
Extrapolation

• It is a method to speed up numerical convergence.

• Say f(n) converges to an unknown limit f at rate of
1/n:

f(n) = f +
c

n
+ o

(
1
n

)
. (72)

• Assume c is an unknown constant independent of n.

– Convergence is basically monotonic and smooth.
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Extrapolation (concluded)

• From two approximations f(n1) and f(n2) and by
ignoring the smaller terms,

f(n1) = f +
c

n1
,

f(n2) = f +
c

n2
.

• A better approximation to the desired f is

f =
n1f(n1)− n2f(n2)

n1 − n2
. (73)

• This estimate should converge faster than 1/n.

• The Richardson extrapolation uses n2 = 2n1.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 638



Improving BOPM with Extrapolation

• Consider standard European options.

• Denote the option value under BOPM using n time
periods by f(n).

• It is known that BOPM convergences at the rate of 1/n,
consistent with Eq. (72) on p. 637.

• But the plots on p. 255 (redrawn on next page)
demonstrate that convergence to the true option value
oscillates with n.

• Extrapolation is inapplicable at this stage.
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Improving BOPM with Extrapolation (concluded)

• Take the at-the-money option in the left plot on p. 640.

• The sequence with odd n turns out to be monotonic
and smooth (see the left plot on p. 642).a

• Apply extrapolation (73) on p. 638 with n2 = n1 + 2,
where n1 is odd.

• Result is shown in the right plot on p. 642.

• The convergence rate is amazing.

• See Exercise 9.3.8 of the text (p. 111) for ideas in the
general case.

aThis can be proved; see Chang and Palmer (2007).
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Numerical Methods
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All science is dominated
by the idea of approximation.

— Bertrand Russell
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Finite-Difference Methods

• Place a grid of points on the space over which the
desired function takes value.

• Then approximate the function value at each of these
points (p. 646).

• Solve the equation numerically by introducing difference
equations in place of derivatives.
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Example: Poisson’s Equation

• It is ∂2θ/∂x2 + ∂2θ/∂y2 = −ρ(x, y).

• Replace second derivatives with finite differences
through central difference.

• Introduce evenly spaced grid points with distance of ∆x

along the x axis and ∆y along the y axis.

• The finite difference form is

−ρ(xi, yj) =
θ(xi+1, yj)− 2θ(xi, yj) + θ(xi−1, yj)

(∆x)2

+
θ(xi, yj+1)− 2θ(xi, yj) + θ(xi, yj−1)

(∆y)2
.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 647



Example: Poisson’s Equation (concluded)

• In the above, ∆x ≡ xi − xi−1 and ∆y ≡ yj − yj−1 for
i, j = 1, 2, . . . .

• When the grid points are evenly spaced in both axes so
that ∆x = ∆y = h, the difference equation becomes

−h2ρ(xi, yj) = θ(xi+1, yj) + θ(xi−1, yj)

+θ(xi, yj+1) + θ(xi, yj−1)− 4θ(xi, yj).

• Given boundary values, we can solve for the xis and the
yjs within the square [±L,±L ].

• From now on, θi,j will denote the finite-difference
approximation to the exact θ(xi, yj).
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Explicit Methods

• Consider the diffusion equation
D(∂2θ/∂x2)− (∂θ/∂t) = 0.

• Use evenly spaced grid points (xi, tj) with distances
∆x and ∆t, where ∆x ≡ xi+1 − xi and ∆t ≡ tj+1 − tj .

• Employ central difference for the second derivative and
forward difference for the time derivative to obtain

∂θ(x, t)

∂t

∣∣∣∣
t=tj

=
θ(x, tj+1)− θ(x, tj)

∆t
+ · · · , (74)

∂2θ(x, t)

∂x2

∣∣∣∣
x=xi

=
θ(xi+1, t)− 2θ(xi, t) + θ(xi−1, t)

(∆x)2
+ · · · . (75)
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Explicit Methods (continued)

• Next, assemble Eqs. (74) and (75) into a single equation
at (xi, tj).

• But we need to decide how to evaluate x in the first
equation and t in the second.

• Since central difference around xi is used in Eq. (75),
we might as well use xi for x in Eq. (74).

• Two choices are possible for t in Eq. (75).

