takes place at expiration, too).
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Example (concluded)

• At expiration, the trader has 1,000,000 shares.

• They are exercised against by the in-the-money calls for

$50,000,000.

• The trader is left with an obligation of

51,524,853− 50,000,000 = 1,524,853,

which represents the replication cost.

• Compared with the FV of the call premium,

1,767,910× e0.06×4/52 = 1,776,088,

the net gain is 1,776,088− 1,524,853 = 251,235.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 558



Tracking Error Revisited

• Define the dollar gamma as S2Γ.

• The change in value of a delta-hedged long option

position after a duration of ∆t is proportional to the

dollar gamma.

• It is about

(1/2)S2Γ[ (∆S/S)2 − σ2∆t ].

– (∆S/S)2 is called the daily realized variance.
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Tracking Error Revisited (continued)

• Let the rebalancing times be t1, t2, . . . , tn.

• Let ∆Si = Si+1 − Si.

• The total tracking error at expiration is about

n−1∑
i=0

er(T−ti)
S2
i Γi

2

[(
∆Si

Si

)2

− σ2∆t

]
,

• The tracking error is path dependent.
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Tracking Error Revisited (concluded)a

• The tracking error ϵn over n rebalancing acts (such as

251,235 on p. 558) has about the same probability of

being positive as being negative.

• Subject to certain regularity conditions, the

root-mean-square tracking error
√
E[ ϵ2n ] is O(1/

√
n ).b

• The root-mean-square tracking error increases with σ at

first and then decreases.

aBertsimas, Kogan, and Lo (2000).
bSee also Grannan and Swindle (1996).
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Delta-Gamma Hedge

• Delta hedge is based on the first-order approximation to

changes in the derivative price, ∆f , due to changes in

the stock price, ∆S.

• When ∆S is not small, the second-order term, gamma

Γ ≡ ∂2f/∂S2, helps (theoretically).a

• A delta-gamma hedge is a delta hedge that maintains

zero portfolio gamma, or gamma neutrality.

• To meet this extra condition, one more security needs to

be brought in.

aSee the numerical example on pp. 231–232 of the text.
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Delta-Gamma Hedge (concluded)

• Suppose we want to hedge short calls as before.

• A hedging call f2 is brought in.

• To set up a delta-gamma hedge, we solve

−N × f + n1 × S + n2 × f2 −B = 0 (self-financing),

−N ×∆+ n1 + n2 ×∆2 − 0 = 0 (delta neutrality),

−N × Γ + 0 + n2 × Γ2 − 0 = 0 (gamma neutrality),

for n1, n2, and B.

– The gammas of the stock and bond are 0.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 563



Other Hedges

• If volatility changes, delta-gamma hedge may not work

well.

• An enhancement is the delta-gamma-vega hedge, which

also maintains vega zero portfolio vega.

• To accomplish this, one more security has to be brought

into the process.

• In practice, delta-vega hedge, which may not maintain

gamma neutrality, performs better than delta hedge.
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