Example

e Consider the stochastic process

{Z EiXi,nZ 1},
i=1

where X, are independent random variables with zero

mearl.

e This process is a martingale because

E[Zpi1| 21,20, ... Zy]
E[Zp+ Xns1 | Z1, Za, ..., Zn]

E[Zy|Z1,Zo,. .. . Zn| + B[ Xps1 | Z1, Zoy. .., Zn]
T+ E[Xpi1] = Zy.
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Probability Measure

e A probability measure assigns probabilities to states of
the world.

e A martingale is defined with respect to a probability

measure, under which the expectation is taken.

e A martingale is also defined with respect to an

information set.

— In the characterizations (41)—(42) on p. 437, the
information set contains the current and past values

of X by default.

— But it need not be so.
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Probability Measure (continued)

e A stochastic process { X(t),t > 0} is a martingale with
respect to information sets { I; } if, for all ¢ > 0,
E[|X(t)|] < o and

E[X(u)| ;] = X(t)
for all v > t.

e The discrete-time version: For all n > 0,
E[Xn-l—l ‘In] — Xna

given the information sets { I, }.
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Probability Measure (concluded)

e The above implies F| X,1m | I,] = X, for any m >0
by Eq. (16) on p. 143.

— A typical I,, is the price information up to time n.

— Then the above identity says the FVs of X will not
deviate systematically from today’s value given the
price history.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 445



Example

e Consider the stochastic process { Z,, —nu,n >1}.
— Zn = Z?:l Xz

— X1, Xo,... are independent random variables with

mean [i.

e Now,
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Example (concluded)

e Define
I, ={X1,Xo,..., Xy, }.

e Then
{Z, —nu,n>1}

is a martingale with respect to { I, }.
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Martingale Pricing

e Recall that the price of a European option is the
expected discounted future payoft at expiration in a

risk-neutral economy.

e This principle can be generalized using the concept of

martingale.

e Recall the recursive valuation of European option via
C=[pC,+ (1—-p)Cyq]/R.

— p is the risk-neutral probability.
— $1 grows to $R in a period.
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Martingale Pricing (continued)

e Let C(i) denote the value of the option at time 4.

e Consider the discount process
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Martingale Pricing (continued)

e It is easy to show that

o[

e This formulation assumes:2

1. The model is Markovian: The distribution of the
future is determined by the present (time ¢) and not

the past.
2. The payoft depends only on the terminal price of the

underlying asset (Asian options do not qualify).

2Contributed by Mr. Wang, Liang-Kai (Ph.D. student, ECE, Univer-
sity of Wisconsin-Madison) and Mr. Hsiao, Huan-Wen (B90902081) on
May 3, 2006.
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Martingale Pricing (continued)

e In general, the discount process is a martingale in that

ET [C(k)] _ G0 (45)

1

RF¥ R’

— BT is taken under the risk-neutral probability

conditional on the price information up to time 1.

e This risk-neutral probability is also called the EMM, or
the equivalent martingale (probability) measure.
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Martingale Pricing (continued)

e Equation (45) holds for all assets, not just options.

e When interest rates are stochastic, the equation becomes

06 _ e [CB)]
M) [M(k)]’ =k (46)

— M(j) is the balance in the money market account at
time j using the rollover strategy with an initial

investment of $1.

— So it is called the bank account process.

e It says the discount process is a martingale under 7.
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Martingale Pricing (continued)

e If interest rates are stochastic, then M (j) is a random

variable.
— M(0) =1.
— M(j) is known at time j — 1.
e Identity (46) on p. 452 is the general formulation of

risk-neutral valuation.
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Martingale Pricing (concluded)

Theorem 14 A discrete-time model is arbitrage-free if and
only if there exists a probability measure such that the

discount process is a martingale. This probability measure 1is
called the risk-neutral probability measure.
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Futures Price under the BOPM

e Futures prices form a martingale under the risk-neutral

probability:.

— The expected futures price in the next period is

1—d —1
pfFu—l—(l—pf)FdIF( U—|—u d)

u—d u—d
(p. 412).
e Can be generalized to
Fy=E][Fy], i<k,
where Fj is the futures price at time 3.

e It holds under stochastic interest rates, too.
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Martingale Pricing and Numeraire?®

e The martingale pricing formula (46) on p. 452 uses the

money market account as numeraire.”

— It expresses the price of any asset relative to the

money market account.

e The money market account is not the only choice for

numeraire.

e Suppose asset S’s value is positive at all times.

