
Size of a Futures Contract

• The amount of the underlying asset to be delivered

under the contract.

– 5,000 bushels for the corn futures on the CBT.

– One million U.S. dollars for the Eurodollar futures on

the CME.

• A position can be closed out (or offset) by entering into

a reversing trade to the original one.

• Most futures contracts are closed out in this way rather

than have the underlying asset delivered.

– Forward contracts are meant for delivery.
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Daily Settlements

• Price changes in the futures contract are settled daily.

• Hence the spot price rather than the initial futures price

is paid on the delivery date.

• Marking to market nullifies any financial incentive for

not making delivery.

– A farmer enters into a forward contract to sell a food

processor 100,000 bushels of corn at $2.00 per bushel

in November.

– Suppose the price of corn rises to $2.5 by November.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 399



Daily Settlements (concluded)

• (continued)

– The farmer has incentive to sell his harvest in the

spot market at $2.5.

– With marking to market, the farmer has transferred

$0.5 per bushel from his futures account to that of

the food processor by November.

– When the farmer makes delivery, he is paid the spot

price, $2.5 per bushel.

– The farmer has little incentive to default.

– The net price remains $2.00 per bushel, the original

delivery price.
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Delivery and Hedging

• Delivery ties the futures price to the spot price.

• On the delivery date, the settlement price of the futures

contract is determined by the spot price.

• Hence, when the delivery period is reached, the futures

price should be very close to the spot price.a

• Changes in futures prices usually track those in spot

prices.

• This makes hedging possible.

aBut since early 2006, futures for corn, wheat and soybeans occasion-

ally expired at a price much higher than that day’s spot price.
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Daily Cash Flows

• Let Fi denote the futures price at the end of day i.

• The contract’s cash flow on day i is Fi − Fi−1.

• The net cash flow over the life of the contract is

(F1 − F0) + (F2 − F1) + · · ·+ (Fn − Fn−1)

= Fn − F0 = ST − F0.

• A futures contract has the same accumulated payoff

ST − F0 as a forward contract.

• The actual payoff may differ because of the reinvestment

of daily cash flows and how ST − F0 is distributed.
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Forward and Futures Pricesa

• Surprisingly, futures price equals forward price if interest

rates are nonstochastic!

– See text for proof.

• This result “justifies” treating a futures contract as if it

were a forward contract, ignoring its marking-to-market

feature.

aCox, Ingersoll, and Ross (1981).
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Remarks

• When interest rates are stochastic, forward and futures

prices are no longer theoretically identical.

– Suppose interest rates are uncertain and futures

prices move in the same direction as interest rates.

– Then futures prices will exceed forward prices.

• For short-term contracts, the differences tend to be

small.

• Unless stated otherwise, assume forward and futures

prices are identical.
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Futures Options

• The underlying of a futures option is a futures contract.

• Upon exercise, the option holder takes a position in the

futures contract with a futures price equal to the

option’s strike price.

– A call holder acquires a long futures position.

– A put holder acquires a short futures position.

• The futures contract is then marked to market.

• And the futures position of the two parties will be at the

prevailing futures price.
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Futures Options (concluded)

• It works as if the call holder received a futures contract

plus cash equivalent to the prevailing futures price Ft

minus the strike price X.

– This futures contract has zero value.

• It works as if the put holder sold a futures contract for

the strike price X minus the prevailing futures price Ft.
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Forward Options

• Similar to futures options except that what is delivered

is a forward contract with a delivery price equal to the

option’s strike price.

– Exercising a call forward option results in a long

position in a forward contract.

– Exercising a put forward option results in a short

position in a forward contract.

• Exercising a forward option incurs no immediate cash

flows.
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Example

• Consider a call with strike $100 and an expiration date

in September.

• The underlying asset is a forward contract with a

delivery date in December.

• Suppose the forward price in July is $110.

• Upon exercise, the call holder receives a forward

contract with a delivery price of $100.

