
Example

• Consider the stochastic process

{Zn ≡
n∑

i=1

Xi, n ≥ 1 },

where Xi are independent random variables with zero
mean.

• This process is a martingale because

E[ Zn+1 |Z1, Z2, . . . , Zn ]

= E[ Zn + Xn+1 |Z1, Z2, . . . , Zn ]

= E[ Zn |Z1, Z2, . . . , Zn ] + E[ Xn+1 |Z1, Z2, . . . , Zn ]

= Zn + E[ Xn+1 ] = Zn.
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Probability Measure

• A probability measure assigns probabilities to states of
the world.

• A martingale is defined with respect to a probability
measure, under which the expectation is taken.

• A martingale is also defined with respect to an
information set.

– In the characterizations (41)–(42) on p. 437, the
information set contains the current and past values
of X by default.

– But it need not be so.
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Probability Measure (continued)

• A stochastic process {X(t), t ≥ 0 } is a martingale with
respect to information sets { It } if, for all t ≥ 0,
E[ |X(t) | ] < ∞ and

E[ X(u) | It ] = X(t)

for all u > t.

• The discrete-time version: For all n > 0,

E[ Xn+1 | In ] = Xn,

given the information sets { In }.
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Probability Measure (concluded)

• The above implies E[ Xn+m | In ] = Xn for any m > 0
by Eq. (16) on p. 143.

– A typical In is the price information up to time n.

– Then the above identity says the FVs of X will not
deviate systematically from today’s value given the
price history.
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Example

• Consider the stochastic process {Zn − nµ, n ≥ 1 }.
– Zn ≡

∑n
i=1 Xi.

– X1, X2, . . . are independent random variables with
mean µ.

• Now,

E[Zn+1 − (n + 1) µ |X1, X2, . . . , Xn ]

= E[Zn+1 |X1, X2, . . . , Xn ]− (n + 1) µ

= E[Zn + Xn+1 |X1, X2, . . . , Xn ]− (n + 1) µ

= Zn + µ− (n + 1) µ

= Zn − nµ.
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Example (concluded)

• Define
In ≡ {X1, X2, . . . , Xn }.

• Then
{Zn − nµ, n ≥ 1 }

is a martingale with respect to { In }.
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Martingale Pricing

• Recall that the price of a European option is the
expected discounted future payoff at expiration in a
risk-neutral economy.

• This principle can be generalized using the concept of
martingale.

• Recall the recursive valuation of European option via

C = [ pCu + (1− p) Cd ]/R.

– p is the risk-neutral probability.

– $1 grows to $R in a period.
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Martingale Pricing (continued)

• Let C(i) denote the value of the option at time i.

• Consider the discount process
{

C(i)
Ri

, i = 0, 1, . . . , n

}
.

• Then,

E

[
C(i + 1)

Ri+1

∣∣∣∣ C(i) = C

]
=

pCu + (1− p)Cd

Ri+1
=

C

Ri
.
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Martingale Pricing (continued)

• It is easy to show that

E

[
C(k)
Rk

∣∣∣∣ C(i) = C

]
=

C

Ri
, i ≤ k. (44)

• This formulation assumes:a

1. The model is Markovian: The distribution of the
future is determined by the present (time i ) and not
the past.

2. The payoff depends only on the terminal price of the
underlying asset (Asian options do not qualify).

aContributed by Mr. Wang, Liang-Kai (Ph.D. student, ECE, Univer-

sity of Wisconsin-Madison) and Mr. Hsiao, Huan-Wen (B90902081) on

May 3, 2006.
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Martingale Pricing (continued)

• In general, the discount process is a martingale in that

Eπ
i

[
C(k)
Rk

]
=

C(i)
Ri

, i ≤ k. (45)

– Eπ
i is taken under the risk-neutral probability

conditional on the price information up to time i.

• This risk-neutral probability is also called the EMM, or
the equivalent martingale (probability) measure.
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Martingale Pricing (continued)

• Equation (45) holds for all assets, not just options.

• When interest rates are stochastic, the equation becomes

C(i)
M(i)

= Eπ
i

[
C(k)
M(k)

]
, i ≤ k. (46)

– M(j) is the balance in the money market account at
time j using the rollover strategy with an initial
investment of $1.