2John Law (1671-1729), “Money to be qualified for exchaning goods

and for payments need not be certain in its value.”
PLeon Walras (1834-1910).
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Martingale Pricing and Numeraire (concluded)
e Choose S as numeraire.

e Martingale pricing says there exists a risk-neutral
probability m under which the relative price of any asset
C' is a martingale:

C(3) C(k)

%:Ef[%]’ =k

— S(j) denotes the price of S at time j.

e So the discount process remains a martingale.
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Example

Take the binomial model with two assets.

In a period, asset one’s price can go from S to S; or

Ss.

In a period, asset two’s price can go from P to P; or
b.

Assume
S S So
Py P P

to rule out arbitrage opportunities.
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Example (continued)

e For any derivative security, let C be its price at time

one if asset one’s price moves to S;.

e Let (5 be its price at time one if asset one’s price

moves to Ss.

e Replicate the derivative by solving

aS1 + P C1,
aSo + 8P Co,

using « units of asset one and 4 units of asset two.
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Example (continued)

e This yields

_RG=PG o S0 =810
B PQSl — P1S2 - SQPl — 51P2 .

0%

e The derivative costs

C asS + BP

PQS—PSQ PSl—PlS
C Cs.
PyS, — P Sy | + PyS, — P S, *
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Example (concluded)

e It is easy to verify that

C Cl 02

= 21— p) 22,
5 pP1+( p)P2

— Above,
(S/P) — (S2/P2)
(S1/P1) — (S2/Pe)

e The derivative’s price using asset two as numeraire (i.e.,

p

C'/P) is a martingale under the risk-neutral probability
p.

e The expected returns of the two assets are irrelevant.
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Brownian Motion?

e Brownian motion is a stochastic process { X(¢),t >0}

with the following properties.

1. X(0) = 0, unless stated otherwise.
2. forany 0 <tyg <ty <---<t,, the random variables

X(tk) — X(tk_l)

for 1 < k <n are independent.”

3. for 0 <s<t, X(t)— X(s) is normally distributed

with mean pu(t — s) and variance o?(t — s), where pu

and o # 0 are real numbers.

2Robert Brown (1773—-1858).
PSo X(t) — X(s) is independent of X(r) for r < s < t.
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Brownian Motion (concluded)

Such a process will be called a (i, c) Brownian motion

with drift p and variance o?.

The existence and uniqueness of such a process is

guaranteed by Wiener’s theorem.?

Although Brownian motion is a continuous function of ¢

with probability one, it is almost nowhere differentiable.

The (0,1) Brownian motion is also called the Wiener

process.

2Norbert Wiener (1894-1964).
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Example

o If { X(¢),t >0} is the Wiener process, then
X(t) — X(s) ~ N(0,t—s).

e A (u,0) Brownian motion ¥ ={Y(¢),t >0} can be
expressed in terms of the Wiener process:

Y (t) = pt + o X (t). (47)

e Note that Y (t+s) — Y (t) ~ N(us,0°s).
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Brownian Motion as Limit of Random Walk

Claim 1 A (u,0) Brownian motion is the limiting case of

random walk.

e A particle moves Az to the left with probability 1 — p.

e It moves to the right with probability p after At time.

e Assume n =t/At is an integer.

e Its position at time ¢ is

Yt)=Ax (X1 +Xo+ -+ X,,).
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Brownian Motion as Limit of Random Walk (continued)

e (continued)

— Here

¥ - +1 if the ith move is to the right,
T —1 if the 2th move is to the left.

— X, are independent with
Prob[X; =1]=p=1—Prob| X; = —1].

e Recall E[X;]=2p—1 and Var[X;]=1- (2p— 1)
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Brownian Motion as Limit of Random Walk (continued)

e Therefore,

Var[Y(t)] = n(Az)* [1—(2p —1)*].

e With Az =oVAt and p=[1+ (u/o)VAL]/2,

= noVAt(p/o)VAL = ut,
= no’At[1— (p/o)*At] — ot
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Brownian Motion as Limit of Random Walk (concluded)

Thus, {Y(t),t > 0} converges to a (u,c) Brownian
motion by the central limit theorem.

Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing p© = 0.
Note that
Var[Y (t + At) — Y (t) ]
=Var[ Az X, 41] = (Ax)? x Var[ X,,11] — 0 At.

Similarity to the the BOPM: The p is identical to the
probability in Eq. (24) on p. 248 and Az = Inu.
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Geometric Brownian Motion
Let X ={X(¢),t >0} be a Brownian motion process.

