
x + 2
√

∆t f(x + 2
√

∆t)

↗ ↗
x +

√
∆t f(x +

√
∆t)

↗ ↘ ↗ ↘
x x f(x) f(x)

↘ ↗ ↘ ↗
x −√∆t f(x −√∆t)

↘ ↘
x − 2

√
∆t f(x − 2

√
∆t)
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Binomial CIR (concluded)

• The probability of an up move at each node r is

p(r) ≡ β(µ− r)∆t + r − r−

r+ − r−
. (113)

– r+ ≡ f(x +
√

∆t) denotes the result of an up move
from r.

– r− ≡ f(x−√∆t) the result of a down move.

• Finally, set the probability p(r) to one as r goes to zero
to make the probability stay between zero and one.
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Numerical Examples

• Consider the process,

0.2 (0.04− r) dt + 0.1
√

r dW,

for the time interval [ 0, 1 ] given the initial rate
r(0) = 0.04.

• We shall use ∆t = 0.2 (year) for the binomial
approximation.

• See p. 944(a) for the resulting binomial short rate tree
with the up-move probabilities in parentheses.
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0.04

(0.472049150276)

0.05988854382

(0.44081188025)

0.03155572809

(0.489789553691)

0.02411145618

(0.50975924867)

0.0713328157297

(0.426604457655)

0.08377708764

0.01222291236

0.01766718427

(0.533083330907)

0.04

(0.472049150276)

0.0494442719102

(0.455865503068)

0.0494442719102

(0.455865503068)

0.03155572809

(0.489789553691)

0.05988854382

0.04

0.02411145618

(a)

(b)

0.992031914837

0.984128889634

0.976293244408

0.968526861261

0.960831229521

0.992031914837

0.984128889634

0.976293244408
0.992031914837

0.990159879565

0.980492588317

0.970995502019

0.961665706744

0.993708727831

0.987391576942

0.981054487259

0.974702907786

0.988093738447

0.976486896485

0.965170249273

0.990159879565

0.980492588317

0.995189317343

0.990276851751

0.985271123591

0.993708727831

0.987391576942

0.98583472203

0.972116454453

0.996472798388

0.992781347933

0.983384173756

0.988093738447

0.995189317343

0.997558403086
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Numerical Examples (continued)

• Consider the node which is the result of an up move
from the root.

• Since the root has x = 2
√

r(0)/σ = 4, this particular
node’s x value equals 4 +

√
∆t = 4.4472135955.

• Use the inverse transformation to obtain the short rate
x2 × (0.1)2/4 ≈ 0.0494442719102.
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Numerical Examples (concluded)

• Once the short rates are in place, computing the
probabilities is easy.

• Note that the up-move probability decreases as interest
rates increase and decreases as interest rates decline.

• This phenomenon agrees with mean reversion.

• Convergence is quite good (see text).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 946



A General Method for Constructing Binomial Modelsa

• We are given a continuous-time process
dy = α(y, t) dt + σ(y, t) dW .

• Make sure the binomial model’s drift and diffusion
converge to the above process by setting the probability
of an up move to

α(y, t)∆t + y − yd

yu − yd
.

• Here yu ≡ y + σ(y, t)
√

∆t and yd ≡ y − σ(y, t)
√

∆t

represent the two rates that follow the current rate y.

• The displacements are identical, at σ(y, t)
√

∆t .
aNelson and Ramaswamy (1990).
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A General Method (continued)

• But the binomial tree may not combine:

σ(y, t)
√

∆t− σ(yu, t)
√

∆t 6= −σ(y, t)
√

∆t + σ(yd, t)
√

∆t

in general.

• When σ(y, t) is a constant independent of y, equality
holds and the tree combines.

• To achieve this, define the transformation

x(y, t) ≡
∫ y

σ(z, t)−1 dz.

• Then x follows dx = m(y, t) dt + dW for some m(y, t)
(see text).
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A General Method (continued)

• The key is that the diffusion term is now a constant, and
the binomial tree for x combines.

