
Problems with the Monte Carlo Method

• The error bound is only probabilistic.

• The probabilistic error bound of
√

N does not benefit
from regularity of the integrand function.

• The requirement that the points be independent random
samples are wasteful because of clustering.

• In reality, pseudorandom numbers generated by
completely deterministic means are used.

• Monte Carlo simulation exhibits a great sensitivity on
the seed of the pseudorandom-number generator.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 697



Matrix Computation
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To set up a philosophy against physics is rash;
philosophers who have done so
have always ended in disaster.

— Bertrand Russell
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Definitions and Basic Results

• Let A ≡ [ aij ]1≤i≤m,1≤j≤n, or simply A ∈ Rm×n,
denote an m× n matrix.

• It can also be represented as [ a1, a2, . . . , an ] where
ai ∈ Rm are vectors.

– Vectors are column vectors unless stated otherwise.

• A is a square matrix when m = n.

• The rank of a matrix is the largest number of linearly
independent columns.
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Definitions and Basic Results (continued)

• A square matrix A is said to be symmetric if AT = A.

• A real n× n matrix

A ≡ [ aij ]i,j

is diagonally dominant if | aii | >
∑

j 6=i | aij | for
1 ≤ i ≤ n.

– Such matrices are nonsingular.

• The identity matrix is the square matrix

I ≡ diag[ 1, 1, . . . , 1 ].
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Definitions and Basic Results (concluded)

• A matrix has full column rank if its columns are linearly
independent.

• A real symmetric matrix A is positive definite if

xTAx =
∑

i,j

aijxixj > 0

for any nonzero vector x.

• A matrix A is positive definite if and only if there exists
a matrix W such that A = WTW and W has full
column rank.
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Cholesky Decomposition

• Positive definite matrices can be factored as

A = LLT,

called the Cholesky decomposition.

– Above, L is a lower triangular matrix.
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Generation of Multivariate Distribution

• Let x ≡ [ x1, x2, . . . , xn ]T be a vector random variable
with a positive definite covariance matrix C.

• As usual, assume E[ x ] = 0.

• This distribution can be generated by Py.

– C = PPT is the Cholesky decomposition of C.a

– y ≡ [ y1, y2, . . . , yn ]T is a vector random variable
with a covariance matrix equal to the identity matrix.

aWhat if C is not positive definite? See Lai (R93942114) and Lyuu

(2007).
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Generation of Multivariate Normal Distribution

• Suppose we want to generate the multivariate normal
distribution with a covariance matrix C = PPT.

• We start with independent standard normal
distributions y1, y2, . . . , yn.

• Then P [ y1, y2, . . . , yn ]T has the desired distribution.
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Multivariate Derivatives Pricing

• Generating the multivariate normal distribution is
essential for the Monte Carlo pricing of multivariate
derivatives (p. 623).

• For example, the rainbow option on k assets has payoff

max(max(S1, S2, . . . , Sk)−X, 0)

at maturity.

• The closed-form formula is a multi-dimensional integral.a

aJohnson (1987); Chen (D95723006) and Lyuu (2009).
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Multivariate Derivatives Pricing (concluded)

• Suppose dSj/Sj = r dt + σj dWj , 1 ≤ j ≤ k, where C is
the correlation matrix for dW1, dW2, . . . , dWk.

• Let C = PPT.

• Let ξ consist of k independent random variables from
N(0, 1).

• Let ξ′ = Pξ.

• Similar to Eq. (76) on p. 662,

Si+1 = Sie
(r−σ2

j /2) ∆t+σj

√
∆t ξ′j , 1 ≤ j ≤ k.
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Least-Squares Problems

• The least-squares (LS) problem is concerned with

min
x∈Rn

‖ Ax− b ‖,

where A ∈ Rm×n, b ∈ Rm, m ≥ n.

• The LS problem is called regression analysis in statistics
and is equivalent to minimizing the mean-square error.