The process
{(Y(t)=eX XD t >0},

is called geometric Brownian motion.
Suppose further that X is a (u, o) Brownian motion.

X(t) ~ N(ut,0?t) with moment generating function

B[eX0] = By (p)] = e/

from Eq. (17) on p 145.

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 469



Geometric Brownian Motion (continued)

e In particular,

E[Y(t)] = eut+(02t/2),

Var[Y(t)] = E[Y()?] — E[Y (1) ]2

2 2
_ 2utto’t (60' t 1) .
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Geometric Brownian Motion (continued)

e It is useful for situations in which percentage changes
are independent and identically distributed.

e Let Y,, denote the stock price at time n and Yy = 1.

e Assume relative returns
Y,

X;
Yi1

are independent and identically distributed.
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Geometric Brownian Motion (concluded)

e Then

is a sum of independent, identically distributed random
variables.
e Thus {InY,,n >0} is approximately Brownian motion.

— And {Y,,,n >0} is approximately geometric

Brownian motion.
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.
— Mark Kac (1914-1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861-1947),
Science and the Modern World
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Stochastic Integrals

Use W ={W(t),t >0} to denote the Wiener process.

The goal is to develop integrals of X from a class of

stochastic processes,?

t
It(X)E/ X dW, t>0.
0

I[;(X) is a random variable called the stochastic integral
of X with respect to W.

The stochastic process {I;(X),t > 0} will be denoted
by [XdW.

aKiyoshi Ito (1915-2008).
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Stochastic Integrals (concluded)

e Typical requirements for X in financial applications are:

— Prob[fOtXQ(s) ds <oo]=1 forall t >0 or the
stronger fot E[X?(s)]ds < oo.

— The information set at time ¢ includes the history of

X and W up to that point in time.

— But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).
— The future cannot influence the present.

o { X(5),0<s <t} isindependent of
{W(t+u)—W(t),u>0}.
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lto Integral

e A theory of stochastic integration.
e As with calculus, it starts with step functions.

e A stochastic process { X(t) } is simple if there exist
0=ty <t; <--- such that

X(t) = X(tk_l) for t € [tk—17tk)7 k=1,2,...

for any realization (see figure on next page).
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Ito Integral (continued)

e The Ito integral of a simple process is defined as

LX) = S X () W(ter) - Wil (48)
k=0

where t,, = t.
— The integrand X is evaluated at tg, not tx4;.
e Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.
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Ito Integral (continued)

e Let X ={X(t),t >0} be a general stochastic process.

e Then there exists a random variable I;(X), unique
almost certainly, such that I;(X,) converges in
probability to I;(X) for each sequence of simple
stochastic processes X7, X5, ... such that X,, converges

in probability to X.

If X is continuous with probability one, then I;(X,)
converges in probability to I;(X) as

0p, = maxj<p<n(tx —tk—1) goes to zero.
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Ito Integral (concluded)

e It is a fundamental fact that [ X dW is continuous
almost surely.

e The following theorem says the Ito integral is a
martingale.

— A corollary is the mean value formula

b
5 /XdW]:o.

Theorem 15 The Ito integral [ X dW is a martingale.
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Discrete Approximation
e Recall Eq. (48) on p. 480.

e The following simple stochastic process { X(¢)} can be

used in place of X to approximate the stochastic
integral fot X dW,

AN

X(S) = X(tk_l) for s € [tk—lytk), k=1,2,... ,n.

e Note the nonanticipating feature of X.

— The information up to time s,
{X(t),W(t),0<t< s},

cannot determine the future evolution of X or W.
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Discrete Approximation (concluded)

e Suppose we defined the stochastic integral as

S X (i) [ Wlts1) — Wite) |
k=0

e Then we would be using the following different simple

stochastic process in the approximation,
Y(s) = X(tg) for s € [tp_1,te), k=1,2,... ,n.

e This clearly anticipates the future evolution of X.?

@See Exercise 14.1.2 of the textbook for an example where it matters.
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lto Process

e The stochastic process X = { X;,t > 0} that solves

t t
Xt:X0+/ a(XS,s)ds+/ b(Xs,s)dWs, t>0
0 0

is called an Ito process.

— X 1is a scalar starting point.

— {a(X¢,t):t >0} and {b(X;,t):t >0} are
stochastic processes satisfying certain regularity

conditions.

e The terms a(X,t) and b(X,t) are the drift and the
diffusion, respectively.
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Ito Process (continued)

A shorthand? is the following stochastic differential
equation for the Ito differential d.X;,

dXt = CL(Xt, t) dt + b(Xt, t) th (49)
— Or Slmply dXt — Q¢ dt + bt th

e This is Brownian motion with an instantaneous drift a.

and an instantaneous variance b?.

e X is a martingale if the drift a; is zero by Theorem 15
(p. 482).

