
Numerical Examples

• Assume S0 = 100, y0 = ln S0 = 4.60517, r = 0,
h2

0 = 0.0001096, γ = h0 = 0.010469, n = 1,
γn = γ/

√
n = 0.010469, β0 = 0.000006575, β1 = 0.9,

β2 = 0.04, and c = 0.

• A daily variance of 0.0001096 corresponds to an annual
volatility of

√
365× 0.0001096 ≈ 20%.

• Let h2(i, j) denote the variance at node (i, j).

• Initially, h2(0, 0) = h2
0 = 0.0001096.
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Numerical Examples (continued)

• Let h2
max(i, j) denote the maximum variance at node

(i, j).

• Let h2
min(i, j) denote the minimum variance at node

(i, j).

• Initially, h2
max(0, 0) = h2

min(0, 0) = h2
0.

• The resulting three-day tree is depicted on p. 778.
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A top (bottom) number inside a gray box refers to the
minimum (maximum, resp.) variance h2

min (h2
max, resp.) for

the node. Variances are multiplied by 100,000 for
readability. A top (bottom) number inside a white box refers
to η corresponding to h2

min (h2
max, resp.).
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Numerical Examples (continued)

• Let us see how the numbers are calculated.

• Start with the root node, node (0, 0).

• Try η = 1 in Eqs. (86)–(88) on p. 763 first to obtain

pu = 0.4974,

pm = 0,

pd = 0.5026.

• As they are valid probabilities, the three branches from
the root node use single jumps.
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Numerical Examples (continued)

• Move on to node (1, 1).

• It has one predecessor node—node (0, 0)—and it takes
an up move to reach the current node.

• So apply updating rule (90) on p. 769 with ` = 1 and
h2

t = h2(0, 0).

• The result is h2(1, 1) = 0.000109645.
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Numerical Examples (continued)

• Because dh(1, 1)/γ e = 2, we try η = 2 in
Eqs. (86)–(88) on p. 763 first to obtain

pu = 0.1237,

pm = 0.7499,

pd = 0.1264.

• As they are valid probabilities, the three branches from
node (1, 1) use double jumps.
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Numerical Examples (continued)

• Carry out similar calculations for node (1, 0) with
` = 0 in updating rule (90) on p. 769.

• Carry out similar calculations for node (1,−1) with
` = −1 in updating rule (90).

• Single jump η = 1 works for both nodes.

• The resulting variances are

h2(1, 0) = 0.000105215,

h2(1,−1) = 0.000109553.
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Numerical Examples (continued)

• Node (2, 0) has 2 predecessor nodes, (1, 0) and (1,−1).

• Both have to be considered in deriving the variances.

• Let us start with node (1, 0).

• Because it takes a middle move to reach the current
node, we apply updating rule (90) on p. 769 with ` = 0
and h2

t = h2(1, 0).

• The result is h2
t+1 = 0.000101269.
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Numerical Examples (continued)

• Now move on to the other predecessor node (1,−1).

• Because it takes an up move to reach the current node,
apply updating rule (90) on p. 769 with ` = 1 and
h2

t = h2(1,−1).

• The result is h2
t+1 = 0.000109603.

• We hence record

h2
min(2, 0) = 0.000101269,

h2
max(2, 0) = 0.000109603.
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Numerical Examples (continued)

• Consider state h2
max(2, 0) first.

• Because dhmax(2, 0)/γ e = 2, we first try η = 2 in
Eqs. (86)–(88) on p. 763 to obtain

pu = 0.1237,

pm = 0.7500,

pd = 0.1263.

• As they are valid probabilities, the three branches from
node (2, 0) with the maximum variance use double
jumps.
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Numerical Examples (continued)

• Now consider state h2
min(2, 0).

• Because dhmin(2, 0)/γ e = 1, we first try η = 1 in
Eqs. (86)–(88) on p. 763 to obtain

pu = 0.4596,

pm = 0.0760,

pd = 0.4644.

• As they are valid probabilities, the three branches from
node (2, 0) with the minimum variance use single jumps.
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Numerical Examples (continued)

• Node (2,−1) has 3 predecessor nodes.