• The first choice uses t = tj to yield the following
finite-difference equation,

θi,j+1 − θi,j

∆t
= D

θi+1,j − 2θi,j + θi−1,j

(∆x)2
. (76)
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Explicit Methods (continued)

• The stencil of grid points involves four values, θi,j+1,
θi,j , θi+1,j , and θi−1,j .

• Rearrange Eq. (76) on p. 650 as

θi,j+1 =
D∆t

(∆x)2
θi+1,j +

(
1− 2D∆t

(∆x)2

)
θi,j +

D∆t

(∆x)2
θi−1,j .

• We can calculate θi,j+1 from θi,j , θi+1,j , θi−1,j , at the
previous time tj (see exhibit (a) on next page).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 651



Stencils

t
j

t
j 1

x
i 1

x
i 1

x
i

t
j

t
j 1

x
i 1

x
i 1

x
i

(a) (b)

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 652



Explicit Methods (concluded)

• Starting from the initial conditions at t0, that is,
θi,0 = θ(xi, t0), i = 1, 2, . . . , we calculate

θi,1, i = 1, 2, . . . .

• And then
θi,2, i = 1, 2, . . . .

• And so on.
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Stability

• The explicit method is numerically unstable unless

∆t ≤ (∆x)2/(2D).

– A numerical method is unstable if the solution is
highly sensitive to changes in initial conditions.

• The stability condition may lead to high running times
and memory requirements.

• For instance, halving ∆x would imply quadrupling
(∆t)−1, resulting in a running time eight times as much.
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Explicit Method and Trinomial Tree

• Recall that

θi,j+1 =
D∆t

(∆x)2
θi+1,j +

(
1− 2D∆t

(∆x)2

)
θi,j +

D∆t

(∆x)2
θi−1,j .

• When the stability condition is satisfied, the three
coefficients for θi+1,j , θi,j , and θi−1,j all lie between
zero and one and sum to one.

• They can be interpreted as probabilities.

• So the finite-difference equation becomes identical to
backward induction on trinomial trees!

• The freedom in choosing ∆x corresponds to similar
freedom in the construction of trinomial trees.
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Implicit Methods

• Suppose we use t = tj+1 in Eq. (75) on p. 649 instead.

• The finite-difference equation becomes

θi,j+1 − θi,j

∆t
= D

θi+1,j+1 − 2θi,j+1 + θi−1,j+1

(∆x)2
.

(77)

• The stencil involves θi,j , θi,j+1, θi+1,j+1, and θi−1,j+1.

• This method is implicit:

– The value of any one of the three quantities at tj+1

cannot be calculated unless the other two are known.

– See exhibit (b) on p. 652.
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Implicit Methods (continued)

• Equation (77) can be rearranged as

θi−1,j+1 − (2 + γ) θi,j+1 + θi+1,j+1 = −γθi,j ,

where γ ≡ (∆x)2/(D∆t).

• This equation is unconditionally stable.

• Suppose the boundary conditions are given at x = x0

and x = xN+1.

• After θi,j has been calculated for i = 1, 2, . . . , N , the
values of θi,j+1 at time tj+1 can be computed as the
solution to the following tridiagonal linear system,
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Implicit Methods (continued)




a 1 0 · · · · · · 0

1 a 1 0 · · · 0
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θ1,j+1
θ2,j+1
θ3,j+1

.

.

.

.
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.

.

.

.

θN,j+1




=




−γθ1,j − θ0,j+1
−γθ2,j

−γθ3,j

.

.

.

.

.

.

−γθN−1,j

−γθN,j − θN+1,j+1




,

where a ≡ −2− γ.
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Implicit Methods (concluded)

• Tridiagonal systems can be solved in O(N) time and
O(N) space.

• The matrix above is nonsingular when γ ≥ 0.

– A square matrix is nonsingular if its inverse exists.
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Crank-Nicolson Method
• Take the average of explicit method (76) on p. 650 and

implicit method (77) on p. 656:
θi,j+1 − θi,j

∆t

=
1

2

(
D

θi+1,j − 2θi,j + θi−1,j

(∆x)2
+ D

θi+1,j+1 − 2θi,j+1 + θi−1,j+1

(∆x)2

)
.

• After rearrangement,

γθi,j+1 −
θi+1,j+1 − 2θi,j+1 + θi−1,j+1

2
= γθi,j +

θi+1,j − 2θi,j + θi−1,j

2
.