2Paul Langevin (1904).
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Ito Process (concluded)

e dWW is normally distributed with mean zero and

variance dt.

e An equivalent form to Eq. (49) is
dXt = Q¢ dt + bt\/% g,

where & ~ N(0,1).
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Euler Approximation

The following approximation follows from Eq. (50),

AN

X(tn-l-l)

=X (t,) + a(X (tn), tn) At + b(X (£,), tn) AW (£,,),
(51)

where t,, = nAt.

It is called the Euler or Euler-Maruyama method.

Under mild conditions, X (t,) converges to X (t,).

Recall that AW (t,,) should be interpreted as
Wi(tni1) — W(t,) instead of W(t,,) — W(t,_1).
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More Discrete Approximations

e Under fairly loose regularity conditions, approximation
(51) on p. 489 can be replaced by

P

X(thrl)
=X (tn) + a(X (tn), tn) At + b(X (t0), tn) VALY (£,).

— Y (t9),Y (t1),... are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

e An even simpler discrete approximation scheme:

X (tpi1)

AN

=X (t,) + a(X (tn), tn) At + b(X (t), tn VAL E.

— Prob[¢ =1] = Prob[¢( = —-1] =1/2.
— Note that E[¢] =0 and Var[{] = 1.

e This clearly defines a binomial model.

AN

e As At goes to zero, X converges to X.
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Trading and the Ito Integral

e Consider an Ito process dS; = p dt + o dWs.
— S, is the vector of security prices at time ¢.

e Let ¢, be a trading strategy denoting the quantity of
each type of security held at time t.
— Hence the stochastic process ¢,S; is the value of the

portfolio ¢, at time t.
o ¢,dS: = ¢, (s dt + o dW,) represents the change in the

value from security price changes occurring at time ¢.
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Trading and the Ito Integral (concluded)

e The equivalent Ito integral,

Gr(¢) = /OT ¢, dSt = /OT Oy 1be dt + /OT Q.0 AWy,

measures the gains realized by the trading strategy over
the period [0,7'].
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lto's Lemma

A smooth function of an Ito process is itself an Ito process.

Theorem 16 Suppose f: R — R 1is twice continuously
differentiable and dX = asdt + by dW. Then f(X) is the
Ito process,
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Ito’s Lemma (continued)
e In differential form, Ito’s lemma becomes

f(X)adt+ f/(X)bdW + % (X)) b2 dt.
(52)

e Compared with calculus, the interesting part is the third
term on the right-hand side.

e A convenient formulation of Ito’s lemma is

f(X)dX + % 7 (X)(dX)?.
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Ito’s Lemma (continued)

e We are supposed to multiply out
(dX)? = (adt + bdW)? symbolically according to

X dW  dt
dW | dt 0
dt 0 0

— The (dW)? = dt entry is justified by a known result.

e This form is easy to remember because of its similarity
to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 17 (Higher-Dimensional Ito’s Lemma) Let
Wi, Wo, ... W, be independent Wiener processes and

X = (X1, Xo,...,X.m) be a vector process. Suppose

f: R™ — R 1is twice continuously differentiable and X; 1is
an Ito process with dX; = a; dt + 2?21 bij dW;. Then

df (X)) s an Ito process with the differential,

) = 3 H0) X+ 530S Fal(X) dX dX,

1=1 1=1 k=1

where f; = 0f/0x; and fi, = 0*f/0x;0xy.
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Ito’s Lemma (continued)

e The multiplication table for Theorem 17 is

X dWZ dt
dWy | i dt O
dt 0 0

in which
1 if ¢ =k,
Oik, =
0 otherwise.
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Ito’s Lemma (continued)

In applying the higher-dimensional Ito’s lemma, usually

one of the variables, say X, is the time variable ¢ and
dX, = dt.

In this case, b1; =0 for all j and a1 = 1.
Assume dX; = a; dt + by dW.

Consider the process f(X¢,1).

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 499



lto’s Lemma (continued)

_of 0f 10°f 2
- a—XthtJradtJr2aXt2 (dX;)

of of
8—)(75 (CLt dt + bt th) + E dt

(L0
2 X2
of  of 10%f

(axt “t g T aaxz )
af

b, dW,.
+<‘9Xt r AWy

(a¢ dt + by dW;)?
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