• Start with node (1, 1).

• Because it takes a down move to reach the current node,
we apply updating rule (90) on p. 769 with ` = −1 and
h2

t = h2(1, 1).a

• The result is h2
t+1 = 0.0001227.

aNote that it is not ` = −2.
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Numerical Examples (continued)

• Now move on to predecessor node (1, 0).

• Because it also takes a down move to reach the current
node, we apply updating rule (90) on p. 769 with
` = −1 and h2

t = h2(1, 0).

• The result is h2
t+1 = 0.000105609.
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Numerical Examples (continued)

• Finally, consider predecessor node (1,−1).

• Because it takes a middle move to reach the current
node, we apply updating rule (90) on p. 769 with ` = 0
and h2

t = h2(1,−1).

• The result is h2
t+1 = 0.000105173.

• We hence record

h2
min(2,−1) = 0.000105173,

h2
max(2,−1) = 0.0001227.
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Numerical Examples (continued)

• Consider state h2
max(2,−1).

• Because dhmax(2,−1)/γ e = 2, we first try η = 2 in
Eqs. (86)–(88) on p. 763 to obtain

pu = 0.1385,

pm = 0.7201,

pd = 0.1414.

• As they are valid probabilities, the three branches from
node (2,−1) with the maximum variance use double
jumps.
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Numerical Examples (continued)

• Next, consider state h2
min(2,−1).

• Because dhmin(2,−1)/γ e = 1, we first try η = 1 in
Eqs. (86)–(88) on p. 763 to obtain

pu = 0.4773,

pm = 0.0404,

pd = 0.4823.

• As they are valid probabilities, the three branches from
node (2,−1) with the minimum variance use single
jumps.
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Numerical Examples (concluded)

• Other nodes at dates 2 and 3 can be handled similarly.

• In general, if a node has k predecessor nodes, then 2k

variances will be calculated using the updating rule.

– This is because each predecessor node keeps two
variance numbers.

• But only the maximum and minimum variances will be
kept.
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Negative Aspects of the RT Algorithm Revisiteda

• Recall the problems mentioned on p. 775.

• In our case, combinatorial explosion occurs when

n >
1− β1

β2
=

1− 0.9
0.04

= 2.5.

• Suppose we are willing to accept the exponential
running time and pick n = 100 to seek accuracy.

• But the problem of shortened maturity forces the tree to
stop at date 9!

aLyuu and Wu (R90723065) (2003).
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Dotted line: n = 3; dashed line: n = 4; solid line: n = 5.
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Backward Induction on the RT Tree

• After the RT tree is constructed, it can be used to price
options by backward induction.

• Recall that each node keeps two variances h2
max and

h2
min.

• We now increase that number to K equally spaced
variances between h2

max and h2
min at each node.

• Besides the minimum and maximum variances, the other
K − 2 variances in between are linearly interpolated.a

aIn practice, log-linear interpolation works better (Lyuu and Wu

(R90723065) (2005)). Log-cubic interpolation works even better (Liu

(R92922123) (2005)).
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Backward Induction on the RT Tree (continued)

• For example, if K = 3, then a variance of
10.5436× 10−6 will be added between the maximum
and minimum variances at node (2, 0) on p. 778.a

• In general, the kth variance at node (i, j) is

h2
min(i, j) + k

h2
max(i, j)− h2

min(i, j)
K − 1

,

k = 0, 1, . . . ,K − 1.

• Each interpolated variance’s jump parameter and
branching probabilities can be computed as before.

aRepeated on p. 798.
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Backward Induction on the RT Tree (concluded)

• Suppose a variance falls between two of the K variances
during backward induction.

• Linear interpolation of the option prices corresponding
to the two bracketing variances will be used as the
approximate option price.

• The above ideas are reminiscent of the ones on p. 351,
where we dealt with arithmetic average-rate options.
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Numerical Examples

• We next use the numerical example on p. 798 to price a
European call option with a strike price of 100 and
expiring at date 3.

• Recall that the riskless interest rate is zero.

• Assume K = 2; hence there are no interpolated
variances.