• Often written as
Ax = b.
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Polynomial Regression

• In polynomial regression, x0 + x1x + · · ·+ xnxn is used
to fit the data { (a1, b1), (a2, b2), . . . , (am, bm) }.

• This leads to the LS problem,



1 a1 a2
1 · · · an

1

1 a2 a2
2 · · · an

2

...
...

...
. . .

...

1 am a2
m · · · an

m







x0

x1

...

xn




=




b1

b2

...

bm




.

• Consult the text for solutions.
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American Option Pricing by Simulation

• The continuation value of an American option is the
conditional expectation of the payoff from keeping the
option alive now.

• The option holder must compare the immediate exercise
value and the continuation value.

• In standard Monte Carlo simulation, each path is
treated independently of other paths.

• But the decision to exercise the option cannot be
reached by looking at only one path alone.
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The Least-Squares Monte Carlo Approach

• The continuation value can be estimated from the
cross-sectional information in the simulation by using
least squares.a

• The result is a function (of the state) for estimating the
continuation values.

• Use the function to estimate the continuation value for
each path to determine its cash flow.

• This is called the least-squares Monte Carlo (LSM)
approach and is provably convergent.b

aLongstaff and Schwartz (2001).
bClément, Lamberton, and Protter (2002).
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A Numerical Example

• Consider a 3-year American put on a
non-dividend-paying stock.

• The put is exercisable at years 0, 1, 2, and 3.

• The strike price X = 105.

• The annualized riskless rate is r = 5%.

• The spot stock price is 101.

– The annual discount factor hence equals 0.951229.

• We use only 8 price paths to illustrate the algorithm.
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A Numerical Example (continued)

Stock price paths

Path Year 0 Year 1 Year 2 Year 3

1 101 97.6424 92.5815 107.5178

2 101 101.2103 105.1763 102.4524

3 101 105.7802 103.6010 124.5115

4 101 96.4411 98.7120 108.3600

5 101 124.2345 101.0564 104.5315

6 101 95.8375 93.7270 99.3788

7 101 108.9554 102.4177 100.9225

8 101 104.1475 113.2516 115.0994
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A Numerical Example (continued)

• We use the basis functions 1, x, x2.

– Other basis functions are possible.a

• The plot next page shows the final estimated optimal
exercise strategy given by LSM.

• We now proceed to tackle our problem.

• Our concrete problem is to calculate the cash flow along
each path, using information from all paths.

aLaguerre polynomials, Hermite polynomials, Legendre polynomials,

Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomi-

als.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 715



0 0.5 1 1.5 2 2.5 3

95

100

105

110

115

120

125

1

2
3

4

5

6

7
8

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 716



A Numerical Example (continued)

Cash flows at year 3

Path Year 0 Year 1 Year 2 Year 3

1 — — — 0

2 — — — 2.5476

3 — — — 0

4 — — — 0

5 — — — 0.4685

6 — — — 5.6212

7 — — — 4.0775

8 — — — 0
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A Numerical Example (continued)

• The cash flows at year 3 are the exercise value if the put
is in the money.

• Only 4 paths are in the money: 2, 5, 6, 7.

• Some of the cash flows may not occur if the put is
exercised earlier, which we will find out step by step.

• Incidentally, the European counterpart has a value of

0.9512293 × 2.5476 + 0.4685 + 5.6212 + 4.0775
8

= 1.3680.
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A Numerical Example (continued)

• We move on to year 2.

• For each state that is in the money at year 2, we must
decide whether to exercise it.

• There are 6 paths for which the put is in the money: 1,
3, 4, 5, 6, 7.

• Only in-the-money paths will be used in the regression
because they are where early exercise is relevant.

– If there were none, we would move on to year 1.
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A Numerical Example (continued)

• Let x denote the stock prices at year 2 for those 6 paths.