• This is an unconditionally stable implicit method with
excellent rates of convergence.
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Stencil
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xi

xi+1
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Numerically Solving the Black-Scholes PDE

• See text.
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Monte Carlo Simulationa

• Monte Carlo simulation is a sampling scheme.

• In many important applications within finance and
without, Monte Carlo is one of the few feasible tools.

• When the time evolution of a stochastic process is not
easy to describe analytically, Monte Carlo may very well
be the only strategy that succeeds consistently.

aA top 10 algorithm according to Dongarra and Sullivan (2000).
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The Big Idea

• Assume X1, X2, . . . , Xn have a joint distribution.

• θ ≡ E[ g(X1, X2, . . . , Xn) ] for some function g is
desired.

• We generate
(
x

(i)
1 , x

(i)
2 , . . . , x(i)

n

)
, 1 ≤ i ≤ N

independently with the same joint distribution as
(X1, X2, . . . , Xn).

• Set
Yi ≡ g

(
x

(i)
1 , x

(i)
2 , . . . , x(i)

n

)
.
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The Big Idea (concluded)

• Y1, Y2, . . . , YN are independent and identically
distributed random variables.

• Each Yi has the same distribution as

Y ≡ g(X1, X2, . . . , Xn).

• Since the average of these N random variables, Y ,
satisfies E[Y ] = θ, it can be used to estimate θ.

• The strong law of large numbers says that this
procedure converges almost surely.

• The number of replications (or independent trials), N , is
called the sample size.
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Accuracy

• The Monte Carlo estimate and true value may differ
owing to two reasons:

1. Sampling variation.

2. The discreteness of the sample paths.a

• The first can be controlled by the number of replications.

• The second can be controlled by the number of
observations along the sample path.

aThis may not be an issue if the derivative only requires discrete

sampling along the time dimension.
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Accuracy and Number of Replications

• The statistical error of the sample mean Y of the
random variable Y grows as 1/

√
N .

– Because Var[Y ] = Var[Y ]/N .

• In fact, this convergence rate is asymptotically optimal
by the Berry-Esseen theorem.

• So the variance of the estimator Y can be reduced by a
factor of 1/N by doing N times as much work.

• This is amazing because the same order of convergence
holds independently of the dimension n.
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Accuracy and Number of Replications (concluded)

• In contrast, classic numerical integration schemes have
an error bound of O(N−c/n) for some constant c > 0.

– n is the dimension.

• The required number of evaluations thus grows
exponentially in n to achieve a given level of accuracy.

– The curse of dimensionality.

• The Monte Carlo method, for example, is more efficient
than alternative procedures for securities depending on
more than one asset, the multivariate derivatives.
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Monte Carlo Option Pricing

• For the pricing of European options on a
dividend-paying stock, we may proceed as follows.

• Stock prices S1, S2, S3, . . . at times ∆t, 2∆t, 3∆t, . . .

can be generated via

Si+1 = Sie
(µ−σ2/2) ∆t+σ

√
∆t ξ, ξ ∼ N(0, 1)

(78)

when dS/S = µdt + σ dW .
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Monte Carlo Option Pricing (continued)

• If we discretize dS/S = µdt + σ dW , we will obtain

Si+1 = Si + Siµ ∆t + Siσ
√

∆t ξ.

• But this is locally normally distributed, not lognormally,
hence biased.a

• In practice, this is not expected to be a major problem
as long as ∆t is sufficiently small.

aContributed by Mr. Tai, Hui-Chin (R97723028) on April 22, 2009.
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Monte Carlo Option Pricing (concluded)

• Non-dividend-paying stock prices in a risk-neutral
economy can be generated by setting µ = r and ∆t = T .

1: C := 0;
2: for i = 1, 2, 3, . . . , m do
3: P := S × e(r−σ2/2) T+σ

√
T ξ;

4: C := C + max(P −X, 0);
5: end for
6: return Ce−rT /m;

• Pricing Asian options is also easy (see text).
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How about American Options?

• Standard Monte Carlo simulation is inappropriate for
American options because of early exercise (why?).

• It is difficult to determine the early-exercise point based
on one single path.