• The probability of an up move remains

α(y(x, t), t)∆t + y(x, t)− yd(x, t)
yu(x, t)− yd(x, t)

,

where y(x, t) is the inverse transformation of x(y, t)
from x back to y.

• Note that yu(x, t) ≡ y(x +
√

∆t, t + ∆t) and
yd(x, t) ≡ y(x−√∆t, t + ∆t) .
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A General Method (concluded)

• The transformation is
∫ r

(σ
√

z)−1 dz = 2
√

r/σ

for the CIR model.

• The transformation is
∫ S

(σz)−1 dz = (1/σ) ln S

for the Black-Scholes model.

• The familiar binomial option pricing model in fact
discretizes ln S not S.
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Model Calibration

• In the time-series approach, the time series of short rates
is used to estimate the parameters of the process.

• This approach may help in validating the proposed
interest rate process.

• But it alone cannot be used to estimate the risk
premium parameter λ.

• The model prices based on the estimated parameters
may also deviate a lot from those in the market.
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Model Calibration (concluded)

• The cross-sectional approach uses a cross section of
bond prices observed at the same time.

• The parameters are to be such that the model prices
closely match those in the market.

• After this procedure, the calibrated model can be used
to price interest rate derivatives.

• Unlike the time-series approach, the cross-sectional
approach is unable to separate out the interest rate risk
premium from the model parameters.
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On One-Factor Short Rate Models

• By using only the short rate, they ignore other rates on
the yield curve.

• Such models also restrict the volatility to be a function
of interest rate levels only.

• The prices of all bonds move in the same direction at
the same time (their magnitudes may differ).

• The returns on all bonds thus become highly correlated.

• In reality, there seems to be a certain amount of
independence between short- and long-term rates.
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On One-Factor Short Rate Models (continued)

• One-factor models therefore cannot accommodate
nondegenerate correlation structures across maturities.

• Derivatives whose values depend on the correlation
structure will be mispriced.

• The calibrated models may not generate term structures
as concave as the data suggest.

• The term structure empirically changes in slope and
curvature as well as makes parallel moves.

• This is inconsistent with the restriction that all
segments of the term structure be perfectly correlated.
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On One-Factor Short Rate Models (concluded)

• Multi-factor models lead to families of yield curves that
can take a greater variety of shapes and can better
represent reality.

• But they are much harder to think about and work with.

• They also take much more computer time—the curse of
dimensionality.

• These practical concerns limit the use of multifactor
models to two-factor ones.
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Options on Coupon Bondsa

• The price of a European option on a coupon bond can
be calculated from those on zero-coupon bonds.

• Consider a European call expiring at time T on a bond
with par value $1.

• Let X denote the strike price.

• The bond has cash flows c1, c2, . . . , cn at times
t1, t2, . . . , tn, where ti > T for all i.

• The payoff for the option is

max

(
n∑

i=1

ciP (r(T ), T, ti)−X, 0

)
.

aJamshidian (1989).
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Options on Coupon Bonds (continued)

• At time T , there is a unique value r∗ for r(T ) that
renders the coupon bond’s price equal the strike price
X.

• This r∗ can be obtained by solving
X =

∑n
i=1 ciP (r, T, ti) numerically for r.

• The solution is also unique for one-factor models whose
bond price is a monotonically decreasing function of r.

• Let Xi ≡ P (r∗, T, ti), the value at time T of a
zero-coupon bond with par value $1 and maturing at
time ti if r(T ) = r∗.
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Options on Coupon Bonds (concluded)

• Note that P (r(T ), T, ti) ≥ Xi if and only if r(T ) ≤ r∗.

• As X =
∑

i ciXi, the option’s payoff equals

max

(
n∑

i=1

ciP (r(T ), T, ti)−
∑

i

ciXi, 0

)

=
n∑

i=1

ci ×max(P (r(T ), T, ti)−Xi, 0).