• Let y denote the corresponding discounted future cash
flows (at year 3) if the put is not exercised at year 2.
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A Numerical Example (continued)

Regression at year 2

Path x y

1 92.5815 0× 0.951229

2 — —

3 103.6010 0× 0.951229

4 98.7120 0× 0.951229

5 101.0564 0.4685× 0.951229

6 93.7270 5.6212× 0.951229

7 102.4177 4.0775× 0.951229

8 — —

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 721



A Numerical Example (continued)

• We regress y on 1, x, and x2.

• The result is

f(x) = 22.08− 0.313114× x + 0.00106918× x2.

• f estimates the continuation value conditional on the
stock price at year 2.

• We next compare the immediate exercise value and the
continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 2

Path Exercise Continuation

1 12.4185 f(92.5815) = 2.2558

2 — —

3 1.3990 f(103.6010) = 1.1168

4 6.2880 f(98.7120) = 1.5901

5 3.9436 f(101.0564) = 1.3568

6 11.2730 f(93.7270) = 2.1253

7 2.5823 f(102.4177) = 0.3326

8 — —
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A Numerical Example (continued)

• Amazingly, the put should be exercised in all 6 paths: 1,
3, 4, 5, 6, 7.

• Now, any positive cash flow at year 3 should be set to
zero for these paths as the put is exercised before year 3.

– They are paths 5, 6, 7.

• Hence the cash flows on p. 717 become the next ones.
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A Numerical Example (continued)

Cash flows at years 2 & 3

Path Year 0 Year 1 Year 2 Year 3

1 — — 12.4185 0

2 — — 0 2.5476

3 — — 1.3990 0

4 — — 6.2880 0

5 — — 3.9436 0

6 — — 11.2730 0

7 — — 2.5823 0

8 — — 0 0
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A Numerical Example (continued)

• We move on to year 1.

• For each state that is in the money at year 1, we must
decide whether to exercise it.

• There are 5 paths for which the put is in the money: 1,
2, 4, 6, 8.

• Only in-the-money paths will be used in the regression
because they are where early exercise is relevant.

– If there were none, we would move on to year 0.
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A Numerical Example (continued)

• Let x denote the stock prices at year 1 for those 5 paths.

• Let y denote the corresponding discounted future cash
flows if the put is not exercised at year 1.

• From p. 725, we have the following table.
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A Numerical Example (continued)

Regression at year 1

Path x y

1 97.6424 12.4185× 0.951229

2 101.2103 2.5476× 0.9512292

3 — —

4 96.4411 6.2880× 0.951229

5 — —

6 95.8375 11.2730× 0.951229

7 — —

8 104.1475 0
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A Numerical Example (continued)

• We regress y on 1, x, and x2.

• The result is

f(x) = −420.964 + 9.78113× x− 0.0551567× x2.

• f estimates the continuation value conditional on the
stock price at year 1.

• We next compare the immediate exercise value and the
continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 1

Path Exercise Continuation

1 7.3576 f(97.6424) = 8.2230

2 3.7897 f(101.2103) = 3.9882

3 — —

4 8.5589 f(96.4411) = 9.3329

5 — —

6 9.1625 f(95.8375) = 9.83042

7 — —

8 0.8525 f(104.1475) = −0.551885
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A Numerical Example (continued)

• The put should be exercised for 1 path only: 8.

• Now, any positive future cash flow should be set to zero
for this path as the put is exercised before years 2 and 3.

– But there is none.

• Hence the cash flows on p. 725 become the next ones.

• They also confirm the plot on p. 716.
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A Numerical Example (continued)

Cash flows at years 1, 2, & 3

Path Year 0 Year 1 Year 2 Year 3

1 — 0 12.4185 0

2 — 0 0 2.5476

3 — 0 1.3990 0

4 — 0 6.2880 0

5 — 0 3.9436 0

6 — 0 11.2730 0

7 — 0 2.5823 0

8 — 0.8525 0 0
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A Numerical Example (continued)

• We move on to year 0.