• The pricing tree is shown on p. 801 with a call price of
0.66346.

– The branching probabilities needed in backward
induction can be found on p. 802.
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Numerical Examples (continued)

• Let us derive some of the numbers on p. 801.

• A gray line means the updated variance falls strictly
between h2

max and h2
min.

• The option price for a terminal node at date 3 equals
max(S3 − 100, 0), independent of the variance level.

• Now move on to nodes at date 2.

• The option price at node (2, 3) depends on those at
nodes (3, 5), (3, 3), and (3, 1).

• It therefore equals

0.1387× 5.37392 + 0.7197× 3.19054 + 0.1416× 1.05240 = 3.19054.
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Numerical Examples (continued)

• Option prices for other nodes at date 2 can be computed
similarly.

• For node (1, 1), the option price for both variances is

0.1237× 3.19054 + 0.7499× 1.05240 + 0.1264× 0.14573 = 1.20241.

• Node (1, 0) is most interesting.

• We knew that a down move from it gives a variance of
0.000105609.

• This number falls between the minimum variance
0.000105173 and the maximum variance 0.0001227 at
node (2,−1) on p. 798.
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Numerical Examples (continued)

• The option price corresponding to the minimum
variance is 0.

• The option price corresponding to the maximum
variance is 0.14573.

• The equation

x× 0.000105173 + (1− x)× 0.0001227 = 0.000105609

is satisfied by x = 0.9751.

• So the option for the down state is approximated by

x× 0 + (1− x)× 0.14573 = 0.00362.
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Numerical Examples (continued)

• The up move leads to the state with option price
1.05240.

• The middle move leads to the state with option price
0.48366.

• The option price at node (1, 0) is finally calculated as

0.4775× 1.05240 + 0.0400× 0.48366 + 0.4825× 0.00362 = 0.52360.
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Numerical Examples (continued)

• A variance following an interpolated variance may
exceed the maximum variance or be exceeded by the
minimum variance.

• When this happens, the option price corresponding to
the maximum or minimum variance will be used during
backward induction.a

aCakici and Topyan (2000).
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Numerical Examples (concluded)

• An interpolated variance may choose a branch that goes
into a node that is not reached in forward induction.a

• In this case, the algorithm fails.

• It may be hard to calculate the implied β1 and β2 from
option prices.b

aLyuu and Wu (R90723065) (2005).
bChang (R93922034) (2006).
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Complexities of GARCH Modelsa

• The Ritchken-Trevor algorithm explodes exponentially if
n is big enough (p. 775).

• The mean-tracking algorithm of Lyuu and Wu (2005)
will make sure explosion does not happen if n is not too
large.b

• The next page summarizes the situations for many
GARCH option pricing models.

– Our earlier treatment is for NGARCH.
aLyuu and Wu (R90723065) (2003, 2005).
bSimilar to, but earlier than, the idea behind the binomial-trinomial

tree on pp. 602ff.
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Complexities of GARCH Models (concluded)a

Model Explosion Non-explosion

NGARCH β1 + β2n > 1 β1 + β2(
√

n + λ + c)2 ≤ 1

LGARCH β1 + β2n > 1 β1 + β2(
√

n + λ)2 ≤ 1

AGARCH β1 + β2n > 1 β1 + β2(
√

n + λ)2 ≤ 1

GJR-GARCH β1 + β2n > 1 β1 + (β2 + β3)(
√

n + λ)2 ≤ 1

TS-GARCH β1 + β2
√

n > 1 β1 + β2(λ +
√

n) ≤ 1

TGARCH β1 + β2
√

n > 1 β1 + (β2 + β3)(λ +
√

n) ≤ 1

Heston-Nandi β1 + β2(c− 1
2
)2 > 1 β1 + β2c2 ≤ 1

& c ≤ 1
2

VGARCH β1 + (β2/4) > 1 β1 ≤ 1

aChen (R95723051) (2008); Chen (R95723051), Lyuu, and Wen

(D94922003) (2011).
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Introduction to Term Structure Modeling
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The fox often ran to the hole
by which they had come in,

to find out if his body was still thin enough
to slip through it.