– So it is called the bank account process.

• It says the discount process is a martingale under π.
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Martingale Pricing (continued)

• If interest rates are stochastic, then M(j) is a random
variable.

– M(0) = 1.

– M(j) is known at time j − 1.

• Identity (46) on p. 452 is the general formulation of
risk-neutral valuation.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 453



Martingale Pricing (concluded)

Theorem 14 A discrete-time model is arbitrage-free if and
only if there exists a probability measure such that the
discount process is a martingale. This probability measure is
called the risk-neutral probability measure.
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Futures Price under the BOPM

• Futures prices form a martingale under the risk-neutral
probability.

– The expected futures price in the next period is

pfFu + (1− pf)Fd = F

(
1− d

u− d
u +

u− 1
u− d

d

)
= F

(p. 412).

• Can be generalized to

Fi = Eπ
i [ Fk ], i ≤ k,

where Fi is the futures price at time i.

• It holds under stochastic interest rates, too.
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Martingale Pricing and Numerairea

• The martingale pricing formula (46) on p. 452 uses the
money market account as numeraire.b

– It expresses the price of any asset relative to the
money market account.

• The money market account is not the only choice for
numeraire.

• Suppose asset S’s value is positive at all times.
aJohn Law (1671–1729), “Money to be qualified for exchaning goods

and for payments need not be certain in its value.”
bLeon Walras (1834–1910).
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Martingale Pricing and Numeraire (concluded)

• Choose S as numeraire.

• Martingale pricing says there exists a risk-neutral
probability π under which the relative price of any asset
C is a martingale:

C(i)
S(i)

= Eπ
i

[
C(k)
S(k)

]
, i ≤ k.

– S(j) denotes the price of S at time j.

• So the discount process remains a martingale.
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Example

• Take the binomial model with two assets.

• In a period, asset one’s price can go from S to S1 or
S2.

• In a period, asset two’s price can go from P to P1 or
P2.

• Assume
S1

P1
<

S

P
<

S2

P2

to rule out arbitrage opportunities.
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Example (continued)

• For any derivative security, let C1 be its price at time
one if asset one’s price moves to S1.

• Let C2 be its price at time one if asset one’s price
moves to S2.

• Replicate the derivative by solving

αS1 + βP1 = C1,

αS2 + βP2 = C2,

using α units of asset one and β units of asset two.
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Example (continued)

• This yields

α =
P2C1 − P1C2

P2S1 − P1S2
and β =

S2C1 − S1C2

S2P1 − S1P2
.

• The derivative costs

C = αS + βP

=
P2S − PS2

P2S1 − P1S2
C1 +

PS1 − P1S

P2S1 − P1S2
C2.
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Example (concluded)

• It is easy to verify that

C

P
= p

C1

P1
+ (1− p)

C2

P2
.

– Above,

p ≡ (S/P )− (S2/P2)
(S1/P1)− (S2/P2)

.

• The derivative’s price using asset two as numeraire (i.e.,
C/P ) is a martingale under the risk-neutral probability
p.

• The expected returns of the two assets are irrelevant.
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Brownian Motiona

• Brownian motion is a stochastic process {X(t), t ≥ 0 }
with the following properties.

1. X(0) = 0, unless stated otherwise.

2. for any 0 ≤ t0 < t1 < · · · < tn, the random variables

X(tk)−X(tk−1)

for 1 ≤ k ≤ n are independent.b

3. for 0 ≤ s < t, X(t)−X(s) is normally distributed
with mean µ(t− s) and variance σ2(t− s), where µ

and σ 6= 0 are real numbers.
aRobert Brown (1773–1858).
bSo X(t)−X(s) is independent of X(r) for r ≤ s < t.
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Brownian Motion (concluded)

• Such a process will be called a (µ, σ) Brownian motion
with drift µ and variance σ2.

• The existence and uniqueness of such a process is
guaranteed by Wiener’s theorem.a

• Although Brownian motion is a continuous function of t

with probability one, it is almost nowhere differentiable.

• The (0, 1) Brownian motion is also called the Wiener
process.

aNorbert Wiener (1894–1964).
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Example

• If {X(t), t ≥ 0 } is the Wiener process, then
X(t)−X(s) ∼ N(0, t− s).