• The continuation value is, from p 732,

(12.4185× 0.9512292 + 2.5476× 0.9512293

+1.3990× 0.9512292 + 6.2880× 0.9512292

+3.9436× 0.9512292 + 11.2730× 0.9512292

+2.5823× 0.9512292 + 0.8525× 0.951229)/8

= 4.66263.
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A Numerical Example (concluded)

• As this is larger than the immediate exercise value of
105− 101 = 4, the put should not be exercised at year 0.

• Hence the put’s value is estimated to be 4.66263.

• Compare this to the European put’s value of 1.3680
(p. 718).

• Why is the LSM estimate a lower bound?a

aContributed by Mr. Yang, Jui-Chung (D97723002) on April 29, 2009.
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Time Series Analysis
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The historian is a prophet in reverse.
— Friedrich von Schlegel (1772–1829)
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Conditional Variance Models for Price Volatility

• Although a stationary model (see text for definition) has
constant variance, its conditional variance may vary.

• Take for example an AR(1) process Xt = aXt−1 + εt

with | a | < 1.

– Here, εt is a stationary, uncorrelated process with
zero mean and constant variance σ2.

• The conditional variance,

Var[Xt |Xt−1, Xt−2, . . . ],

equals σ2, which is smaller than the unconditional
variance Var[Xt ] = σ2/(1− a2).
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Conditional Variance Models for Price Volatility
(concluded)

• In the lognormal model, the conditional variance evolves
independently of past returns.

• Suppose we assume that conditional variances are
deterministic functions of past returns:

Vt = f(Xt−1, Xt−2, . . . )

for some function f .

• Then Vt can be computed given the information set of
past returns:

It−1 ≡ {Xt−1, Xt−2, . . . }.
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ARCH Modelsa

• An influential model in this direction is the
autoregressive conditional heteroskedastic (ARCH)
model.

• Assume that {Ut } is a Gaussian stationary,
uncorrelated process.

aEngle (1982), co-winner of the 2003 Nobel Prize in Economic Sci-

ences.
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ARCH Models (continued)

• The ARCH(p) process is defined by

Xt − µ =

(
a0 +

p∑

i=1

ai(Xt−i − µ)2
)1/2

Ut,

where a1, . . . , ap ≥ 0 and a0 > 0.

– Thus Xt | It−1 ∼ N(µ, V 2
t ).

• The variance V 2
t satisfies

V 2
t = a0 +

p∑

i=1

ai(Xt−i − µ)2.

• The volatility at time t as estimated at time t− 1
depends on the p most recent observations on squared
returns.
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ARCH Models (concluded)

• The ARCH(1) process

Xt − µ = (a0 + a1(Xt−1 − µ)2)1/2Ut

is the simplest.

• For it,

Var[ Xt |Xt−1 = xt−1 ] = a0 + a1(xt−1 − µ)2.

• The process {Xt } is stationary with finite variance if
and only if a1 < 1, in which case Var[Xt ] = a0/(1− a1).
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GARCH Modelsa

• A very popular extension of the ARCH model is the
generalized autoregressive conditional heteroskedastic
(GARCH) process.

• The simplest GARCH(1, 1) process adds a2V
2
t−1 to the

ARCH(1) process, resulting in

V 2
t = a0 + a1(Xt−1 − µ)2 + a2V

2
t−1.

• The volatility at time t as estimated at time t− 1
depends on the squared return and the estimated
volatility at time t− 1.

aBollerslev (1986); Taylor (1986).
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GARCH Models (concluded)

• The estimate of volatility averages past squared returns
by giving heavier weights to recent squared returns (see
text).

• It is usually assumed that a1 + a2 < 1 and a0 > 0, in
which case the unconditional, long-run variance is given
by a0/(1− a1 − a2).

• A popular special case of GARCH(1, 1) is the
exponentially weighted moving average process, which
sets a0 to zero and a2 to 1− a1.

• This model is used in J.P. Morgan’s RiskMetricsTM.
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GARCH Option Pricinga

• Options can be priced when the underlying asset’s
return follows a GARCH process.

• Let St denote the asset price at date t.