• If an offsetting position is then taken in the forward

market,a a $10 profit in December will be assured.

• A call on the futures would realize the $10 profit in July.

aThe counterparty will pay you $110 for the underlying asset.
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Some Pricing Relations

• Let delivery take place at time T , the current time be 0,

and the option on the futures or forward contract have

expiration date t (t ≤ T ).

• Assume a constant, positive interest rate.

• Although forward price equals futures price, a forward

option does not have the same value as a futures option.

• The payoffs of calls at time t are, respectively,

futures option = max(Ft −X, 0), (36)

forward option = max(Ft −X, 0) e−r(T−t). (37)
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Some Pricing Relations (concluded)

• A European futures option is worth the same as the

corresponding European option on the underlying asset

if the futures contract has the same maturity as the

options.

– Futures price equals spot price at maturity.

– This conclusion is independent of the model for the

spot price.
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Put-Call Parity

The put-call parity is slightly different from the one in

Eq. (20) on p. 189.

Theorem 13 (1) For European options on futures

contracts, C = P − (X − F ) e−rt. (2) For European options

on forward contracts, C = P − (X − F ) e−rT .

• See text for proof.
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Early Exercise and Forward Options

The early exercise feature is not valuable.

Theorem 14 American forward options should not be

exercised before expiration as long as the probability of their

ending up out of the money is positive.

• See text for proof.

Early exercise may be optimal for American futures options

even if the underlying asset generates no payouts.

Theorem 15 American futures options may be exercised

optimally before expiration.
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Black’s Modela

• Formulas for European futures options:

C = Fe−rtN(x)−Xe−rtN(x− σ
√
t), (38)

P = Xe−rtN(−x+ σ
√
t)− Fe−rtN(−x),

where x ≡ ln(F/X)+(σ2/2) t

σ
√
t

.

• Formulas (38) are related to those for options on a stock

paying a continuous dividend yield.

• They are exactly Eqs. (26) on p. 278 with q set to r

and S replaced by F .

aBlack (1976).
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Black Model (concluded)

• This observation incidentally proves Theorem 15

(p. 412).

• For European forward options, just multiply the above

formulas by e−r(T−t).

– Forward options differ from futures options by a

factor of e−r(T−t) by Eqs. (36)–(37) on p. 409.
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Binomial Model for Forward and Futures Options

• Futures price behaves like a stock paying a continuous

dividend yield of r.

– The futures price at time 0 is (p. 390)

F = SerT .

– From Lemma 9 (p. 255), the expected value of S at

time ∆t in a risk-neutral economy is

Ser∆t.

– So the expected futures price at time ∆t is

Ser∆ter(T−∆t) = SerT = F.
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Binomial Model for Forward and Futures Options
(concluded)

• Under the BOPM, the risk-neutral probability for the

futures price is

pf ≡ (1− d)/(u− d)

by Eq. (27) on p. 280.

– The futures price moves from F to Fu with

probability pf and to Fd with probability 1− pf.

• The binomial tree algorithm for forward options is

identical except that Eq. (37) on p. 409 is the payoff.
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Spot and Futures Prices under BOPM

• The futures price is related to the spot price via

F = SerT if the underlying asset pays no dividends.

• The stock price moves from S = Fe−rT to

Fue−r(T−∆t) = Suer∆t

with probability pf per period.

• Similarly, the stock price moves from S = Fe−rT to

Sder∆t

with probability 1− pf per period.
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Negative Probabilities Revisited

• As 0 < pf < 1, we have 0 < 1− pf < 1 as well.

• The problem of negative risk-neutral probabilities is now

solved:

– Suppose the stock pays a continuous dividend yield

of q.

– Build the tree for the futures price F of the futures

contract expiring at the same time as the option.

– Calculate S from F at each node via

S = Fe−(r−q)(T−t).