• A (µ, σ) Brownian motion Y = {Y (t), t ≥ 0 } can be
expressed in terms of the Wiener process:

Y (t) = µt + σX(t). (47)

• Note that Y (t + s)− Y (t) ∼ N(µs, σ2s).
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Brownian Motion as Limit of Random Walk

Claim 1 A (µ, σ) Brownian motion is the limiting case of
random walk.

• A particle moves ∆x to the left with probability 1− p.

• It moves to the right with probability p after ∆t time.

• Assume n ≡ t/∆t is an integer.

• Its position at time t is

Y (t) ≡ ∆x (X1 + X2 + · · ·+ Xn) .
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Brownian Motion as Limit of Random Walk (continued)

• (continued)

– Here

Xi ≡




+1 if the ith move is to the right,

−1 if the ith move is to the left.

– Xi are independent with
Prob[ Xi = 1 ] = p = 1− Prob[ Xi = −1 ].

• Recall E[Xi ] = 2p− 1 and Var[ Xi ] = 1− (2p− 1)2.
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Brownian Motion as Limit of Random Walk (continued)

• Therefore,

E[ Y (t) ] = n(∆x)(2p− 1),

Var[ Y (t) ] = n(∆x)2
[
1− (2p− 1)2

]
.

• With ∆x ≡ σ
√

∆t and p ≡ [ 1 + (µ/σ)
√

∆t ]/2,

E[ Y (t) ] = nσ
√

∆t (µ/σ)
√

∆t = µt,

Var[Y (t) ] = nσ2∆t
[
1− (µ/σ)2∆t

] → σ2t,

as ∆t → 0.
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Brownian Motion as Limit of Random Walk (concluded)

• Thus, {Y (t), t ≥ 0 } converges to a (µ, σ) Brownian
motion by the central limit theorem.

• Brownian motion with zero drift is the limiting case of
symmetric random walk by choosing µ = 0.

• Note that

Var[Y (t + ∆t)− Y (t) ]

=Var[∆xXn+1 ] = (∆x)2 ×Var[ Xn+1 ] → σ2∆t.

• Similarity to the the BOPM: The p is identical to the
probability in Eq. (24) on p. 248 and ∆x = ln u.
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Geometric Brownian Motion

• Let X ≡ {X(t), t ≥ 0 } be a Brownian motion process.

• The process
{Y (t) ≡ eX(t), t ≥ 0 },

is called geometric Brownian motion.

• Suppose further that X is a (µ, σ) Brownian motion.

• X(t) ∼ N(µt, σ2t) with moment generating function

E
[
esX(t)

]
= E [ Y (t)s ] = eµts+(σ2ts2/2)

from Eq. (17) on p 145.
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Geometric Brownian Motion (continued)

• In particular,

E[ Y (t) ] = eµt+(σ2t/2),

Var[Y (t) ] = E
[
Y (t)2

]− E[ Y (t) ]2

= e2µt+σ2t
(
eσ2t − 1

)
.
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Geometric Brownian Motion (continued)

• It is useful for situations in which percentage changes
are independent and identically distributed.

• Let Yn denote the stock price at time n and Y0 = 1.

• Assume relative returns

Xi ≡ Yi

Yi−1

are independent and identically distributed.
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Geometric Brownian Motion (concluded)

• Then

ln Yn =
n∑

i=1

ln Xi

is a sum of independent, identically distributed random
variables.

• Thus { ln Yn, n ≥ 0 } is approximately Brownian motion.

– And {Yn, n ≥ 0 } is approximately geometric
Brownian motion.
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;
a rigorous proof is that which convinces an

unreasonable man.
— Mark Kac (1914–1984)

The pursuit of mathematics is a
divine madness of the human spirit.

— Alfred North Whitehead (1861–1947),
Science and the Modern World
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Stochastic Integrals

• Use W ≡ {W (t), t ≥ 0 } to denote the Wiener process.

• The goal is to develop integrals of X from a class of
stochastic processes,a

It(X) ≡
∫ t

0

X dW, t ≥ 0.

• It(X) is a random variable called the stochastic integral
of X with respect to W .