• Let h2
t be the conditional variance of the return over

the period [ t, t + 1 ] given the information at date t.

– “One day” is merely a convenient term for any
elapsed time ∆t.

aA Bloomberg quant said, on Feb 29, 2008, that GARCH option

pricing is seldom used in trading.
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GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for the price
dynamics:a

ln
St+1

St
= r − h2

t

2
+ htεt+1, (79)

where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (εt+1 − c)2, (80)

εt+1 ∼ N(0, 1) given information at date t,

r = daily riskless return,

c ≥ 0.

aDuan (1995).
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GARCH Option Pricing (continued)

• The five unknown parameters of the model are c, h0, β0,
β1, and β2.

• It is postulated that β0, β1, β2 ≥ 0 to make the
conditional variance positive.

• The above process, called the nonlinear asymmetric
GARCH model, generalizes the GARCH(1, 1) model (see
text).
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GARCH Option Pricing (continued)

• It captures the volatility clustering in asset returns first
noted by Mandelbrot (1963).a

– When c = 0, a large εt+1 results in a large ht+1,
which in turns tends to yield a large ht+2, and so on.

• It also captures the negative correlation between the
asset return and changes in its (conditional) volatility.b

– For c > 0, a positive εt+1 (good news) tends to
decrease ht+1, whereas a negative εt+1 (bad news)
tends to do the opposite.

a“. . . large changes tend to be followed by large changes—of either

sign—and small changes tend to be followed by small changes . . . ”
bNoted by Black (1976): Volatility tends to rise in response to “bad

news” and fall in response to “good news.”
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GARCH Option Pricing (concluded)

• With yt ≡ ln St denoting the logarithmic price, the
model becomes

yt+1 = yt + r − h2
t

2
+ htεt+1. (81)

• The pair (yt, h
2
t ) completely describes the current state.

• The conditional mean and variance of yt+1 are clearly

E[ yt+1 | yt, h
2
t ] = yt + r − h2

t

2
, (82)

Var[ yt+1 | yt, h
2
t ] = h2

t . (83)
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The Ritchken-Trevor (RT) Algorithma

• The GARCH model is a continuous-state model.

• To approximate it, we turn to trees with discrete states.

• Path dependence in GARCH makes the tree for asset
prices explode exponentially (why?).

• We need to mitigate this combinatorial explosion.
aRitchken and Trevor (1999).
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The Ritchken-Trevor Algorithm (continued)

• Partition a day into n periods.

• Three states follow each state (yt, h
2
t ) after a period.

• As the trinomial model combines, 2n + 1 states at date
t + 1 follow each state at date t (recall p. 579).

• These 2n + 1 values must approximate the distribution
of (yt+1, h

2
t+1).

• So the conditional moments (82)–(83) at date t + 1 on
p. 748 must be matched by the trinomial model to
guarantee convergence to the continuous-state model.
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The Ritchken-Trevor Algorithm (continued)

• It remains to pick the jump size and the three branching
probabilities.

• The role of σ in the Black-Scholes option pricing model
is played by ht in the GARCH model.

• As a jump size proportional to σ/
√

n is picked in the
BOPM, a comparable magnitude will be chosen here.

• Define γ ≡ h0, though other multiples of h0 are
possible, and

γn ≡ γ√
n

.

• The jump size will be some integer multiple η of γn.

• We call η the jump parameter (p. 752).
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(0, 0)
yt

(1, 1)

(1, 0)

(1,−1)

6
?
ηγn

-¾ 1 day

The seven values on the right approximate the distribution
of logarithmic price yt+1.
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The Ritchken-Trevor Algorithm (continued)

• The middle branch does not change the underlying
asset’s price.

• The probabilities for the up, middle, and down branches
are

pu =
h2

t

2η2γ2
+

r − (h2
t /2)

2ηγ
√

n
, (84)

pm = 1− h2
t

η2γ2
, (85)

pd =
h2

t

2η2γ2
− r − (h2

t /2)
2ηγ

√
n

. (86)
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The Ritchken-Trevor Algorithm (continued)

• It can be shown that:

– The trinomial model takes on 2n + 1 values at date
t + 1 for yt+1 .

