Example

• Consider the stochastic process

$$\{Z_n \equiv \sum_{i=1}^n X_i, n \ge 1\},\$$

where X_i are independent random variables with zero mean.

• This process is a martingale because

$$E[Z_{n+1} | Z_1, Z_2, \dots, Z_n]$$

= $E[Z_n + X_{n+1} | Z_1, Z_2, \dots, Z_n]$
= $E[Z_n | Z_1, Z_2, \dots, Z_n] + E[X_{n+1} | Z_1, Z_2, \dots, Z_n]$
= $Z_n + E[X_{n+1}] = Z_n.$

Probability Measure

- A probability measure assigns probabilities to states of the world.
- A martingale is defined with respect to a probability measure, under which the expectation is taken.
- A martingale is also defined with respect to an information set.
 - In the characterizations (41)–(42) on p. 437, the information set contains the current and past values of X by default.
 - But it need not be so.

Probability Measure (continued)

• A stochastic process $\{X(t), t \ge 0\}$ is a martingale with respect to information sets $\{I_t\}$ if, for all $t \ge 0$, $E[|X(t)|] < \infty$ and

$$E[X(u) \mid I_t] = X(t)$$

for all u > t.

• The discrete-time version: For all n > 0,

$$E[X_{n+1} \mid I_n] = X_n,$$

given the information sets $\{I_n\}$.

Probability Measure (concluded)

- The above implies $E[X_{n+m} | I_n] = X_n$ for any m > 0 by Eq. (16) on p. 143.
 - A typical I_n is the price information up to time n.
 - Then the above identity says the FVs of X will not deviate systematically from today's value given the price history.

Example

• Consider the stochastic process $\{Z_n - n\mu, n \ge 1\}$.

$$-Z_n \equiv \sum_{i=1}^n X_i.$$

 $-X_1, X_2, \ldots$ are independent random variables with mean μ .

• Now,

$$E[Z_{n+1} - (n+1) \mu | X_1, X_2, \dots, X_n]$$

= $E[Z_{n+1} | X_1, X_2, \dots, X_n] - (n+1) \mu$
= $E[Z_n + X_{n+1} | X_1, X_2, \dots, X_n] - (n+1) \mu$
= $Z_n + \mu - (n+1) \mu$
= $Z_n - n\mu$.

Example (concluded)

• Define

$$I_n \equiv \{X_1, X_2, \ldots, X_n\}.$$

• Then

$$\{Z_n - n\mu, n \ge 1\}$$

is a martingale with respect to $\{I_n\}$.

Martingale Pricing

- Recall that the price of a European option is the expected discounted future payoff at expiration in a risk-neutral economy.
- This principle can be generalized using the concept of martingale.
- Recall the recursive valuation of European option via

$$C = [pC_u + (1-p)C_d]/R.$$

- -p is the risk-neutral probability.
- \$1 grows to \$*R* in a period.

- Let C(i) denote the value of the option at time *i*.
- Consider the discount process

$$\left\{ \frac{C(i)}{R^i}, i = 0, 1, \dots, n \right\}.$$

• Then,

$$E\left[\left.\frac{C(i+1)}{R^{i+1}}\right| C(i) = C\right] = \frac{pC_u + (1-p)C_d}{R^{i+1}} = \frac{C}{R^i}.$$

• It is easy to show that

$$E\left[\left.\frac{C(k)}{R^k}\right|C(i)=C\right] = \frac{C}{R^i}, \quad i \le k.$$
(44)

- This formulation assumes:^a
 - The model is Markovian: The distribution of the future is determined by the present (time i) and not the past.
 - 2. The payoff depends only on the terminal price of the underlying asset (Asian options do not qualify).

^aContributed by Mr. Wang, Liang-Kai (Ph.D. student, ECE, University of Wisconsin-Madison) and Mr. Hsiao, Huan-Wen (B90902081) on May 3, 2006.