• Thus the call is a package of n options on the
underlying zero-coupon bond.

• Why can’t we do the same thing for Asian options?a

aContributed by Mr. Yang, Jui-Chung (D97723002) on May 20, 2009.
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No-Arbitrage Term Structure Models
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How much of the structure of our theories
really tells us about things in nature,

and how much do we contribute ourselves?
— Arthur Eddington (1882–1944)
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Motivations

• Recall the difficulties facing equilibrium models
mentioned earlier.

– They usually require the estimation of the market
price of risk.

– They cannot fit the market term structure.

– But consistency with the market is often mandatory
in practice.
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No-Arbitrage Modelsa

• No-arbitrage models utilize the full information of the
term structure.

• They accept the observed term structure as consistent
with an unobserved and unspecified equilibrium.

• From there, arbitrage-free movements of interest rates or
bond prices over time are modeled.

• By definition, the market price of risk must be reflected
in the current term structure; hence the resulting
interest rate process is risk-neutral.

aHo and Lee (1986).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 962



No-Arbitrage Models (concluded)

• No-arbitrage models can specify the dynamics of
zero-coupon bond prices, forward rates, or the short rate.

• Bond price and forward rate models are usually
non-Markovian (path dependent).

• In contrast, short rate models are generally constructed
to be explicitly Markovian (path independent).

• Markovian models are easier to handle computationally.
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The Ho-Lee Modela

• The short rates at any given time are evenly spaced.

• Let p denote the risk-neutral probability that the short
rate makes an up move.

• We shall adopt continuous compounding.
aHo and Lee (1986).
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↗
r3

↗ ↘
r2

↗ ↘ ↗
r1 r3 + v3

↘ ↗ ↘
r2 + v2

↘ ↗
r3 + 2v3

↘

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 965



The Ho-Lee Model (continued)

• The Ho-Lee model starts with zero-coupon bond prices
P (t, t + 1), P (t, t + 2), . . . at time t identified with the
root of the tree.

• Let the discount factors in the next period be

Pd(t + 1, t + 2), Pd(t + 1, t + 3), . . . if short rate moves down

Pu(t + 1, t + 2), Pu(t + 1, t + 3), . . . if short rate moves up

• By backward induction, it is not hard to see that for
n ≥ 2,

Pu(t + 1, t + n) = Pd(t + 1, t + n) e−(v2+···+vn)

(114)

(see text).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 966



The Ho-Lee Model (continued)

• It is also not hard to check that the n-period
zero-coupon bond has yields

yd(n) ≡ − ln Pd(t + 1, t + n)
n− 1

yu(n) ≡ − ln Pu(t + 1, t + n)
n− 1

= yd(n) +
v2 + · · ·+ vn

n− 1

• The volatility of the yield to maturity for this bond is
therefore

κn ≡
√

pyu(n)2 + (1− p) yd(n)2 − [ pyu(n) + (1− p) yd(n) ]2

=
√

p(1− p) (yu(n)− yd(n))

=
√

p(1− p)
v2 + · · ·+ vn

n− 1
.
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The Ho-Lee Model (concluded)

• In particular, the short rate volatility is determined by
taking n = 2:

σ =
√

p(1− p) v2. (115)

• The variance of the short rate therefore equals
p(1− p)(ru − rd)2, where ru and rd are the two
successor rates.a

aContrast this with the lognormal model.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 968



The Ho-Lee Model: Volatility Term Structure

• The volatility term structure is composed of κ2, κ3, . . . .

– It is independent of the ri.

• It is easy to compute the vis from the volatility
structure, and vice versa.

• The ris can be computed by forward induction.

• The volatility structure is supplied by the market.
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The Ho-Lee Model: Bond Price Process

• In a risk-neutral economy, the initial discount factors
satisfy

P (t, t+n) = (pPu(t+1, t+n)+(1−p) Pd(t+1, t+n)) P (t, t+1).