• But Monte Carlo simulation can be modified to price
American options with small biases (p. 719ff).a

aLongstaff and Schwartz (2001).
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Delta and Common Random Numbers

• In estimating delta, it is natural to start with the
finite-difference estimate

e−rτ E[P (S + ε) ]− E[ P (S − ε) ]
2ε

.

– P (x) is the terminal payoff of the derivative security
when the underlying asset’s initial price equals x.

• Use simulation to estimate E[ P (S + ε) ] first.

• Use another simulation to estimate E[ P (S − ε) ].

• Finally, apply the formula to approximate the delta.
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Delta and Common Random Numbers (concluded)

• This method is not recommended because of its high
variance.

• A much better approach is to use common random
numbers to lower the variance:

e−rτ E

[
P (S + ε)− P (S − ε)

2ε

]
.

• Here, the same random numbers are used for P (S + ε)
and P (S − ε).

• This holds for gamma and cross gammas (for
multivariate derivatives).
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Gamma

• The finite-difference formula for gamma is

e−rτ E

[
P (S + ε)− 2× P (S) + P (S − ε)

ε2

]
.

• For a correlation option with multiple underlying assets,
the finite-difference formula for the cross gammas
∂2P (S1, S2, . . . )/(∂S1∂S2) is:

e−rτ E

[
P (S1 + ε1, S2 + ε2)− P (S1 − ε1, S2 + ε2)

4ε1ε2

−P (S1 + ε1, S2 − ε2) + P (S1 − ε1, S2 − ε2)
]

.
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Gamma (continued)

• Choosing an ε of the right magnitude can be
challenging.

– If ε is too large, inaccurate Greeks result.

– If ε is too small, unstable Greeks result.

• This phenomenon is sometimes called the curse of
differentiation.
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Gamma (concluded)

• In general, suppose

∂i

∂θi
e−rτE[ P (S) ] = e−rτE

[
∂iP (S)

∂θi

]

holds for all i > 0, where θ is a parameter of interest.

• Then formulas for the Greeks become integrals.

• As a result, we avoid ε, finite differences, and
resimulation.

• This is indeed possible for a broad class of payoff
functions.a

aTeng (R91723054) (2004) and Lyuu and Teng (R91723054) (2010).
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Biases in Pricing Continuously Monitored Options
with Monte Carlo

• We are asked to price a continuously monitored
up-and-out call with barrier H.

• The Monte Carlo method samples the stock price at n

discrete time points t1, t2, . . . , tn.

• A sample path S(t0), S(t1), . . . , S(tn) is produced.

– Here, t0 = 0 is the current time, and tn = T is the
expiration time of the option.
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

• If all of the sampled prices are below the barrier, this
sample path pays max(S(tn)−X, 0).

• Repeating these steps and averaging the payoffs yield a
Monte Carlo estimate.
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1: C := 0;

2: for i = 1, 2, 3, . . . , m do

3: P := S; hit := 0;

4: for j = 1, 2, 3, . . . , n do

5: P := P × e(r−σ2/2) (T/n)+σ
√

(T/n) ξ;

6: if P ≥ H then

7: hit := 1;

8: break;

9: end if

10: end for

11: if hit = 0 then

12: C := C + max(P −X, 0);

13: end if

14: end for

15: return Ce−rT /m;
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

• This estimate is biased.

– Suppose none of the sampled prices on a sample path
equals or exceeds the barrier H.

– It remains possible for the continuous sample path
that passes through them to hit the barrier between
sampled time points (see plot on next page).
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H
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (concluded)

• The bias can certainly be lowered by increasing the
number of observations along the sample path.

• However, even daily sampling may not suffice.

• The computational cost also rises as a result.
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Brownian Bridge Approach to Pricing Barrier Options

• We desire an unbiased estimate efficiently.

• So the above-mentioned payoff should be multiplied by
the probability p that a continuous sample path does
not hit the barrier conditional on the sampled prices.

• This methodology is called the Brownian bridge
approach.

• Formally, we have

p ≡ Prob[ S(t) < H, 0 ≤ t ≤ T |S(t0), S(t1), . . . , S(tn) ].
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

• As a barrier is hit over a time interval if and only if the
maximum stock price over that period is at least H,

p = Prob
[

max
0≤t≤T

S(t) < H |S(t0), S(t1), . . . , S(tn)
]

.