• Of course, this model may not be suitable for pricing

barrier options (why?).
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Swaps

• Swaps are agreements between two counterparties to

exchange cash flows in the future according to a

predetermined formula.

• There are two basic types of swaps: interest rate and

currency.

• An interest rate swap occurs when two parties exchange

interest payments periodically.

• Currency swaps are agreements to deliver one currency

against another (our focus here).
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Currency Swaps

• A currency swap involves two parties to exchange cash

flows in different currencies.

• Consider the following fixed rates available to party A

and party B in U.S. dollars and Japanese yen:

Dollars Yen

A DA% YA%

B DB% YB%

• Suppose A wants to take out a fixed-rate loan in yen,

and B wants to take out a fixed-rate loan in dollars.
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Currency Swaps (continued)

• A straightforward scenario is for A to borrow yen at

YA% and B to borrow dollars at DB%.

• But suppose A is relatively more competitive in the

dollar market than the yen market.

– That is, YB − YA < DB −DA.

• Consider this alternative arrangement:

– A borrows dollars.

– B borrows yen.

– They enter into a currency swap with a bank as the

intermediary.
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Currency Swaps (concluded)

• The counterparties exchange principal at the beginning

and the end of the life of the swap.

• This act transforms A’s loan into a yen loan and B’s yen

loan into a dollar loan.

• The total gain is ((DB −DA)− (YB − YA))%:

– The total interest rate is originally (YA +DB)%.

– The new arrangement has a smaller total rate of

(DA + YB)%.

• Transactions will happen only if the gain is distributed

so that the cost to each party is less than the original.
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Example

• A and B face the following borrowing rates:

Dollars Yen

A 9% 10%

B 12% 11%

• A wants to borrow yen, and B wants to borrow dollars.

• A can borrow yen directly at 10%.

• B can borrow dollars directly at 12%.
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Example (continued)

• The rate differential in dollars (3%) is different from

that in yen (1%).

• So a currency swap with a total saving of 3− 1 = 2% is

possible.

• A is relatively more competitive in the dollar market.

• B is relatively more competitive in the the yen market.
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Example (concluded)

• Next page shows an arrangement which is beneficial to

all parties involved.

– A effectively borrows yen at 9.5%.

– B borrows dollars at 11.5%.

– The gain is 0.5% for A, 0.5% for B, and, if we treat

dollars and yen identically, 1% for the bank.
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Party BBankParty A

Dollars 9% Yen 11%

Dollars 9%

Yen 11%Yen 9.5%

Dollars 11.5%
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As a Package of Cash Market Instruments

• Assume no default risk.

• Take B on p. 426 as an example.

• The swap is equivalent to a long position in a yen bond

paying 11% annual interest and a short position in a

dollar bond paying 11.5% annual interest.

• The pricing formula is SPY − PD.

– PD is the dollar bond’s value in dollars.

– PY is the yen bond’s value in yen.

– S is the $/yen spot exchange rate.
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As a Package of Cash Market Instruments (concluded)

• The value of a currency swap depends on:

– The term structures of interest rates in the currencies

involved.

– The spot exchange rate.

• It has zero value when

SPY = PD.
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Example

• Take a 3-year swap on p. 426 with principal amounts of

US$1 million and 100 million yen.

• The payments are made once a year.

• The spot exchange rate is 90 yen/$ and the term

structures are flat in both nations—8% in the U.S. and

9% in Japan.

• For B, the value of the swap is (in millions of USD)

1

90
×

(
11× e−0.09 + 11× e−0.09×2 + 111× e−0.09×3

)
−

(
0.115× e−0.08 + 0.115× e−0.08×2 + 1.115× e−0.08×3

)
= 0.074.
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As a Package of Forward Contracts

• From Eq. (34) on p. 396, the forward contract maturing

i years from now has a dollar value of

fi ≡ (SYi) e
−qi −Die

−ri. (39)

– Yi is the yen inflow at year i.