• Combine the above with Eq. (114) on p. 966 and assume
p = 1/2 to obtaina

Pd(t + 1, t + n) =
P (t, t + n)

P (t, t + 1)

2× exp[ v2 + · · ·+ vn ]

1 + exp[ v2 + · · ·+ vn ]
,

(116)

Pu(t + 1, t + n) =
P (t, t + n)

P (t, t + 1)

2

1 + exp[ v2 + · · ·+ vn ]
.

(116′)

aIn the limit, only the volatility matters.
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The Ho-Lee Model: Bond Price Process (concluded)

• The bond price tree combines.

• Suppose all vi equal some constant v and δ ≡ ev > 0.

• Then

Pd(t + 1, t + n) =
P (t, t + n)

P (t, t + 1)

2δn−1

1 + δn−1
,

Pu(t + 1, t + n) =
P (t, t + n)

P (t, t + 1)

2

1 + δn−1
.

• Short rate volatility σ equals v/2 by Eq. (115) on
p. 968.

• Price derivatives by taking expectations under the
risk-neutral probability.
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The Ho-Lee Model: Yields and Their Covariances

• The one-period rate of return of an n-period
zero-coupon bond is

r(t, t + n) ≡ ln
(

P (t + 1, t + n)
P (t, t + n)

)
.

• Its value is either ln Pd(t+1,t+n)
P (t,t+n) or ln Pu(t+1,t+n)

P (t,t+n) .

• Thus the variance of return is

Var[ r(t, t + n) ] = p(1− p)((n− 1) v)2 = (n− 1)2σ2.
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The Ho-Lee Model: Yields and Their Covariances
(concluded)

• The covariance between r(t, t + n) and r(t, t + m) is
(n− 1)(m− 1) σ2 (see text).

• As a result, the correlation between any two one-period
rates of return is unity.

• Strong correlation between rates is inherent in all
one-factor Markovian models.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 973



The Ho-Lee Model: Short Rate Process

• The continuous-time limit of the Ho-Lee model is

dr = θ(t) dt + σ dW.

• This is Vasicek’s model with the mean-reverting drift
replaced by a deterministic, time-dependent drift.

• A nonflat term structure of volatilities can be achieved if
the short rate volatility is also made time varying, i.e.,
dr = θ(t) dt + σ(t) dW .

• This corresponds to the discrete-time model in which vi

are not all identical.
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The Ho-Lee Model: Some Problems

• Future (nominal) interest rates may be negative.

• The short rate volatility is independent of the rate level.
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Problems with No-Arbitrage Models in General

• Interest rate movements should reflect shifts in the
model’s state variables (factors) not its parameters.

• Model parameters, such as the drift θ(t) in the
continuous-time Ho-Lee model, should be stable over
time.

• But in practice, no-arbitrage models capture yield curve
shifts through the recalibration of parameters.

– A new model is thus born everyday.
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Problems with No-Arbitrage Models in General
(concluded)

• This in effect says the model estimated at some time
does not describe the term structure of interest rates
and their volatilities at other times.

• Consequently, a model’s intertemporal behavior is
suspect, and using it for hedging and risk management
may be unreliable.
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The Black-Derman-Toy Modela

• This model is extensively used by practitioners.

• The BDT short rate process is the lognormal binomial
interest rate process described on pp. 817ff (repeated on
next page).

• The volatility structure is given by the market.

• From it, the short rate volatilities (thus vi) are
determined together with ri.

aBlack, Derman, and Toy (BDT) (1990), but essentially finished in

1986 according to Mehrling (2005).
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r4

↗
r3

↗ ↘
r2 r4v4

↗ ↘ ↗
r1 r3v3

↘ ↗ ↘
r2v2 r4v2

4

↘ ↗
r3v2

3

↘
r4v3

4
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The Black-Derman-Toy Model (concluded)

• Our earlier binomial interest rate tree, in contrast,
assumes vi are given a priori.