• In general, the discount process is a martingale in that

$$E_i^{\pi} \left[\frac{C(k)}{R^k} \right] = \frac{C(i)}{R^i}, \quad i \le k.$$
(45)

- $-E_i^{\pi}$ is taken under the risk-neutral probability conditional on the price information up to time *i*.
- This risk-neutral probability is also called the EMM, or the equivalent martingale (probability) measure.

- Equation (45) holds for all assets, not just options.
- When interest rates are stochastic, the equation becomes

$$\frac{C(i)}{M(i)} = E_i^{\pi} \left[\frac{C(k)}{M(k)} \right], \quad i \le k.$$
(46)

- -M(j) is the balance in the money market account at time j using the rollover strategy with an initial investment of \$1.
- So it is called the bank account process.
- It says the discount process is a martingale under π .

- If interest rates are stochastic, then M(j) is a random variable.
 - M(0) = 1.
 - -M(j) is known at time j-1.
- Identity (46) on p. 452 is the general formulation of risk-neutral valuation.

Martingale Pricing (concluded)

Theorem 14 A discrete-time model is arbitrage-free if and only if there exists a probability measure such that the discount process is a martingale. This probability measure is called the risk-neutral probability measure.

Futures Price under the BOPM

- Futures prices form a martingale under the risk-neutral probability.
 - The expected futures price in the next period is

$$p_{\rm f}Fu + (1 - p_{\rm f})Fd = F\left(\frac{1 - d}{u - d}u + \frac{u - 1}{u - d}d\right) = F$$

(p. 412).

• Can be generalized to

$$F_i = E_i^{\pi} [F_k], \quad i \le k,$$

where F_i is the futures price at time *i*.

• It holds under stochastic interest rates, too.

Martingale Pricing and Numeraire $^{\rm a}$

- The martingale pricing formula (46) on p. 452 uses the money market account as numeraire.^b
 - It expresses the price of any asset *relative to* the money market account.
- The money market account is not the only choice for numeraire.
- Suppose asset S's value is positive at all times.

^aJohn Law (1671–1729), "Money to be qualified for exchaning goods and for payments need not be certain in its value." ^bLeon Walras (1834–1910).

Martingale Pricing and Numeraire (concluded)

- Choose S as numeraire.
- Martingale pricing says there exists a risk-neutral probability π under which the relative price of any asset C is a martingale:

$$\frac{C(i)}{S(i)} = E_i^{\pi} \left[\frac{C(k)}{S(k)} \right], \quad i \le k.$$

- S(j) denotes the price of S at time j.

• So the discount process remains a martingale.

Example

- Take the binomial model with two assets.
- In a period, asset one's price can go from S to S_1 or S_2 .
- In a period, asset two's price can go from P to P_1 or P_2 .
- Assume

$$\frac{S_1}{P_1} < \frac{S}{P} < \frac{S_2}{P_2}$$

to rule out arbitrage opportunities.

Example (continued)

- For any derivative security, let C_1 be its price at time one if asset one's price moves to S_1 .
- Let C_2 be its price at time one if asset one's price moves to S_2 .
- Replicate the derivative by solving

$$\alpha S_1 + \beta P_1 = C_1,$$

$$\alpha S_2 + \beta P_2 = C_2,$$

using α units of asset one and β units of asset two.

Example (continued)

• This yields

$$\alpha = \frac{P_2 C_1 - P_1 C_2}{P_2 S_1 - P_1 S_2}$$
 and $\beta = \frac{S_2 C_1 - S_1 C_2}{S_2 P_1 - S_1 P_2}$.