– S is the $/yen spot exchange rate.

– q is the yen interest rate.

– Di is the dollar outflow at year i.

– r is the dollar interest rate.
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As a Package of Forward Contracts (concluded)

• For simplicity, flat term structures were assumed.

• Generalization is straightforward.
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Example

• Take the swap in the example on p. 429.

• Every year, B receives 11 million yen and pays 0.115

million dollars.

• In addition, at the end of the third year, B receives 100

million yen and pays 1 million dollars.

• Each of these transactions represents a forward contract.

• Y1 = Y2 = 11, Y3 = 111, S = 1/90, D1 = D2 = 0.115,

D3 = 1.115, q = 0.09, and r = 0.08.

• Plug in these numbers to get f1 + f2 + f3 = 0.074

million dollars as before.
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Stochastic Processes and Brownian Motion
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Of all the intellectual hurdles which the human mind

has confronted and has overcome in the last

fifteen hundred years, the one which seems to me

to have been the most amazing in character and

the most stupendous in the scope of its

consequences is the one relating to

the problem of motion.

— Herbert Butterfield (1900–1979)
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Stochastic Processes

• A stochastic process

X = {X(t) }

is a time series of random variables.

• X(t) (or Xt) is a random variable for each time t and

is usually called the state of the process at time t.

• A realization of X is called a sample path.

• A sample path defines an ordinary function of t.
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Stochastic Processes (concluded)

• If the times t form a countable set, X is called a

discrete-time stochastic process or a time series.

• In this case, subscripts rather than parentheses are

usually employed, as in

X = {Xn }.

• If the times form a continuum, X is called a

continuous-time stochastic process.
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Random Walks

• The binomial model is a random walk in disguise.

• Consider a particle on the integer line, 0,±1,±2, . . . .

• In each time step, it can make one move to the right

with probability p or one move to the left with

probability 1− p.

– This random walk is symmetric when p = 1/2.

• Connection with the BOPM: The particle’s position

denotes the total number of up moves minus that of

down moves up to that time.
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Random Walk with Drift

Xn = µ+Xn−1 + ξn.

• ξn are independent and identically distributed with zero

mean.

• Drift µ is the expected change per period.

• Note that this process is continuous in space.
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Martingalesa

• {X(t), t ≥ 0 } is a martingale if E[ |X(t) | ] < ∞ for

t ≥ 0 and

E[X(t) |X(u), 0 ≤ u ≤ s ] = X(s), s ≤ t. (40)

• In the discrete-time setting, a martingale means

E[Xn+1 |X1, X2, . . . , Xn ] = Xn. (41)

• Xn can be interpreted as a gambler’s fortune after the

nth gamble.

• Identity (41) then says the expected fortune after the

(n+ 1)th gamble equals the fortune after the nth

gamble regardless of what may have occurred before.
aThe origin of the name is somewhat obscure.
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Martingales (concluded)

• A martingale is therefore a notion of fair games.

• Apply the law of iterated conditional expectations to

both sides of Eq. (41) on p. 440 to yield

E[Xn ] = E[X1 ] (42)

for all n.

• Similarly, E[X(t) ] = E[X(0) ] in the continuous-time

case.
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Still a Martingale?

• Suppose we replace Eq. (41) on p. 440 with

E[Xn+1 |Xn ] = Xn.

• It also says past history cannot affect the future.

• But is it equivalent to the original definition (41) on

p. 440?a

aContributed by Mr. Hsieh, Chicheng (M9007304) on April 13, 2005.
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Still a Martingale? (continued)

• Well, no.a

• Consider this random walk with drift:

Xi =

 Xi−1 + ξi, if i is even,

Xi−2, otherwise.

• Above, ξn are random variables with zero mean.

aContributed by Mr. Zhang, Ann-Sheng (B89201033) on April 13,

2005.
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Still a Martingale? (concluded)

• It is not hard to see that

E[Xi |Xi−1 ] =

 Xi−1, if i is even,

Xi−1, otherwise.