– A related model of Salomon Brothers takes vi to be
constants.

• Lognormal models preclude negative short rates.
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The BDT Model: Volatility Structure

• The volatility structure defines the yield volatilities of
zero-coupon bonds of various maturities.

• Let the yield volatility of the i-period zero-coupon bond
be denoted by κi.

• Pu is the price of the i-period zero-coupon bond one
period from now if the short rate makes an up move.
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The BDT Model: Volatility Structure (concluded)

• Pd is the price of the i-period zero-coupon bond one
period from now if the short rate makes a down move.

• Corresponding to these two prices are the following
yields to maturity,

yu ≡ P−1/(i−1)
u − 1,

yd ≡ P
−1/(i−1)
d − 1.

• The yield volatility is defined as κi ≡ (1/2) ln(yu/yd).
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The BDT Model: Calibration

• The inputs to the BDT model are riskless zero-coupon
bond yields and their volatilities.

• For economy of expression, all numbers are period based.

• Suppose inductively that we have calculated

(r1, v1), (r2, v2), . . . , (ri−1, vi−1).

– They define the binomial tree up to period i− 1.

• We now proceed to calculate ri and vi to extend the
tree to period i.
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The BDT Model: Calibration (continued)

• Assume the price of the i-period zero can move to Pu

or Pd one period from now.

• Let y denote the current i-period spot rate, which is
known.

• In a risk-neutral economy,

Pu + Pd

2(1 + r1)
=

1
(1 + y)i

. (117)

• Obviously, Pu and Pd are functions of the unknown ri

and vi.
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The BDT Model: Calibration (continued)

• Viewed from now, the future (i− 1)-period spot rate at
time one is uncertain.

• Recall that yu and yd represent the spot rates at the
up node and the down node, respectively (p. 982).

• With κ2 denoting their variance, we have

κi =
1
2

ln

(
Pu

−1/(i−1) − 1

Pd
−1/(i−1) − 1

)
. (118)
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The BDT Model: Calibration (continued)

• We will employ forward induction to derive a
quadratic-time calibration algorithm.a

• Recall that forward induction inductively figures out, by
moving forward in time, how much $1 at a node
contributes to the price (review p. 843(a)).

• This number is called the state price and is the price of
the claim that pays $1 at that node and zero elsewhere.

aChen (R84526007) and Lyuu (1997); Lyuu (1999).
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The BDT Model: Calibration (continued)

• Let the unknown baseline rate for period i be ri = r.

• Let the unknown multiplicative ratio be vi = v.

• Let the state prices at time i− 1 be P1, P2, . . . , Pi,
corresponding to rates r, rv, . . . , rvi−1, respectively.

• One dollar at time i has a present value of

f(r, v) ≡ P1

1 + r
+

P2

1 + rv
+

P3

1 + rv2
+ · · ·+ Pi

1 + rvi−1
.
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The BDT Model: Calibration (continued)

• The yield volatility is

g(r, v) ≡ 1

2
ln




(
Pu,1
1+rv

+
Pu,2

1+rv2 + · · ·+ Pu,i−1
1+rvi−1

)−1/(i−1) − 1

(
Pd,1
1+r

+
Pd,2
1+rv

+ · · ·+ Pd,i−1
1+rvi−2

)−1/(i−1) − 1


 .

• Above, Pu,1, Pu,2, . . . denote the state prices at time
i− 1 of the subtree rooted at the up node (like r2v2 on
p. 979).

• And Pd,1, Pd,2, . . . denote the state prices at time i− 1
of the subtree rooted at the down node (like r2 on
p. 979).
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The BDT Model: Calibration (concluded)

• Now solve

f(r, v) =
1

(1 + y)i
and g(r, v) = κi

for r = ri and v = vi.

• This O(n2)-time algorithm appears in the text.
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The BDT Model: Continuous-Time Limit

• The continuous-time limit of the BDT model is

d ln r =
(

θ(t) +
σ′(t)
σ(t)

ln r

)
dt + σ(t) dW.