– These values have a matching mean for yt+1 .

– These values have an asymptotically matching
variance for yt+1 .

• The central limit theorem thus guarantees the desired
convergence as n increases.
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The Ritchken-Trevor Algorithm (continued)

• We can dispense with the intermediate nodes between
dates to create a (2n + 1)-nomial tree (p. 756).

• The resulting model is multinomial with 2n + 1
branches from any state (yt, h

2
t ).

• There are two reasons behind this manipulation.

– Interdate nodes are created merely to approximate
the continuous-state model after one day.

– Keeping the interdate nodes results in a tree that can
be as much as n times larger.
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yt

6
?
ηγn

-¾ 1 day

This heptanomial tree is the outcome of the trinomial tree
on p. 752 after its intermediate nodes are removed.
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The Ritchken-Trevor Algorithm (continued)

• A node with logarithmic price yt + `ηγn at date t + 1
follows the current node at date t with price yt, where
−n ≤ ` ≤ n.

• To reach that price in n periods, the number of up
moves must exceed that of down moves by exactly `.

• The probability that this happens is

P (`) ≡
∑

ju,jm,jd

n!
ju! jm! jd!

pju
u pjm

m pjd

d ,

with ju, jm, jd ≥ 0, n = ju + jm + jd, and ` = ju − jd.
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The Ritchken-Trevor Algorithm (continued)

• A particularly simple way to calculate the P (`)s starts
by noting that

(pux + pm + pdx
−1)n =

n∑

`=−n

P (`) x`. (87)

– Convince yourself that this trick does the
“accounting” correctly.

• So we expand (pux + pm + pdx
−1)n and retrieve the

probabilities by reading off the coefficients.

• It can be computed in O(n2) time.
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The Ritchken-Trevor Algorithm (continued)

• The updating rule (80) on p. 745 must be modified to
account for the adoption of the discrete-state model.

• The logarithmic price yt + `ηγn at date t + 1 following
state (yt, h

2
t ) at date t has a variance equal to

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε

′
t+1 − c)2, (88)

– Above,

ε′t+1 =
`ηγn − (r − h2

t /2)
ht

, ` = 0,±1,±2, . . . ,±n,

is a discrete random variable with 2n + 1 values.
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The Ritchken-Trevor Algorithm (continued)

• Different conditional variances h2
t may require different

η so that the probabilities calculated by Eqs. (84)–(86)
on p. 753 lie between 0 and 1.

• This implies varying jump sizes.

• The necessary requirement pm ≥ 0 implies η ≥ ht/γ.

• Hence we try

η = dht/γ e, dht/γ e+ 1, dht/γ e+ 2, . . .

until valid probabilities are obtained or until their
nonexistence is confirmed.
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The Ritchken-Trevor Algorithm (continued)

• The sufficient and necessary condition for valid
probabilities to exist isa

| r − (h2
t /2) |

2ηγ
√

n
≤ h2

t

2η2γ2
≤ min

(
1− | r − (h2

t /2) |
2ηγ

√
n

,
1
2

)
.

• Obviously, the magnitude of η tends to grow with ht.

• The plot on p. 762 uses n = 1 to illustrate our points
for a 3-day model.

• For example, node (1, 1) of date 1 and node (2, 3) of
date 2 pick η = 2.

aLyuu and Wu (R90723065) (2003).
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y0

(1, 1)

(2, 3)

(2, 0)

(2,−1)

6
?

γn = γ1

-¾ 3 days
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The Ritchken-Trevor Algorithm (continued)

• The topology of the tree is not a standard combining
multinomial tree.

• For example, a few nodes on p. 762 such as nodes (2, 0)
and (2,−1) have multiple jump sizes.

• The reason is the path dependence of the model.