– It is a martingale by the “new” definition.

• But

E[Xi | . . . , Xi−2, Xi−1 ] =

 Xi−1, if i is even,

Xi−2, otherwise.

– It is not a martingale by the original definition.
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Example

• Consider the stochastic process

{Zn ≡
n∑

i=1

Xi, n ≥ 1 },

where Xi are independent random variables with zero

mean.

• This process is a martingale because

E[Zn+1 |Z1, Z2, . . . , Zn ]

= E[Zn +Xn+1 |Z1, Z2, . . . , Zn ]

= E[Zn |Z1, Z2, . . . , Zn ] + E[Xn+1 |Z1, Z2, . . . , Zn ]

= Zn + E[Xn+1 ] = Zn.
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Probability Measure

• A probability measure assigns probabilities to states of

the world.

• A martingale is defined with respect to a probability

measure, under which the expectation is taken.

• A martingale is also defined with respect to an

information set.

– In the characterizations (40)–(41) on p. 440, the

information set contains the current and past values

of X by default.

– But it need not be so.
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Probability Measure (continued)

• A stochastic process {X(t), t ≥ 0 } is a martingale with

respect to information sets { It } if, for all t ≥ 0,

E[ |X(t) | ] < ∞ and

E[X(u) | It ] = X(t)

for all u > t.

• The discrete-time version: For all n > 0,

E[Xn+1 | In ] = Xn,

given the information sets { In }.
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Probability Measure (concluded)

• The above implies E[Xn+m | In ] = Xn for any m > 0

by Eq. (17) on p. 144.

– A typical In is the price information up to time n.

– Then the above identity says the FVs of X will not

deviate systematically from today’s value given the

price history.
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Example

• Consider the stochastic process {Zn − nµ, n ≥ 1 }.
– Zn ≡

∑n
i=1 Xi.

– X1, X2, . . . are independent random variables with

mean µ.

• Now,

E[Zn+1 − (n+ 1)µ |X1, X2, . . . , Xn ]

= E[Zn+1 |X1, X2, . . . , Xn ]− (n+ 1)µ

= E[Zn +Xn+1 |X1, X2, . . . , Xn ]− (n+ 1)µ

= Zn + µ− (n+ 1)µ

= Zn − nµ.
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Example (concluded)

• Define

In ≡ {X1, X2, . . . , Xn }.

• Then

{Zn − nµ, n ≥ 1 }

is a martingale with respect to { In }.
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Martingale Pricing

• Recall that the price of a European option is the

expected discounted future payoff at expiration in a

risk-neutral economy.

• This principle can be generalized using the concept of

martingale.

• Recall the recursive valuation of European option via

C = [ pCu + (1− p)Cd ]/R.

– p is the risk-neutral probability.

– $1 grows to $R in a period.
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Martingale Pricing (continued)

• Let C(i) denote the value of the option at time i.

• Consider the discount process{
C(i)

Ri
, i = 0, 1, . . . , n

}
.

• Then,

E

[
C(i+ 1)

Ri+1

∣∣∣∣ C(i) = C

]
=

pCu + (1− p)Cd

Ri+1
=

C

Ri
.
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Martingale Pricing (continued)

• It is easy to show that

E

[
C(k)

Rk

∣∣∣∣ C(i) = C

]
=

C

Ri
, i ≤ k. (43)

• This formulation assumes:a

1. The model is Markovian: The distribution of the

future is determined by the present (time i ) and not

the past.

2. The payoff depends only on the terminal price of the

underlying asset (Asian options do not qualify).

aContributed by Mr. Wang, Liang-Kai (Ph.D. student, ECE, Univer-

sity of Wisconsin-Madison) and Mr. Hsiao, Huan-Wen (B90902081) on

May 3, 2006.
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Martingale Pricing (continued)

• In general, the discount process is a martingale in thata

Eπ
i

[
C(k)

Rk

]
=

C(i)

Ri
, i ≤ k. (44)

– Eπ
i is taken under the risk-neutral probability

conditional on the price information up to time i.