— Grimm’s Fairy Tales
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And the worst thing you can have
is models and spreadsheets.

— Warren Buffet, May 3, 2008
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Outline

• Use the binomial interest rate tree to model stochastic
term structure.

– Illustrates the basic ideas underlying future models.

– Applications are generic in that pricing and hedging
methodologies can be easily adapted to other models.

• Although the idea is similar to the earlier one used in
option pricing, the current task is more complicated.

– The evolution of an entire term structure, not just a
single stock price, is to be modeled.

– Interest rates of various maturities cannot evolve
arbitrarily, or arbitrage profits may occur.
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Issues

• A stochastic interest rate model performs two tasks.

– Provides a stochastic process that defines future term
structures without arbitrage profits.

– “Consistent” with the observed term structures.

• The unbiased expectations theory, the liquidity
preference theory, and the market segmentation theory
can all be made consistent with the model.
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History

• Methodology founded by Merton (1970).

• Modern interest rate modeling is often traced to 1977
when Vasicek and Cox, Ingersoll, and Ross developed
simultaneously their influential models.

• Early models have fitting problems because they may
not price today’s benchmark bonds correctly.

• An alternative approach pioneered by Ho and Lee (1986)
makes fitting the market yield curve mandatory.

• Models based on such a paradigm are called (somewhat
misleadingly) arbitrage-free or no-arbitrage models.
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Binomial Interest Rate Tree

• Goal is to construct a no-arbitrage interest rate tree
consistent with the yields and/or yield volatilities of
zero-coupon bonds of all maturities.

– This procedure is called calibration.a

• Pick a binomial tree model in which the logarithm of the
future short rate obeys the binomial distribution.

– Exactly like the CRR tree.

• The limiting distribution of the short rate at any future
time is hence lognormal.

aDerman (2004), “complexity without calibration is pointless.”
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Binomial Interest Rate Tree (continued)

• A binomial tree of future short rates is constructed.

• Every short rate is followed by two short rates in the
following period (p. 819).

• In the figure on p. 819 node A coincides with the start of
period j during which the short rate r is in effect.
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Binomial Interest Rate Tree (continued)

• At the conclusion of period j, a new short rate goes into
effect for period j + 1.

• This may take one of two possible values:

– r`: the “low” short-rate outcome at node B.

– rh: the “high” short-rate outcome at node C.

• Each branch has a fifty percent chance of occurring in a
risk-neutral economy.
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Binomial Interest Rate Tree (continued)

• We shall require that the paths combine as the binomial
process unfolds.

• The short rate r can go to rh and r` with equal
risk-neutral probability 1/2 in a period of length ∆t.

• Hence the volatility of ln r after ∆t time is

σ =
1
2

1√
∆t

ln
(

rh

r`

)

(see Exercise 23.2.3 in text).

• Above, σ is annualized, whereas r` and rh are period
based.
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Binomial Interest Rate Tree (continued)

• Note that
rh

r`
= e2σ

√
∆t.

• Thus greater volatility, hence uncertainty, leads to larger
rh/r` and wider ranges of possible short rates.

• The ratio rh/r` may depend on time if the volatility is a
function of time.

• Note that rh/r` has nothing to do with the current
short rate r if σ is independent of r.
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Binomial Interest Rate Tree (continued)

• In general there are j possible rates in period j,

rj , rjvj , rjv
2
j , . . . , rjv

j−1
j ,

where

vj ≡ e2σj

√
∆t (91)

is the multiplicative ratio for the rates in period j (see
figure on next page).

• We shall call rj the baseline rates.

• The subscript j in σj is meant to emphasize that the
short rate volatility may be time dependent.
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Binomial Interest Rate Tree (concluded)

• In the limit, the short rate follows the following process,

r(t) = µ(t) eσ(t) W (t), (92)

in which the (percent) short rate volatility σ(t) is a
deterministic function of time.

• The expected value of r(t) equals µ(t) eσ(t)2(t/2).

• Hence a declining short rate volatility is usually imposed
to preclude the short rate from assuming implausibly
high values.