– Two paths can reach node (2, 0) from the root node,
each with a different variance for the node.

– One of the variances results in η = 1, whereas the
other results in η = 2.
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The Ritchken-Trevor Algorithm (concluded)

• The number of possible values of h2
t at a node can be

exponential.

– Each path brings with it a different variance h2
t .

• To address this problem, we record only the maximum
and minimum h2

t at each node.a

• Therefore, each node on the tree contains only two
states (yt, h

2
max) and (yt, h

2
min).

• Each of (yt, h
2
max) and (yt, h

2
min) carries its own η and

set of 2n + 1 branching probabilities.
aCakici and Topyan (2000). But see p. 797 for a potential problem.
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Negative Aspects of the Ritchken-Trevor Algorithma

• A small n may yield inaccurate option prices.

• But the tree will grow exponentially if n is large enough.

– Specifically, n > (1− β1)/β2 when r = c = 0.

• A large n has another serious problem: The tree cannot
grow beyond a certain date.

• Thus the choice of n may be limited in practice.

• The RT algorithm can be modified to be free of
shortened maturity and exponential complexity.b

aLyuu and Wu (R90723065) (2003, 2005).
bIt is only O(n2) if n ≤ (

√
(1− β1)/β2 − c)2!
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Numerical Examples

• Assume S0 = 100, y0 = ln S0 = 4.60517, r = 0,
h2

0 = 0.0001096, γ = h0 = 0.010469, n = 1,
γn = γ/

√
n = 0.010469, β0 = 0.000006575, β1 = 0.9,

β2 = 0.04, and c = 0.

• A daily variance of 0.0001096 corresponds to an annual
volatility of

√
365× 0.0001096 ≈ 20%.

• Let h2(i, j) denote the variance at node (i, j).

• Initially, h2(0, 0) = h2
0 = 0.0001096.
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Numerical Examples (continued)

• Let h2
max(i, j) denote the maximum variance at node

(i, j).

• Let h2
min(i, j) denote the minimum variance at node

(i, j).

• Initially, h2
max(0, 0) = h2

min(0, 0) = h2
0.

• The resulting three-day tree is depicted on p. 768.
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A top (bottom) number inside a gray box refers to the
minimum (maximum, resp.) variance h2

min (h2
max, resp.) for

the node. Variances are multiplied by 100,000 for
readability. A top (bottom) number inside a white box refers
to η corresponding to h2

min (h2
max, resp.).
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Numerical Examples (continued)

• Let us see how the numbers are calculated.

• Start with the root node, node (0, 0).

• Try η = 1 in Eqs. (84)–(86) on p. 753 first to obtain

pu = 0.4974,

pm = 0,

pd = 0.5026.

• As they are valid probabilities, the three branches from
the root node use single jumps.
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Numerical Examples (continued)

• Move on to node (1, 1).

• It has one predecessor node—node (0, 0)—and it takes
an up move to reach the current node.

• So apply updating rule (88) on p. 759 with ` = 1 and
h2

t = h2(0, 0).

• The result is h2(1, 1) = 0.000109645.
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Numerical Examples (continued)

• Because dh(1, 1)/γ e = 2, we try η = 2 in
Eqs. (84)–(86) on p. 753 first to obtain

pu = 0.1237,

pm = 0.7499,

pd = 0.1264.

• As they are valid probabilities, the three branches from
node (1, 1) use double jumps.
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Numerical Examples (continued)

• Carry out similar calculations for node (1, 0) with
` = 0 in updating rule (88) on p. 759.

• Carry out similar calculations for node (1,−1) with
` = −1 in updating rule (88).

• Single jump η = 1 works for both nodes.

• The resulting variances are

h2(1, 0) = 0.000105215,

h2(1,−1) = 0.000109553.
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Numerical Examples (continued)

• Node (2, 0) has 2 predecessor nodes, (1, 0) and (1,−1).

• Both have to be considered in deriving the variances.

• Let us start with node (1, 0).