• This risk-neutral probability is also called the EMM, or

the equivalent martingale (probability) measure.

aIn this general formulation, Asian options do qualify.
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Martingale Pricing (continued)

• Equation (44) holds for all assets, not just options.

• When interest rates are stochastic, the equation becomes

C(i)

M(i)
= Eπ

i

[
C(k)

M(k)

]
, i ≤ k. (45)

– M(j) is the balance in the money market account at

time j using the rollover strategy with an initial

investment of $1.

– It is called the bank account process.

• It says the discount process is a martingale under π.
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Martingale Pricing (continued)

• If interest rates are stochastic, then M(j) is a random

variable.

– M(0) = 1.

– M(j) is known at time j − 1.

• Identity (45) on p. 455 is the general formulation of

risk-neutral valuation.
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Martingale Pricing (concluded)

Theorem 16 A discrete-time model is arbitrage-free if and

only if there exists a probability measure such that the

discount process is a martingale. This probability measure is

called the risk-neutral probability measure.
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Futures Price under the BOPM

• Futures prices form a martingale under the risk-neutral

probability.

– The expected futures price in the next period is

pfFu+ (1− pf)Fd = F

(
1− d

u− d
u+

u− 1

u− d
d

)
= F

(p. 415).

• Can be generalized to

Fi = Eπ
i [Fk ], i ≤ k,

where Fi is the futures price at time i.

• It holds under stochastic interest rates, too.
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Martingale Pricing and Numerairea

• The martingale pricing formula (45) on p. 455 uses the

money market account as numeraire.b

– It expresses the price of any asset relative to the

money market account.

• The money market account is not the only choice for

numeraire.

• Suppose asset S’s value is positive at all times.

aJohn Law (1671–1729), “Money to be qualified for exchaning goods

and for payments need not be certain in its value.”
bLeon Walras (1834–1910).
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Martingale Pricing and Numeraire (concluded)

• Choose S as numeraire.

• Martingale pricing says there exists a risk-neutral

probability π under which the relative price of any asset

C is a martingale:

C(i)

S(i)
= Eπ

i

[
C(k)

S(k)

]
, i ≤ k.

– S(j) denotes the price of S at time j.

• So the discount process remains a martingale.
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Example

• Take the binomial model with two assets.

• In a period, asset one’s price can go from S to S1 or

S2.

• In a period, asset two’s price can go from P to P1 or

P2.

• Assume
S1

P1
<

S

P
<

S2

P2

to rule out arbitrage opportunities.
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Example (continued)

• For any derivative security, let C1 be its price at time

one if asset one’s price moves to S1.

• Let C2 be its price at time one if asset one’s price

moves to S2.

• Replicate the derivative by solving

αS1 + βP1 = C1,

αS2 + βP2 = C2,

using α units of asset one and β units of asset two.
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Example (continued)

• This yields

α =
P2C1 − P1C2

P2S1 − P1S2
and β =

S2C1 − S1C2

S2P1 − S1P2
.

• The derivative costs

C = αS + βP

=
P2S − PS2

P2S1 − P1S2
C1 +

PS1 − P1S

P2S1 − P1S2
C2.
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Example (concluded)

• It is easy to verify that

C

P
= p

C1

P1
+ (1− p)

C2

P2
.

– Above,

p ≡ (S/P )− (S2/P2)

(S1/P1)− (S2/P2)
.

• The derivative’s price using asset two as numeraire (i.e.,

C/P ) is a martingale under the risk-neutral probability

p.

• The expected returns of the two assets are irrelevant.
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Brownian Motiona

• Brownian motion is a stochastic process {X(t), t ≥ 0 }
with the following properties.