• The short rate volatility clearly should be a declining
function of time for the model to display mean reversion.

– That makes σ′(t) < 0.

• In particular, constant volatility will not attain mean
reversion.
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The Black-Karasinski Modela

• The BK model stipulates that the short rate follows

d ln r = κ(t)(θ(t)− ln r) dt + σ(t) dW.

• This explicitly mean-reverting model depends on time
through κ( · ), θ( · ), and σ( · ).

• The BK model hence has one more degree of freedom
than the BDT model.

• The speed of mean reversion κ(t) and the short rate
volatility σ(t) are independent.

aBlack and Karasinski (1991).
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The Black-Karasinski Model: Discrete Time

• The discrete-time version of the BK model has the same
representation as the BDT model.

• To maintain a combining binomial tree, however,
requires some manipulations.

• The next plot illustrates the ideas in which

t2 ≡ t1 + ∆t1,

t3 ≡ t2 + ∆t2.
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↗
ln rd(t2)

↗ ↘
ln r(t1) ln rdu(t3) = ln rud(t3)

↘ ↗
ln ru(t2)

↘
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The Black-Karasinski Model: Discrete Time
(continued)

• Note that

ln rd(t2) = ln r(t1) + κ(t1)(θ(t1)− ln r(t1))∆t1 − σ(t1)
√

∆t1 ,

ln ru(t2) = ln r(t1) + κ(t1)(θ(t1)− ln r(t1))∆t1 + σ(t1)
√

∆t1 .

• To ensure that an up move followed by a down move
coincides with a down move followed by an up move,
impose

ln rd(t2) + κ(t2)(θ(t2)− ln rd(t2))∆t2 + σ(t2)
√

∆t2 ,

= ln ru(t2) + κ(t2)(θ(t2)− ln ru(t2))∆t2 − σ(t2)
√

∆t2 .
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The Black-Karasinski Model: Discrete Time
(concluded)

• They imply

κ(t2) =
1− (σ(t2)/σ(t1))

√
∆t2/∆t1

∆t2
.

(119)

• So from ∆t1, we can calculate the ∆t2 that satisfies the
combining condition and then iterate.

– t0 → ∆t0 → t1 → ∆t1 → t2 → ∆t2 → · · · → T

(roughly).
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Problems with Lognormal Models in General

• Lognormal models such as BDT and BK share the
problem that Eπ[M(t) ] = ∞ for any finite t if they
the continuously compounded rate.

• Hence periodic compounding should be used.

• Another issue is computational.

• Lognormal models usually do not give analytical
solutions to even basic fixed-income securities.

• As a result, to price short-dated derivatives on long-term
bonds, the tree has to be built over the life of the
underlying asset instead of the life of the derivative.
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Problems with Lognormal Models in General
(concluded)

• This problem can be somewhat mitigated by adopting
different time steps: Use a fine time step up to the
maturity of the short-dated derivative and a coarse time
step beyond the maturity.a

• A down side of this procedure is that it has to be carried
out for each derivative.

• Finally, empirically, interest rates do not follow the
lognormal distribution.

aHull and White (1993).
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The Extended Vasicek Modela

• Hull and White proposed models that extend the
Vasicek model and the CIR model.

• They are called the extended Vasicek model and the
extended CIR model.

• The extended Vasicek model adds time dependence to
the original Vasicek model,

dr = (θ(t)− a(t) r) dt + σ(t) dW.

• Like the Ho-Lee model, this is a normal model, and the
inclusion of θ(t) allows for an exact fit to the current
spot rate curve.

aHull and White (1990).
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The Extended Vasicek Model (concluded)

• Function σ(t) defines the short rate volatility, and a(t)
determines the shape of the volatility structure.

• Under this model, many European-style securities can be
evaluated analytically, and efficient numerical procedures
can be developed for American-style securities.
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The Hull-White Model

• The Hull-White model is the following special case,

dr = (θ(t)− ar) dt + σ dW.