• Because it takes a middle move to reach the current
node, we apply updating rule (88) on p. 759 with ` = 0
and h2

t = h2(1, 0).

• The result is h2
t+1 = 0.000101269.
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Numerical Examples (continued)

• Now move on to the other predecessor node (1,−1).

• Because it takes an up move to reach the current node,
apply updating rule (88) on p. 759 with ` = 1 and
h2

t = h2(1,−1).

• The result is h2
t+1 = 0.000109603.

• We hence record

h2
min(2, 0) = 0.000101269,

h2
max(2, 0) = 0.000109603.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 775



Numerical Examples (continued)

• Consider state h2
max(2, 0) first.

• Because dhmax(2, 0)/γ e = 2, we first try η = 2 in
Eqs. (84)–(86) on p. 753 to obtain

pu = 0.1237,

pm = 0.7500,

pd = 0.1263.

• As they are valid probabilities, the three branches from
node (2, 0) with the maximum variance use double
jumps.
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Numerical Examples (continued)

• Now consider state h2
min(2, 0).

• Because dhmin(2, 0)/γ e = 1, we first try η = 1 in
Eqs. (84)–(86) on p. 753 to obtain

pu = 0.4596,

pm = 0.0760,

pd = 0.4644.

• As they are valid probabilities, the three branches from
node (2, 0) with the minimum variance use single jumps.
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Numerical Examples (continued)

• Node (2,−1) has 3 predecessor nodes.

• Start with node (1, 1).

• Because it takes a down move to reach the current node,
we apply updating rule (88) on p. 759 with ` = −1 and
h2

t = h2(1, 1).a

• The result is h2
t+1 = 0.0001227.

aNote that it is not ` = −2.
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Numerical Examples (continued)

• Now move on to predecessor node (1, 0).

• Because it also takes a down move to reach the current
node, we apply updating rule (88) on p. 759 with
` = −1 and h2

t = h2(1, 0).

• The result is h2
t+1 = 0.000105609.
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Numerical Examples (continued)

• Finally, consider predecessor node (1,−1).

• Because it takes a middle move to reach the current
node, we apply updating rule (88) on p. 759 with ` = 0
and h2

t = h2(1,−1).

• The result is h2
t+1 = 0.000105173.

• We hence record

h2
min(2,−1) = 0.000105173,

h2
max(2,−1) = 0.0001227.
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Numerical Examples (continued)

• Consider state h2
max(2,−1).

• Because dhmax(2,−1)/γ e = 2, we first try η = 2 in
Eqs. (84)–(86) on p. 753 to obtain

pu = 0.1385,

pm = 0.7201,

pd = 0.1414.

• As they are valid probabilities, the three branches from
node (2,−1) with the maximum variance use double
jumps.
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Numerical Examples (continued)

• Next, consider state h2
min(2,−1).

• Because dhmin(2,−1)/γ e = 1, we first try η = 1 in
Eqs. (84)–(86) on p. 753 to obtain

pu = 0.4773,

pm = 0.0404,

pd = 0.4823.

• As they are valid probabilities, the three branches from
node (2,−1) with the minimum variance use single
jumps.
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Numerical Examples (concluded)

• Other nodes at dates 2 and 3 can be handled similarly.

• In general, if a node has k predecessor nodes, then 2k

variances will be calculated using the updating rule.

– This is because each predecessor node keeps two
variance numbers.

• But only the maximum and minimum variances will be
kept.
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Negative Aspects of the RT Algorithm Revisiteda

• Recall the problems mentioned on p. 765.

• In our case, combinatorial explosion occurs when

n >
1− β1

β2
=

1− 0.9
0.04

= 2.5.

• Suppose we are willing to accept the exponential
running time and pick n = 100 to seek accuracy.

• But the problem of shortened maturity forces the tree to
stop at date 9!

aLyuu and Wu (R90723065) (2003).
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Dotted line: n = 3; dashed line: n = 4; solid line: n = 5.
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