• Luckily, the conditional distribution of the maximum
over a time interval given the beginning and ending
stock prices is known.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

Lemma 19 Assume S follows dS/S = µ dt + σ dW and define

ζ(x) ≡ exp

[
−2 ln(x/S(t)) ln(x/S(t + ∆t))

σ2∆t

]
.

(1) If H > max(S(t), S(t + ∆t)), then

Prob

[
max

t≤u≤t+∆t
S(u) < H

∣∣∣∣ S(t), S(t + ∆t)

]
= 1− ζ(H).

(2) If h < min(S(t), S(t + ∆t)), then

Prob

[
min

t≤u≤t+∆t
S(u) > h

∣∣∣∣ S(t), S(t + ∆t)

]
= 1− ζ(h).
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

• Lemma 19 gives the probability that the barrier is not
hit in a time interval, given the starting and ending
stock prices.

• For our up-and-out call, choose n = 1.

• As a result,

p =





1− exp
[
− 2 ln(H/S(0)) ln(H/S(T ))

σ2T

]
, if H > max(S(0), S(T )),

0, otherwise.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

1: C := 0;

2: for i = 1, 2, 3, . . . , m do

3: P := S × e(r−q−σ2/2) T+σ
√

T ξ( );

4: if (S < H and P < H) or (S > H and P > H) then

5: C := C+max(P−X, 0)×
{

1− exp
[
− 2 ln(H/S)×ln(H/P )

σ2T

]}
;

6: end if

7: end for

8: return Ce−rT /m;
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Brownian Bridge Approach to Pricing Barrier Options
(concluded)

• The idea can be generalized.

• For example, we can handle more complex barrier
options.

• Consider an up-and-out call with barrier Hi for the
time interval (ti, ti+1 ], 0 ≤ i < n.

• This option thus contains n barriers.

• It is a simple matter of multiplying the probabilities for
the n time intervals properly to obtain the desired
probability adjustment term.
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Variance Reduction

• The statistical efficiency of Monte Carlo simulation can
be measured by the variance of its output.

• If this variance can be lowered without changing the
expected value, fewer replications are needed.

• Methods that improve efficiency in this manner are
called variance-reduction techniques.

• Such techniques become practical when the added costs
are outweighed by the reduction in sampling.
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Variance Reduction: Antithetic Variates

• We are interested in estimating E[ g(X1, X2, . . . , Xn) ],
where X1, X2, . . . , Xn are independent.

• Let Y1 and Y2 be random variables with the same
distribution as g(X1, X2, . . . , Xn).

• Then

Var
[

Y1 + Y2

2

]
=

Var[ Y1 ]
2

+
Cov[Y1, Y2 ]

2
.

– Var[ Y1 ]/2 is the variance of the Monte Carlo
method with two (independent) replications.

• The variance Var[ (Y1 + Y2)/2 ] is smaller than
Var[Y1 ]/2 when Y1 and Y2 are negatively correlated.
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Variance Reduction: Antithetic Variates (continued)

• For each simulated sample path X, a second one is
obtained by reusing the random numbers on which the
first path is based.

• This yields a second sample path Y .

• Two estimates are then obtained: One based on X and
the other on Y .

• If N independent sample paths are generated, the
antithetic-variates estimator averages over 2N

estimates.
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Variance Reduction: Antithetic Variates (continued)

• Consider process dX = at dt + bt

√
dt ξ.

• Let g be a function of n samples X1, X2, . . . , Xn on
the sample path.

• We are interested in E[ g(X1, X2, . . . , Xn) ].

• Suppose one simulation run has realizations
ξ1, ξ2, . . . , ξn for the normally distributed fluctuation
term ξ.

• This generates samples x1, x2, . . . , xn.

• The estimate is then g(x), where x ≡ (x1, x2 . . . , xn).
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Variance Reduction: Antithetic Variates (concluded)

• The antithetic-variates method does not sample n more
numbers from ξ for the second estimate g(x′).

• Instead, generate the sample path x′ ≡ (x′1, x
′
2 . . . , x′n)

from −ξ1,−ξ2, . . . ,−ξn.

• Compute g(x′).

• Output (g(x) + g(x′))/2.

• Repeat the above steps for as many times as required by
accuracy.
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Variance Reduction: Conditioning

• We are interested in estimating E[ X ].