• The derivative costs

$$C = \alpha S + \beta P$$

= $\frac{P_2 S - P S_2}{P_2 S_1 - P_1 S_2} C_1 + \frac{P S_1 - P_1 S_1}{P_2 S_1 - P_1 S_2} C_2.$

Example (concluded)

• It is easy to verify that

$$\frac{C}{P} = p \, \frac{C_1}{P_1} + (1-p) \, \frac{C_2}{P_2}.$$

- Above,

$$p \equiv \frac{(S/P) - (S_2/P_2)}{(S_1/P_1) - (S_2/P_2)}.$$

- The derivative's price using asset two as numeraire (i.e., C/P) is a martingale under the risk-neutral probability p.
- The expected returns of the two assets are irrelevant.

Brownian Motion $^{\rm a}$

- Brownian motion is a stochastic process $\{X(t), t \ge 0\}$ with the following properties.
 - **1.** X(0) = 0, unless stated otherwise.
 - **2.** for any $0 \le t_0 < t_1 < \cdots < t_n$, the random variables

 $X(t_k) - X(t_{k-1})$

for $1 \le k \le n$ are independent.^b

3. for $0 \le s < t$, X(t) - X(s) is normally distributed with mean $\mu(t-s)$ and variance $\sigma^2(t-s)$, where μ and $\sigma \ne 0$ are real numbers.

^aRobert Brown (1773–1858).

^bSo X(t) - X(s) is independent of X(r) for $r \le s < t$.

Brownian Motion (concluded)

- Such a process will be called a (μ, σ) Brownian motion with drift μ and variance σ^2 .
- The existence and uniqueness of such a process is guaranteed by Wiener's theorem.^a
- Although Brownian motion is a continuous function of t with probability one, it is almost nowhere differentiable.
- The (0,1) Brownian motion is also called the Wiener process.

^aNorbert Wiener (1894–1964).

Example

- If $\{X(t), t \ge 0\}$ is the Wiener process, then $X(t) - X(s) \sim N(0, t - s).$
- A (μ, σ) Brownian motion $Y = \{Y(t), t \ge 0\}$ can be expressed in terms of the Wiener process:

$$Y(t) = \mu t + \sigma X(t). \tag{47}$$

• Note that $Y(t+s) - Y(t) \sim N(\mu s, \sigma^2 s)$.

Brownian Motion as Limit of Random Walk

Claim 1 A (μ, σ) Brownian motion is the limiting case of random walk.

- A particle moves Δx to the left with probability 1-p.
- It moves to the right with probability p after Δt time.
- Assume $n \equiv t/\Delta t$ is an integer.
- Its position at time t is

$$Y(t) \equiv \Delta x \left(X_1 + X_2 + \dots + X_n \right).$$

Brownian Motion as Limit of Random Walk (continued)

• (continued)

– Here

 $X_i \equiv \begin{cases} +1 & \text{if the } i \text{th move is to the right,} \\ -1 & \text{if the } i \text{th move is to the left.} \end{cases}$

- X_i are independent with $\operatorname{Prob}[X_i = 1] = p = 1 - \operatorname{Prob}[X_i = -1].$

• Recall $E[X_i] = 2p - 1$ and $Var[X_i] = 1 - (2p - 1)^2$.

Brownian Motion as Limit of Random Walk (continued)Therefore,

$$E[Y(t)] = n(\Delta x)(2p - 1),$$

Var[Y(t)] = $n(\Delta x)^2 [1 - (2p - 1)^2].$

• With
$$\Delta x \equiv \sigma \sqrt{\Delta t}$$
 and $p \equiv [1 + (\mu/\sigma)\sqrt{\Delta t}]/2$,
 $E[Y(t)] = n\sigma \sqrt{\Delta t} (\mu/\sigma)\sqrt{\Delta t} = \mu t$,
 $\operatorname{Var}[Y(t)] = n\sigma^2 \Delta t [1 - (\mu/\sigma)^2 \Delta t] \to \sigma^2 t$,
as $\Delta t \to 0$.