1. X(0) = 0, unless stated otherwise.

2. for any 0 ≤ t0 < t1 < · · · < tn, the random variables

X(tk)−X(tk−1)

for 1 ≤ k ≤ n are independent.b

3. for 0 ≤ s < t, X(t)−X(s) is normally distributed

with mean µ(t− s) and variance σ2(t− s), where µ

and σ ̸= 0 are real numbers.

aRobert Brown (1773–1858).
bSo X(t)−X(s) is independent of X(r) for r ≤ s < t.
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Brownian Motion (concluded)

• The existence and uniqueness of such a process is

guaranteed by Wiener’s theorem.a

• This process will be called a (µ, σ) Brownian motion

with drift µ and variance σ2.

• Although Brownian motion is a continuous function of t

with probability one, it is almost nowhere differentiable.

• The (0, 1) Brownian motion is called the Wiener process.

aNorbert Wiener (1894–1964).
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Example

• If {X(t), t ≥ 0 } is the Wiener process, then

X(t)−X(s) ∼ N(0, t− s).

• A (µ, σ) Brownian motion Y = {Y (t), t ≥ 0 } can be

expressed in terms of the Wiener process:

Y (t) = µt+ σX(t). (46)

• Note that Y (t+ s)− Y (t) ∼ N(µs, σ2s).
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Brownian Motion as Limit of Random Walk

Claim 1 A (µ, σ) Brownian motion is the limiting case of

random walk.

• A particle moves ∆x to the left with probability 1− p.

• It moves to the right with probability p after ∆t time.

• Assume n ≡ t/∆t is an integer.

• Its position at time t is

Y (t) ≡ ∆x (X1 +X2 + · · ·+Xn) .
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Brownian Motion as Limit of Random Walk (continued)

• (continued)

– Here

Xi ≡

 +1 if the ith move is to the right,

−1 if the ith move is to the left.

– Xi are independent with

Prob[Xi = 1 ] = p = 1− Prob[Xi = −1 ].

• Recall E[Xi ] = 2p− 1 and Var[Xi ] = 1− (2p− 1)2.
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Brownian Motion as Limit of Random Walk (continued)

• Therefore,

E[Y (t) ] = n(∆x)(2p− 1),

Var[Y (t) ] = n(∆x)2
[
1− (2p− 1)2

]
.

• With ∆x ≡ σ
√
∆t and p ≡ [ 1 + (µ/σ)

√
∆t ]/2,

E[Y (t) ] = nσ
√
∆t (µ/σ)

√
∆t = µt,

Var[Y (t) ] = nσ2∆t
[
1− (µ/σ)2∆t

]
→ σ2t,

as ∆t → 0.
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Brownian Motion as Limit of Random Walk (concluded)

• Thus, {Y (t), t ≥ 0 } converges to a (µ, σ) Brownian

motion by the central limit theorem.

• Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing µ = 0.

• Note that

Var[Y (t+∆t)− Y (t) ]

=Var[∆xXn+1 ] = (∆x)2 ×Var[Xn+1 ] → σ2∆t.

• Similarity to the the BOPM: The p is identical to the

probability in Eq. (25) on p. 252 and ∆x = lnu.
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Geometric Brownian Motion

• Let X ≡ {X(t), t ≥ 0 } be a Brownian motion process.

• The process

{Y (t) ≡ eX(t), t ≥ 0 },

is called geometric Brownian motion.

• Suppose further that X is a (µ, σ) Brownian motion.

• X(t) ∼ N(µt, σ2t) with moment generating function

E
[
esX(t)

]
= E [Y (t)s ] = eµts+(σ2ts2/2)

from Eq. (18) on p 146.
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Geometric Brownian Motion (continued)

• In particular,

E[Y (t) ] = eµt+(σ2t/2),

Var[Y (t) ] = E
[
Y (t)2

]
− E[Y (t) ]2

= e2µt+σ2t
(
eσ

2t − 1
)
.
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Geometric Brownian Motion (continued)

• It is useful for situations in which percentage changes

are independent and identically distributed.