• Suppose here is a random variable Z such that
E[ X |Z = z ] can be efficiently and precisely computed.

• E[ X ] = E[ E[X |Z ] ] by the law of iterated conditional
expectations.

• Hence the random variable E[X |Z ] is also an unbiased
estimator of E[ X ].
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Variance Reduction: Conditioning (concluded)

• As
Var[E[ X |Z ] ] ≤ Var[ X ],

E[ X |Z ] has a smaller variance than observing X

directly.

• First obtain a random observation z on Z.

• Then calculate E[X |Z = z ] as our estimate.

– There is no need to resort to simulation in computing
E[ X |Z = z ].

• The procedure can be repeated a few times to reduce
the variance.
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Control Variates

• Use the analytic solution of a similar yet simpler
problem to improve the solution.

• Suppose we want to estimate E[ X ] and there exists a
random variable Y with a known mean µ ≡ E[Y ].

• Then W ≡ X + β(Y − µ) can serve as a “controlled”
estimator of E[ X ] for any constant β.

– However β is chosen, W remains an unbiased
estimator of E[X ] as

E[ W ] = E[ X ] + βE[Y − µ ] = E[X ].
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Control Variates (continued)

• Note that

Var[ W ] = Var[ X ] + β2 Var[ Y ] + 2β Cov[ X, Y ],

(79)

• Hence W is less variable than X if and only if

β2 Var[ Y ] + 2β Cov[X,Y ] < 0. (80)
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Control Variates (concluded)

• The success of the scheme clearly depends on both β

and the choice of Y .

– For example, arithmetic average-rate options can be
priced by choosing Y to be the otherwise identical
geometric average-rate option’s price and β = −1.

• This approach is much more effective than the
antithetic-variates method.
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Choice of Y

• In general, the choice of Y is ad hoc, and experiments
must be performed to confirm the wisdom of the choice.

• Try to match calls with calls and puts with puts.a

• On many occasions, Y is a discretized version of the
derivative that gives µ.

– Discretely monitored geometric average-rate option
vs. the continuously monitored geometric
average-rate option given by formulas (30) on p. 346.

• For some choices, the discrepancy can be significant,
such as the lookback option.b

aContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
bContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
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Optimal Choice of β

• Equation (79) on p. 698 is minimized when

β = −Cov[ X, Y ]/Var[Y ],

which was called beta in the book.

• For this specific β,

Var[W ] = Var[X ]− Cov[X,Y ]2

Var[ Y ]
=

(
1− ρ2

X,Y

)
Var[X ],

where ρX,Y is the correlation between X and Y .

• The stronger X and Y are correlated, the greater the
reduction in variance.
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Optimal Choice of β (continued)

• For example, if this correlation is nearly perfect (±1),
we could control X almost exactly.

• Typically, neither Var[Y ] nor Cov[X,Y ] is known.

• Therefore, we cannot obtain the maximum reduction in
variance.

• We can guess these values and hope that the resulting
W does indeed have a smaller variance than X.

• A second possibility is to use the simulated data to
estimate these quantities.

– How to do it efficiently in terms of time and space?
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Optimal Choice of β (continued)

• Observe that −β has the same sign as the correlation
between X and Y .

• Hence, if X and Y are positively correlated, β < 0,
then X is adjusted downward whenever Y > µ and
upward otherwise.

• The opposite is true when X and Y are negatively
correlated, in which case β > 0.
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Optimal Choice of β (concluded)

• Suppose a suboptimal β + ε is used instead.

• The variance increases by only ε2Var[ Y ].a

aHan and Lai (2010).
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A Pitfall

• A potential pitfall is to sample X and Y independently.

• In this case, Cov[X,Y ] = 0.

• Equation (79) on p. 698 becomes

Var[ W ] = Var[X ] + β2 Var[Y ].

• So whatever Y is, the variance is increased!
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Problems with the Monte Carlo Method

• The error bound is only probabilistic.

• The probabilistic error bound of
√

N does not benefit
from regularity of the integrand function.

• The requirement that the points be independent random
samples are wasteful because of clustering.

• In reality, pseudorandom numbers generated by
completely deterministic means are used.

• Monte Carlo simulation exhibits a great sensitivity on
the seed of the pseudorandom-number generator.
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