Brownian Motion as Limit of Random Walk (concluded)

- Thus, $\{Y(t), t \ge 0\}$ converges to a (μ, σ) Brownian motion by the central limit theorem.
- Brownian motion with zero drift is the limiting case of symmetric random walk by choosing $\mu = 0$.
- Note that

 $\operatorname{Var}[Y(t + \Delta t) - Y(t)]$ $= \operatorname{Var}[\Delta x X_{n+1}] = (\Delta x)^2 \times \operatorname{Var}[X_{n+1}] \to \sigma^2 \Delta t.$

• Similarity to the BOPM: The p is identical to the probability in Eq. (24) on p. 248 and $\Delta x = \ln u$.

Geometric Brownian Motion

- Let $X \equiv \{X(t), t \ge 0\}$ be a Brownian motion process.
- The process

$$\{Y(t) \equiv e^{X(t)}, t \ge 0\},\$$

is called geometric Brownian motion.

- Suppose further that X is a (μ, σ) Brownian motion.
- $X(t) \sim N(\mu t, \sigma^2 t)$ with moment generating function

$$E\left[e^{sX(t)}\right] = E\left[Y(t)^s\right] = e^{\mu t s + (\sigma^2 t s^2/2)}$$

from Eq. (17) on p 145.

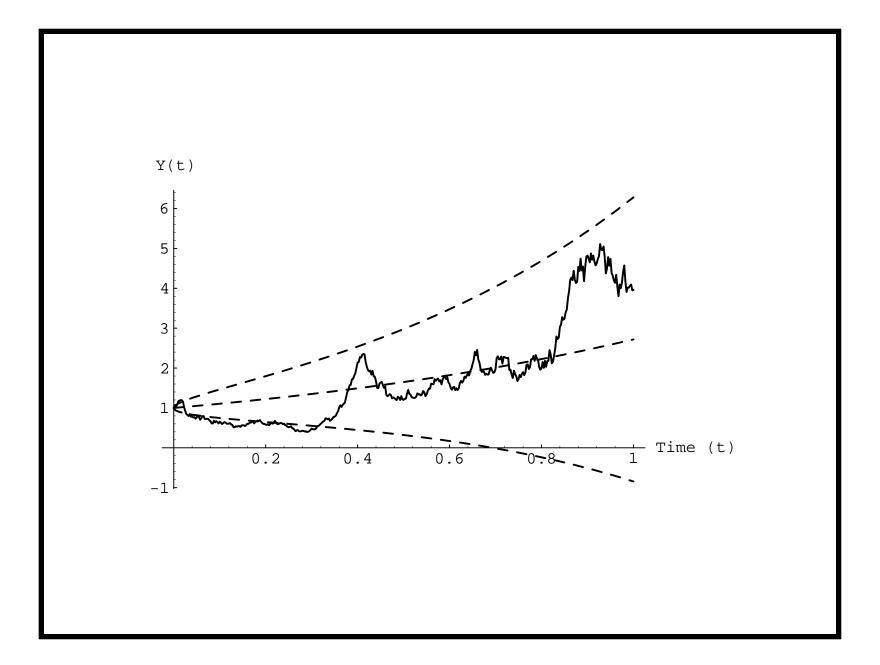
Geometric Brownian Motion (continued)

• In particular,

$$E[Y(t)] = e^{\mu t + (\sigma^2 t/2)},$$

$$\operatorname{Var}[Y(t)] = E[Y(t)^2] - E[Y(t)]^2$$

$$= e^{2\mu t + \sigma^2 t} \left(e^{\sigma^2 t} - 1\right).$$



Geometric Brownian Motion (continued)

- It is useful for situations in which percentage changes are independent and identically distributed.
- Let Y_n denote the stock price at time n and $Y_0 = 1$.
- Assume relative returns

$$X_i \equiv \frac{Y_i}{Y_{i-1}}$$

are independent and identically distributed.

Geometric Brownian Motion (concluded)

• Then

$$\ln Y_n = \sum_{i=1}^n \ln X_i$$

is a sum of independent, identically distributed random variables.