• The stochastic process { It(X), t ≥ 0 } will be denoted
by

∫
X dW .

aKiyoshi Ito (1915–2008).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 476



Stochastic Integrals (concluded)

• Typical requirements for X in financial applications are:

– Prob[
∫ t

0
X2(s) ds < ∞ ] = 1 for all t ≥ 0 or the

stronger
∫ t

0
E[ X2(s) ] ds < ∞.

– The information set at time t includes the history of
X and W up to that point in time.

– But it contains nothing about the evolution of X or
W after t (nonanticipating, so to speak).

– The future cannot influence the present.

• {X(s), 0 ≤ s ≤ t } is independent of
{W (t + u)−W (t), u > 0 }.
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Ito Integral

• A theory of stochastic integration.

• As with calculus, it starts with step functions.

• A stochastic process {X(t) } is simple if there exist
0 = t0 < t1 < · · · such that

X(t) = X(tk−1) for t ∈ [ tk−1, tk), k = 1, 2, . . .

for any realization (see figure on next page).
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Ito Integral (continued)

• The Ito integral of a simple process is defined as

It(X) ≡
n−1∑

k=0

X(tk)[ W (tk+1)−W (tk) ], (48)

where tn = t.

– The integrand X is evaluated at tk, not tk+1.

• Define the Ito integral of more general processes as a
limiting random variable of the Ito integral of simple
stochastic processes.
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Ito Integral (continued)

• Let X = {X(t), t ≥ 0 } be a general stochastic process.

• Then there exists a random variable It(X), unique
almost certainly, such that It(Xn) converges in
probability to It(X) for each sequence of simple
stochastic processes X1, X2, . . . such that Xn converges
in probability to X.

• If X is continuous with probability one, then It(Xn)
converges in probability to It(X) as
δn ≡ max1≤k≤n(tk − tk−1) goes to zero.
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Ito Integral (concluded)

• It is a fundamental fact that
∫

X dW is continuous
almost surely.

• The following theorem says the Ito integral is a
martingale.

– A corollary is the mean value formula

E

[ ∫ b

a

X dW

]
= 0.

Theorem 15 The Ito integral
∫

X dW is a martingale.
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Discrete Approximation

• Recall Eq. (48) on p. 480.

• The following simple stochastic process { X̂(t) } can be
used in place of X to approximate the stochastic
integral

∫ t

0
X dW ,

X̂(s) ≡ X(tk−1) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• Note the nonanticipating feature of X̂.

– The information up to time s,

{ X̂(t),W (t), 0 ≤ t ≤ s },

cannot determine the future evolution of X or W .
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Discrete Approximation (concluded)

• Suppose we defined the stochastic integral as

n−1∑

k=0

X(tk+1)[ W (tk+1)−W (tk) ].

• Then we would be using the following different simple
stochastic process in the approximation,

Ŷ (s) ≡ X(tk) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• This clearly anticipates the future evolution of X.a

aSee Exercise 14.1.2 of the textbook for an example where it matters.
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Ito Process

• The stochastic process X = {Xt, t ≥ 0 } that solves

Xt = X0 +
∫ t

0

a(Xs, s) ds +
∫ t

0

b(Xs, s) dWs, t ≥ 0

is called an Ito process.

– X0 is a scalar starting point.

– { a(Xt, t) : t ≥ 0 } and { b(Xt, t) : t ≥ 0 } are
stochastic processes satisfying certain regularity
conditions.

• The terms a(Xt, t) and b(Xt, t) are the drift and the
diffusion, respectively.
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Ito Process (continued)

• A shorthanda is the following stochastic differential
equation for the Ito differential dXt,

dXt = a(Xt, t) dt + b(Xt, t) dWt. (49)

– Or simply dXt = at dt + bt dWt.

• This is Brownian motion with an instantaneous drift at

and an instantaneous variance b2
t .

• X is a martingale if the drift at is zero by Theorem 15
(p. 482).

aPaul Langevin (1904).
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Ito Process (concluded)

• dW is normally distributed with mean zero and
variance dt.

• An equivalent form to Eq. (49) is

dXt = at dt + bt

√
dt ξ, (50)

where ξ ∼ N(0, 1).
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Euler Approximation

• The following approximation follows from Eq. (50),

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t + b(X̂(tn), tn) ∆W (tn),
(51)

where tn ≡ n∆t.

• It is called the Euler or Euler-Maruyama method.

• Under mild conditions, X̂(tn) converges to X(tn).