• When the current term structure is matched,a

θ(t) =
∂f(0, t)

∂t
+ af(0, t) +

σ2

2a

(
1− e−2at

)
.

aHull and White (1993).
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The Extended CIR Model

• In the extended CIR model the short rate follows

dr = (θ(t)− a(t) r) dt + σ(t)
√

r dW.

• The functions θ(t), a(t), and σ(t) are implied from
market observables.

• With constant parameters, there exist analytical
solutions to a small set of interest rate-sensitive
securities.
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The Hull-White Model: Calibrationa

• We describe a trinomial forward induction scheme to
calibrate the Hull-White model given a and σ.

• As with the Ho-Lee model, the set of achievable short
rates is evenly spaced.

• Let r0 be the annualized, continuously compounded
short rate at time zero.

• Every short rate on the tree takes on a value r0 + j∆r

for some integer j.
aHull and White (1993).
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The Hull-White Model: Calibration (continued)

• Time increments on the tree are also equally spaced at
∆t apart.

• Hence nodes are located at times i∆t for i = 0, 1, 2, . . . .

• We shall refer to the node on the tree with ti ≡ i∆t and
rj ≡ r0 + j∆r as the (i, j) node.

• The short rate at node (i, j), which equals rj , is
effective for the time period [ ti, ti+1).
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The Hull-White Model: Calibration (continued)

• Use

µi,j ≡ θ(ti)− arj (120)

to denote the drift rate, or the expected change, of the
short rate as seen from node (i, j).

• The three distinct possibilities for node (i, j) with three
branches incident from it are displayed on p. 1005.

• The interest rate movement described by the middle
branch may be an increase of ∆r, no change, or a
decrease of ∆r.
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The Hull-White Model: Calibration (continued)

(i, j)

µ
(i + 1, j + 2)

*(i + 1, j + 1)

- (i + 1, j)(i, j)

*(i + 1, j + 1)

- (i + 1, j)

j(i + 1, j − 1)

(i, j) - (i + 1, j)

j(i + 1, j − 1)

R
(i + 1, j − 2)
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The Hull-White Model: Calibration (continued)

• The upper and the lower branches bracket the middle
branch.

• Define

p1(i, j) ≡ the probability of following the upper branch from node (i, j)

p2(i, j) ≡ the probability of following the middle branch from node (i, j)

p3(i, j) ≡ the probability of following the lower branch from node (i, j)

• The root of the tree is set to the current short rate r0.

• Inductively, the drift µi,j at node (i, j) is a function of
θ(ti).
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The Hull-White Model: Calibration (continued)

• Once θ(ti) is available, µi,j can be derived via
Eq. (120) on p. 1004.

• This in turn determines the branching scheme at every
node (i, j) for each j, as we will see shortly.

• The value of θ(ti) must thus be made consistent with
the spot rate r(0, ti+2).
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The Hull-White Model: Calibration (continued)

• The branches emanating from node (i, j) with their
accompanying probabilitiesa must be chosen to be
consistent with µi,j and σ.

• This is accomplished by letting the middle node be as
close as possible to the current value of the short rate
plus the drift.

• Let k be the number among { j − 1, j, j + 1 } that
makes the short rate reached by the middle branch, rk,
closest to rj + µi,j∆t.

ap1(i, j), p2(i, j), and p3(i, j).
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The Hull-White Model: Calibration (continued)

• Then the three nodes following node (i, j) are nodes
(i + 1, k + 1), (i + 1, k), and (i + 1, k − 1).

• The resulting tree may have the geometry depicted on
p. 1010.