Thus {ln Y_n, n ≥ 0} is approximately Brownian motion.
And {Y_n, n ≥ 0} is approximately geometric Brownian motion.

Continuous-Time Financial Mathematics

A proof is that which convinces a reasonable man; a rigorous proof is that which convinces an unreasonable man. — Mark Kac (1914–1984)

> The pursuit of mathematics is a divine madness of the human spirit. — Alfred North Whitehead (1861–1947), Science and the Modern World

Stochastic Integrals

- Use $W \equiv \{ W(t), t \ge 0 \}$ to denote the Wiener process.
- The goal is to develop integrals of X from a class of stochastic processes,^a

$$I_t(X) \equiv \int_0^t X \, dW, \quad t \ge 0.$$

- $I_t(X)$ is a random variable called the stochastic integral of X with respect to W.
- The stochastic process $\{I_t(X), t \ge 0\}$ will be denoted by $\int X \, dW$.

^aKiyoshi Ito (1915–2008).

Stochastic Integrals (concluded)

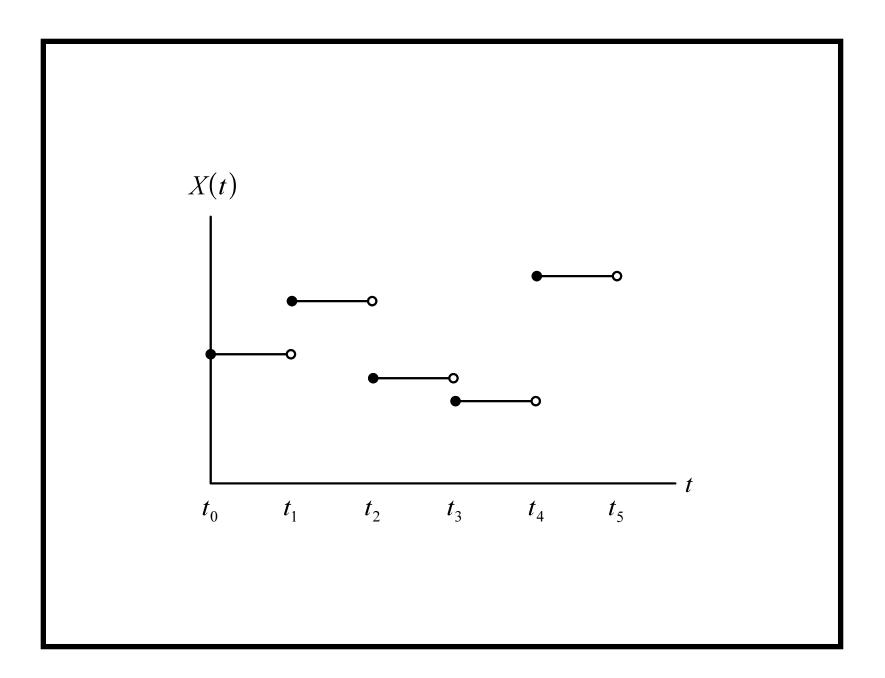
- Typical requirements for X in financial applications are:
 - Prob $\left[\int_0^t X^2(s) \, ds < \infty\right] = 1$ for all $t \ge 0$ or the stronger $\int_0^t E[X^2(s)] \, ds < \infty$.
 - The information set at time t includes the history of X and W up to that point in time.
 - But it contains nothing about the evolution of X or W after t (nonanticipating, so to speak).
 - The future cannot influence the present.
- $\{X(s), 0 \le s \le t\}$ is independent of $\{W(t+u) W(t), u > 0\}.$

Ito Integral

- A theory of stochastic integration.
- As with calculus, it starts with step functions.
- A stochastic process $\{X(t)\}$ is simple if there exist $0 = t_0 < t_1 < \cdots$ such that

 $X(t) = X(t_{k-1})$ for $t \in [t_{k-1}, t_k), k = 1, 2, \dots$

for any realization (see figure on next page).