• Recall that ∆W (tn) should be interpreted as
W (tn+1)−W (tn) instead of W (tn)−W (tn−1).
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More Discrete Approximations

• Under fairly loose regularity conditions, approximation
(51) on p. 489 can be replaced by

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t + b(X̂(tn), tn)
√

∆t Y (tn).

– Y (t0), Y (t1), . . . are independent and identically
distributed with zero mean and unit variance.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 490



More Discrete Approximations (concluded)

• An even simpler discrete approximation scheme:

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t + b(X̂(tn), tn)
√

∆t ξ.

– Prob[ ξ = 1 ] = Prob[ ξ = −1 ] = 1/2.

– Note that E[ ξ ] = 0 and Var[ ξ ] = 1.

• This clearly defines a binomial model.

• As ∆t goes to zero, X̂ converges to X.
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Trading and the Ito Integral

• Consider an Ito process dSt = µt dt + σt dWt.

– St is the vector of security prices at time t.

• Let φt be a trading strategy denoting the quantity of
each type of security held at time t.

– Hence the stochastic process φtSt is the value of the
portfolio φt at time t.

• φt dSt ≡ φt(µt dt + σt dWt) represents the change in the
value from security price changes occurring at time t.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 492



Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

GT (φ) ≡
∫ T

0

φt dSt =
∫ T

0

φtµt dt +
∫ T

0

φtσt dWt,

measures the gains realized by the trading strategy over
the period [ 0, T ].
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Ito’s Lemma

A smooth function of an Ito process is itself an Ito process.

Theorem 16 Suppose f : R → R is twice continuously
differentiable and dX = at dt + bt dW . Then f(X) is the
Ito process,

f(Xt)

= f(X0) +
∫ t

0

f ′(Xs) as ds +
∫ t

0

f ′(Xs) bs dW

+
1
2

∫ t

0

f ′′(Xs) b2
s ds

for t ≥ 0.
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Ito’s Lemma (continued)

• In differential form, Ito’s lemma becomes

df(X) = f ′(X) a dt + f ′(X) b dW +
1
2

f ′′(X) b2 dt.

(52)

• Compared with calculus, the interesting part is the third
term on the right-hand side.

• A convenient formulation of Ito’s lemma is

df(X) = f ′(X) dX +
1
2

f ′′(X)(dX)2.
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Ito’s Lemma (continued)

• We are supposed to multiply out
(dX)2 = (a dt + b dW )2 symbolically according to

× dW dt

dW dt 0

dt 0 0

– The (dW )2 = dt entry is justified by a known result.

• This form is easy to remember because of its similarity
to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 17 (Higher-Dimensional Ito’s Lemma) Let
W1,W2, . . . , Wn be independent Wiener processes and
X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose
f : Rm → R is twice continuously differentiable and Xi is
an Ito process with dXi = ai dt +

∑n
j=1 bij dWj. Then

df(X) is an Ito process with the differential,

df(X) =
m∑

i=1

fi(X) dXi +
1
2

m∑

i=1

m∑

k=1

fik(X) dXi dXk,

where fi ≡ ∂f/∂xi and fik ≡ ∂2f/∂xi∂xk.
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Ito’s Lemma (continued)

• The multiplication table for Theorem 17 is

× dWi dt

dWk δik dt 0

dt 0 0

in which

δik =





1 if i = k,

0 otherwise.
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Ito’s Lemma (continued)

• In applying the higher-dimensional Ito’s lemma, usually
one of the variables, say X1, is the time variable t and
dX1 = dt.

• In this case, b1j = 0 for all j and a1 = 1.

• Assume dXt = at dt + bt dWt.

• Consider the process f(Xt, t).
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Ito’s Lemma (continued)

• Then

df(Xt, t) =
∂f

∂Xt
dXt +

∂f

∂t
dt +

1
2

∂2f

∂X2
t

(dXt)2

=
∂f

∂Xt
(at dt + bt dWt) +

∂f

∂t
dt

+
1
2

∂2f

∂X2
t

(at dt + bt dWt)2

=
(

∂f

∂Xt
at +

∂f

∂t
+

1
2

∂2f

∂X2
t

b2
t

)
dt

+
∂f

∂Xt
bt dWt. (53)
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