• The resulting tree combines because of the constant
jump sizes to reach k.
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The Hull-White Model: Calibration (continued)

• The probabilities for moving along these branches are
functions of µi,j , σ, j, and k:

p1(i, j) =
σ2∆t + η2

2(∆r)2
+

η

2∆r
(121)

p2(i, j) = 1− σ2∆t + η2

(∆r)2
(121′)

p3(i, j) =
σ2∆t + η2

2(∆r)2
− η

2∆r
(121′′)

where η ≡ µi,j∆t + (j − k) ∆r.
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The Hull-White Model: Calibration (continued)

• As trinomial tree algorithms are but explicit methods in
disguise, certain relations must hold for ∆r and ∆t to
guarantee stability.

• It can be shown that their values must satisfy

σ
√

3∆t

2
≤ ∆r ≤ 2σ

√
∆t

for the probabilities to lie between zero and one.

– For example, ∆r can be set to σ
√

3∆t .a

aHull and White (1988).
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The Hull-White Model: Calibration (continued)

• Now it only remains to determine θ(ti).

• At this point at time ti, r(0, t1), r(0, t2), . . . , r(0, ti+1)
have already been matched.

• Let Q(i, j) denote the value of the state contingent
claim that pays one dollar at node (i, j) and zero
otherwise.

• By construction, the state prices Q(i, j) for all j are
known by now.

• We begin with state price Q(0, 0) = 1.
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The Hull-White Model: Calibration (continued)

• Let r̂(i) refer to the short rate value at time ti.

• The value at time zero of a zero-coupon bond maturing
at time ti+2 is then

e−r(0,ti+2)(i+2) ∆t

=
∑

j

Q(i, j) e−rj∆t Eπ
[
e−r̂(i+1) ∆t

∣∣∣ r̂(i) = rj

]
.(122)

• The right-hand side represents the value of $1 obtained
by holding a zero-coupon bond until time ti+1 and then
reinvesting the proceeds at that time at the prevailing
short rate r̂(i + 1), which is stochastic.
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The Hull-White Model: Calibration (continued)

• The expectation (122) can be approximated by

Eπ
[

e−r̂(i+1) ∆t
∣∣∣ r̂(i) = rj

]

≈ e−rj∆t

(
1− µi,j(∆t)2 +

σ2(∆t)3

2

)
. (123)

• Substitute Eq. (123) into Eq. (122) and replace µi,j

with θ(ti)− arj to obtain

θ(ti) ≈
∑

j Q(i, j) e
−2rj∆t (

1 + arj(∆t)2 + σ2(∆t)3/2
)
− e

−r(0,ti+2)(i+2) ∆t

(∆t)2
∑

j Q(i, j) e
−2rj∆t

.
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The Hull-White Model: Calibration (continued)

• For the Hull-White model, the expectation in Eq. (123)
on p. 1015 is actually known analytically by Eq. (18) on
p. 151:

Eπ
[
e−r̂(i+1) ∆t

∣∣∣ r̂(i) = rj

]
= e−rj∆t+(−θ(ti)+arj+σ2∆t/2)(∆t)2 .

• Therefore, alternatively,

θ(ti) =
r(0, ti+2)(i + 2)

∆t
+

σ2∆t

2
+

ln
∑

j Q(i, j) e−2rj∆t+arj(∆t)2

(∆t)2
.
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The Hull-White Model: Calibration (concluded)

• With θ(ti) in hand, we can compute µi,j , the
probabilities, and finally the state prices at time ti+1:

Q(i + 1, j)

=
∑

(i, j∗) is connected to (i + 1, j) with probability pj∗

pj∗e
−rj∗∆tQ(i, j∗).

• There are at most 5 choices for j∗.

• The total running time is O(n2).

• The space requirement is O(n) (why?).
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Comments on the Hull-White Model

• One can try different values of a and σ for each option
or have an a value common to all options but use a
different σ value for each option.

• Either approach can match all the option prices exactly.

• If the demand is for a single set of parameters that
replicate all option prices, the Hull-White model can be
calibrated to all the observed option prices by choosing
a and σ that minimize the mean-squared pricing error.a

aHull and White (1995).
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