Ito Integral (continued)

• The Ito integral of a simple process is defined as

$$I_t(X) \equiv \sum_{k=0}^{n-1} X(t_k) [W(t_{k+1}) - W(t_k)], \qquad (48)$$

where $t_n = t$.

- The integrand X is evaluated at t_k , not t_{k+1} .
- Define the Ito integral of more general processes as a limiting random variable of the Ito integral of simple stochastic processes.

Ito Integral (continued)

- Let $X = \{X(t), t \ge 0\}$ be a general stochastic process.
- Then there exists a random variable $I_t(X)$, unique almost certainly, such that $I_t(X_n)$ converges in probability to $I_t(X)$ for each sequence of simple stochastic processes X_1, X_2, \ldots such that X_n converges in probability to X.
- If X is continuous with probability one, then $I_t(X_n)$ converges in probability to $I_t(X)$ as $\delta_n \equiv \max_{1 \le k \le n} (t_k - t_{k-1})$ goes to zero.

Ito Integral (concluded)

- It is a fundamental fact that $\int X \, dW$ is continuous almost surely.
- The following theorem says the Ito integral is a martingale.
 - A corollary is the mean value formula

$$E\left[\int_{a}^{b} X \, dW\right] = 0.$$

Theorem 15 The Ito integral $\int X \, dW$ is a martingale.

Discrete Approximation

- Recall Eq. (48) on p. 480.
- The following simple stochastic process $\{\hat{X}(t)\}$ can be used in place of X to approximate the stochastic integral $\int_0^t X \, dW$,

 $\widehat{X}(s) \equiv X(t_{k-1})$ for $s \in [t_{k-1}, t_k), k = 1, 2, \dots, n.$

• Note the nonanticipating feature of \widehat{X} .

- The information up to time s,

 $\{\,\widehat{X}(t), W(t), 0 \le t \le s\,\},\,$

cannot determine the future evolution of X or W.

Discrete Approximation (concluded)

• Suppose we defined the stochastic integral as

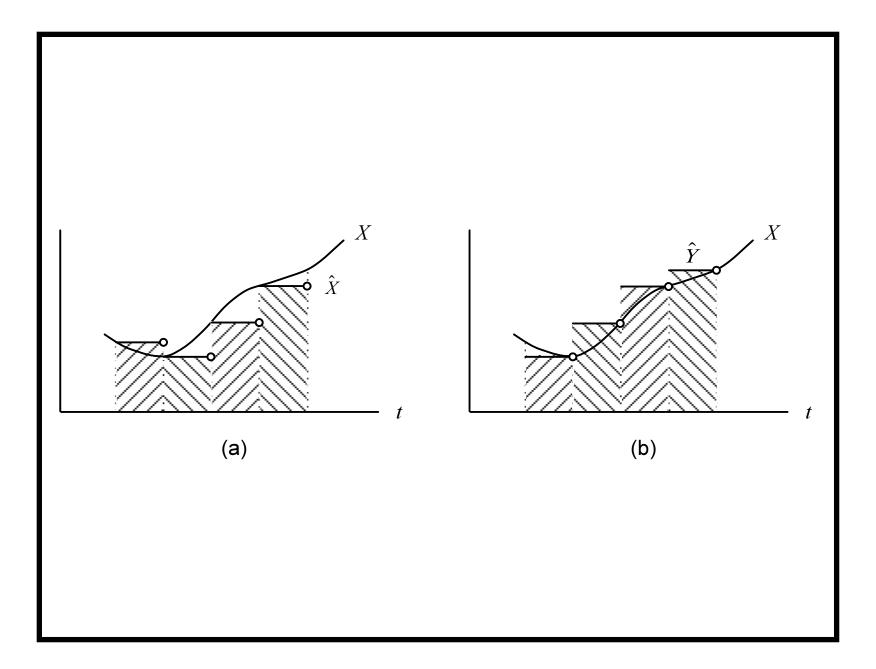
$$\sum_{k=0}^{n-1} X(t_{k+1}) [W(t_{k+1}) - W(t_k)].$$

• Then we would be using the following different simple stochastic process in the approximation,

$$\widehat{Y}(s) \equiv X(t_k) \text{ for } s \in [t_{k-1}, t_k), \ k = 1, 2, \dots, n.$$

• This clearly anticipates the future evolution of X.^a

^aSee Exercise 14.1.2 of the textbook for an example where it matters.