• Incidentally, this is how the binomial interest rate tree
achieves mean reversion.
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Memory Issues

• Path independency: The term structure at any node is
independent of the path taken to reach it.

• So only the baseline rates ri and the multiplicative
ratios vi need to be stored in computer memory.

• This takes up only O(n) space.a

• Storing the whole tree would take up O(n2) space.

– Daily interest rate movements for 30 years require
roughly (30× 365)2/2 ≈ 6× 107 double-precision
floating-point numbers (half a gigabyte!).

aThroughout this chapter, n denotes the depth of the tree.
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Set Things in Motion

• The abstract process is now in place.

• We need the annualized rates of return of the riskless
bonds that make up the benchmark yield curve and
their volatilities.

• In the U.S., for example, the on-the-run yield curve
obtained by the most recently issued Treasury securities
may be used as the benchmark curve.
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Set Things in Motion (concluded)

• The term structure of (yield) volatilitiesa can be
estimated from:

– Historical data (historical volatility).

– Or interest rate option prices such as cap prices
(implied volatility).

• The binomial tree should be consistent with both term
structures.

• Here we focus on the term structure of interest rates.
aOr simply the volatility (term) structure.
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Model Term Structures

• The model price is computed by backward induction.

• Refer back to the figure on p. 819.

• Given that the values at nodes B and C are PB and PC,
respectively, the value at node A is then

PB + PC

2(1 + r)
+ cash flow at node A.

• We compute the values column by column without
explicitly expanding the binomial interest rate tree (see
next page).

• This takes quadratic time and linear space.
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Term Structure Dynamics

• An n-period zero-coupon bond’s price can be computed
by assigning $1 to every node at period n and then
applying backward induction.

• Repeating this step for n = 1, 2, . . . , one obtains the
market discount function implied by the tree.

• The tree therefore determines a term structure.

• It also contains a term structure dynamics.

– Taking any node in the tree as the current state
induces a binomial interest rate tree and, again, a
term structure.
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Sample Term Structure

• We shall construct interest rate trees consistent with the
sample term structure in the following table.

• Assume the short rate volatility is such that
v ≡ rh/r` = 1.5, independent of time.

Period 1 2 3

Spot rate (%) 4 4.2 4.3

One-period forward rate (%) 4 4.4 4.5

Discount factor 0.96154 0.92101 0.88135
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An Approximate Calibration Scheme

• Start with the implied one-period forward rates and
then equate the expected short rate with the forward
rate (see Exercise 5.6.6 in text).

• For the first period, the forward rate is today’s
one-period spot rate.

• In general, let fj denote the forward rate in period j.

• This forward rate can be derived from the market
discount function via fj = (d(j)/d(j + 1))− 1 (see
Exercise 5.6.3 in text).
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An Approximate Calibration Scheme (continued)

• Since the ith short rate rjv
i−1
j , 1 ≤ i ≤ j, occurs with

probability 2−(j−1)
(
j−1
i−1

)
, this means

j∑

i=1

2−(j−1)

(
j − 1
i− 1

)
rjv

i−1
j = fj .

• Thus

rj =
(

2
1 + vj

)j−1

fj . (93)

• The binomial interest rate tree is trivial to set up.
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An Approximate Calibration Scheme (continued)

• The ensuing tree for the sample term structure appears
in figure next page.

• For example, the price of the zero-coupon bond paying
$1 at the end of the third period is

1

4
×

1

1.04
×

( 1

1.0352
×

( 1

1.0288
+

1

1.0432

)
+

1

1.0528
×

( 1

1.0432
+

1

1.0648

))

or 0.88155, which exceeds discount factor 0.88135.

• The tree is thus not calibrated.
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An Approximate Calibration Scheme (concluded)

• Indeed, this bias is inherent: The tree overprices the
bonds (see Exercise 23.2.4 in text).

• Suppose we replace the baseline rates rj by rjvj .

• Then the resulting tree underprices the bonds.a

• The baseline rates are thus bounded tightly between rj

and rjvj .

aLyuu and Wang (F95922018) (2009, 2011).
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