• Let Yn denote the stock price at time n and Y0 = 1.

• Assume relative returns

Xi ≡
Yi

Yi−1

are independent and identically distributed.
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Geometric Brownian Motion (concluded)

• Then

lnYn =
n∑

i=1

lnXi

is a sum of independent, identically distributed random

variables.

• Thus { lnYn, n ≥ 0 } is approximately Brownian motion.

– And {Yn, n ≥ 0 } is approximately geometric

Brownian motion.
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.

— Mark Kac (1914–1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861–1947),

Science and the Modern World
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Stochastic Integrals

• Use W ≡ {W (t), t ≥ 0 } to denote the Wiener process.

• The goal is to develop integrals of X from a class of

stochastic processes,a

It(X) ≡
∫ t

0

X dW, t ≥ 0.

• It(X) is a random variable called the stochastic integral

of X with respect to W .

• The stochastic process { It(X), t ≥ 0 } will be denoted

by
∫
X dW .

aKiyoshi Ito (1915–2008).
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Stochastic Integrals (concluded)

• Typical requirements for X in financial applications are:

– Prob[
∫ t

0
X2(s) ds < ∞ ] = 1 for all t ≥ 0 or the

stronger
∫ t

0
E[X2(s) ] ds < ∞.

– The information set at time t includes the history of

X and W up to that point in time.

– But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).

– The future cannot influence the present.

• {X(s), 0 ≤ s ≤ t } is independent of

{W (t+ u)−W (t), u > 0 }.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 480



Ito Integral

• A theory of stochastic integration.

• As with calculus, it starts with step functions.

• A stochastic process {X(t) } is simple if there exist

0 = t0 < t1 < · · · such that

X(t) = X(tk−1) for t ∈ [ tk−1, tk), k = 1, 2, . . .

for any realization (see figure on next page).
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Ito Integral (continued)

• The Ito integral of a simple process is defined as

It(X) ≡
n−1∑
k=0

X(tk)[W (tk+1)−W (tk) ], (47)

where tn = t.

– The integrand X is evaluated at tk, not tk+1.

• Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.
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Ito Integral (continued)

• Let X = {X(t), t ≥ 0 } be a general stochastic process.

• Then there exists a random variable It(X), unique

almost certainly, such that It(Xn) converges in

probability to It(X) for each sequence of simple

stochastic processes X1, X2, . . . such that Xn converges

in probability to X.

• If X is continuous with probability one, then It(Xn)

converges in probability to It(X) as

δn ≡ max1≤k≤n(tk − tk−1) goes to zero.
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Ito Integral (concluded)

• It is a fundamental fact that
∫
X dW is continuous

almost surely.

• The following theorem says the Ito integral is a

martingale.

– A corollary is the mean value formula

E

[∫ b

a

X dW

]
= 0.

Theorem 17 The Ito integral
∫
X dW is a martingale.
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Discrete Approximation

• Recall Eq. (47) on p. 483.

• The following simple stochastic process { X̂(t) } can be

used in place of X to approximate the stochastic

integral
∫ t

0
X dW ,

X̂(s) ≡ X(tk−1) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• Note the nonanticipating feature of X̂.

– The information up to time s,

{ X̂(t),W (t), 0 ≤ t ≤ s },

cannot determine the future evolution of X or W .
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Discrete Approximation (concluded)

• Suppose we defined the stochastic integral as

n−1∑
k=0

X(tk+1)[W (tk+1)−W (tk) ].

• Then we would be using the following different simple

stochastic process in the approximation,

Ŷ (s) ≡ X(tk) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• This clearly anticipates the future evolution of X.a

aSee Exercise 14.1.2 of the textbook for an example where it matters.
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