Ito Process

• The stochastic process $X = \{X_t, t \ge 0\}$ that solves

$$X_t = X_0 + \int_0^t a(X_s, s) \, ds + \int_0^t b(X_s, s) \, dW_s, \quad t \ge 0$$

is called an Ito process.

- $-X_0$ is a scalar starting point.
- $\{a(X_t, t) : t \ge 0\}$ and $\{b(X_t, t) : t \ge 0\}$ are stochastic processes satisfying certain regularity conditions.
- The terms $a(X_t, t)$ and $b(X_t, t)$ are the drift and the diffusion, respectively.

Ito Process (continued)

• A shorthand^a is the following stochastic differential equation for the Ito differential dX_t ,

$$dX_t = a(X_t, t) \, dt + b(X_t, t) \, dW_t.$$
(49)

- Or simply $dX_t = a_t dt + b_t dW_t$.

- This is Brownian motion with an instantaneous drift a_t and an instantaneous variance b_t^2 .
- X is a martingale if the drift a_t is zero by Theorem 15 (p. 482).

^aPaul Langevin (1904).

Ito Process (concluded)

- dW is normally distributed with mean zero and variance dt.
- An equivalent form to Eq. (49) is

$$dX_t = a_t \, dt + b_t \sqrt{dt} \, \xi, \tag{50}$$

where $\xi \sim N(0, 1)$.

Euler Approximation

• The following approximation follows from Eq. (50),

$$\widehat{X}(t_{n+1}) = \widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \,\Delta t + b(\widehat{X}(t_n), t_n) \,\Delta W(t_n),$$
(51)

where $t_n \equiv n\Delta t$.

- It is called the Euler or Euler-Maruyama method.
- Under mild conditions, $\widehat{X}(t_n)$ converges to $X(t_n)$.
- Recall that $\Delta W(t_n)$ should be interpreted as $W(t_{n+1}) W(t_n)$ instead of $W(t_n) W(t_{n-1})$.

More Discrete Approximations

• Under fairly loose regularity conditions, approximation (51) on p. 489 can be replaced by

$$\widehat{X}(t_{n+1}) = \widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \,\Delta t + b(\widehat{X}(t_n), t_n) \sqrt{\Delta t} \, Y(t_n).$$

- $Y(t_0), Y(t_1), \ldots$ are independent and identically distributed with zero mean and unit variance.

More Discrete Approximations (concluded)

• An even simpler discrete approximation scheme:

 $\widehat{X}(t_{n+1}) = \widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \Delta t + b(\widehat{X}(t_n), t_n) \sqrt{\Delta t} \xi.$

- $\operatorname{Prob}[\xi = 1] = \operatorname{Prob}[\xi = -1] = 1/2.$
- Note that $E[\xi] = 0$ and $Var[\xi] = 1$.
- This clearly defines a binomial model.
- As Δt goes to zero, \widehat{X} converges to X.

Trading and the Ito Integral

- Consider an Ito process $dS_t = \mu_t dt + \sigma_t dW_t$.
 - S_t is the vector of security prices at time t.
- Let ϕ_t be a trading strategy denoting the quantity of each type of security held at time t.
 - Hence the stochastic process $\phi_t S_t$ is the value of the portfolio ϕ_t at time t.
- $\phi_t dS_t \equiv \phi_t(\mu_t dt + \sigma_t dW_t)$ represents the change in the value from security price changes occurring at time t.

Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

$$G_T(\boldsymbol{\phi}) \equiv \int_0^T \boldsymbol{\phi}_t \, d\boldsymbol{S}_t = \int_0^T \boldsymbol{\phi}_t \mu_t \, dt + \int_0^T \boldsymbol{\phi}_t \sigma_t \, dW_t,$$

measures the gains realized by the trading strategy over the period [0, T].

Ito's Lemma

A smooth function of an Ito process is itself an Ito process.

Theorem 16 Suppose $f: R \to R$ is twice continuously differentiable and $dX = a_t dt + b_t dW$. Then f(X) is the Ito process,

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) a_s \, ds + \int_0^t f'(X_s) b_s \, dW + \frac{1}{2} \int_0^t f''(X_s) b_s^2 \, ds$$
for $t \ge 0$.

• In differential form, Ito's lemma becomes

$$df(X) = f'(X) a dt + f'(X) b dW + \frac{1}{2} f''(X) b^2 dt.$$
(52)

- Compared with calculus, the interesting part is the third term on the right-hand side.
- A convenient formulation of Ito's lemma is

$$df(X) = f'(X) \, dX + \frac{1}{2} \, f''(X) (dX)^2.$$

• We are supposed to multiply out $(dX)^2 = (a dt + b dW)^2$ symbolically according to

×	dW	dt
dW	dt	0
dt	0	0

- The $(dW)^2 = dt$ entry is justified by a known result.

• This form is easy to remember because of its similarity to the Taylor expansion.

Theorem 17 (Higher-Dimensional Ito's Lemma) Let W_1, W_2, \ldots, W_n be independent Wiener processes and $X \equiv (X_1, X_2, \ldots, X_m)$ be a vector process. Suppose $f: \mathbb{R}^m \to \mathbb{R}$ is twice continuously differentiable and X_i is an Ito process with $dX_i = a_i dt + \sum_{j=1}^n b_{ij} dW_j$. Then df(X) is an Ito process with the differential,

$$df(X) = \sum_{i=1}^{m} f_i(X) \, dX_i + \frac{1}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} f_{ik}(X) \, dX_i \, dX_k,$$

where $f_i \equiv \partial f / \partial x_i$ and $f_{ik} \equiv \partial^2 f / \partial x_i \partial x_k$.

• The multiplication table for Theorem 17 is

×	dW_i	dt
dW_k	$\delta_{ik} dt$	0
dt	0	0

in which

$$\delta_{ik} = \begin{cases} 1 & \text{if } i = k, \\ 0 & \text{otherwise} \end{cases}$$

- In applying the higher-dimensional Ito's lemma, usually one of the variables, say X_1 , is the time variable t and $dX_1 = dt$.
- In this case, $b_{1j} = 0$ for all j and $a_1 = 1$.
- Assume $dX_t = a_t dt + b_t dW_t$.
- Consider the process $f(X_t, t)$.

• Then

$$df(X_{t},t) = \frac{\partial f}{\partial X_{t}} dX_{t} + \frac{\partial f}{\partial t} dt + \frac{1}{2} \frac{\partial^{2} f}{\partial X_{t}^{2}} (dX_{t})^{2}$$

$$= \frac{\partial f}{\partial X_{t}} (a_{t} dt + b_{t} dW_{t}) + \frac{\partial f}{\partial t} dt$$

$$+ \frac{1}{2} \frac{\partial^{2} f}{\partial X_{t}^{2}} (a_{t} dt + b_{t} dW_{t})^{2}$$

$$= \left(\frac{\partial f}{\partial X_{t}} a_{t} + \frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^{2} f}{\partial X_{t}^{2}} b_{t}^{2}\right) dt$$

$$+ \frac{\partial f}{\partial X_{t}} b_{t} dW_{t}.$$
(53)