Hedging

When Professors Scholes and Merton and I invested in warrants, Professor Merton lost the most money. And I lost the least. — Fischer Black (1938–1995)

Delta Hedge

- The delta (hedge ratio) of a derivative f is defined as $\Delta \equiv \partial f / \partial S$.
- Thus $\Delta f \approx \Delta \times \Delta S$ for relatively small changes in the stock price, ΔS .
- A delta-neutral portfolio is hedged in the sense that it is immunized against small changes in the stock price.
- A trading strategy that dynamically maintains a delta-neutral portfolio is called delta hedge.

Delta Hedge (concluded)

- Delta changes with the stock price.
- A delta hedge needs to be rebalanced periodically in order to maintain delta neutrality.
- In the limit where the portfolio is adjusted continuously, perfect hedge is achieved and the strategy becomes self-financing.

Implementing Delta Hedge

- We want to hedge N short derivatives.
- Assume the stock pays no dividends.
- The delta-neutral portfolio maintains $N \times \Delta$ shares of stock plus B borrowed dollars such that

 $-N \times f + N \times \Delta \times S - B = 0.$

- At next rebalancing point when the delta is Δ' , buy $N \times (\Delta' \Delta)$ shares to maintain $N \times \Delta'$ shares with a total borrowing of $B' = N \times \Delta' \times S' N \times f'$.
- Delta hedge is the discrete-time analog of the continuous-time limit and will rarely be self-financing.

Example

- A hedger is *short* 10,000 European calls.
- $\sigma = 30\%$ and r = 6%.
- This call's expiration is four weeks away, its strike price is \$50, and each call has a current value of f = 1.76791.
- As an option covers 100 shares of stock, N = 1,000,000.
- The trader adjusts the portfolio weekly.
- The calls are replicated well if the cumulative cost of trading *stock* is close to the call premium's FV.^a

^aThis example takes the replication viewpoint.

- As $\Delta = 0.538560$, $N \times \Delta = 538,560$ shares are purchased for a total cost of $538,560 \times 50 = 26,928,000$ dollars to make the portfolio delta-neutral.
- The trader finances the purchase by borrowing

$$B = N \times \Delta \times S - N \times f = 25,160,090$$

dollars net.^a

• The portfolio has zero net value now.

^aThis takes the hedging viewpoint — an alternative. See an exercise in the text.

- At 3 weeks to expiration, the stock price rises to \$51.
- The new call value is f' = 2.10580.
- So the portfolio is worth

$$-N \times f' + 538,560 \times 51 - Be^{0.06/52} = 171,622$$

before rebalancing.

- A delta hedge does not replicate the calls perfectly; it is not self-financing as \$171,622 can be withdrawn.
- The magnitude of the tracking error—the variation in the net portfolio value—can be mitigated if adjustments are made more frequently.
- In fact, the tracking error *over one rebalancing act* is positive about 68% of the time, but its expected value is essentially zero.^a
- It is furthermore proportional to vega.

^aBoyle and Emanuel (1980).

- In practice tracking errors will cease to decrease beyond a certain rebalancing frequency.
- With a higher delta $\Delta' = 0.640355$, the trader buys $N \times (\Delta' \Delta) = 101,795$ shares for \$5,191,545.
- The number of shares is increased to $N \times \Delta' = 640,355$.

• The cumulative cost is

 $26,928,000 \times e^{0.06/52} + 5,191,545 = 32,150,634.$

• The portfolio is again delta-neutral.

		Option		Change in	No. shares	Cost of	Cumulative
		value	Delta	delta	bought	shares	cost
au	S	f	Δ		N imes (5)	$(1) \times (6)$	FV(8') + (7)
	(1)	(2)	(3)	(5)	(6)	(7)	(8)
4	50	1.7679	0.53856		538,560	$26,\!928,\!000$	$26,\!928,\!000$
3	51	2.1058	0.64036	0.10180	$101,\!795$	$5,\!191,\!545$	$32,\!150,\!634$
2	53	3.3509	0.85578	0.21542	$215,\!425$	$11,\!417,\!525$	$43,\!605,\!277$
1	52	2.2427	0.83983	-0.01595	-15,955	$-829,\!660$	$42,\!825,\!960$
0	54	4.0000	1.00000	0.16017	$160,\!175$	$8,\!649,\!450$	$51,\!524,\!853$

The total number of shares is 1,000,000 at expiration (trading takes place at expiration, too).

Example (concluded)

- At expiration, the trader has 1,000,000 shares.
- They are exercised against by the in-the-money calls for \$50,000,000.
- The trader is left with an obligation of

51,524,853 - 50,000,000 = 1,524,853,

which represents the replication cost.

• Compared with the FV of the call premium,

 $1,767,910 \times e^{0.06 \times 4/52} = 1,776,088,$

the net gain is 1,776,088 - 1,524,853 = 251,235.

Tracking Error Revisited

- Define the dollar gamma as $S^2\Gamma$.
- The change in value of a delta-hedged *long* option position after a duration of Δt is proportional to the dollar gamma.
- It is about

$$(1/2)S^{2}\Gamma[(\Delta S/S)^{2} - \sigma^{2}\Delta t].$$

 $- (\Delta S/S)^2$ is called the daily realized variance.

Tracking Error Revisited (continued)

• Let the rebalancing times be t_1, t_2, \ldots, t_n .

• Let
$$\Delta S_i = S_{i+1} - S_i$$
.

• The total tracking error at expiration is about

$$\sum_{i=0}^{n-1} e^{r(T-t_i)} \frac{S_i^2 \Gamma_i}{2} \left[\left(\frac{\Delta S_i}{S_i} \right)^2 - \sigma^2 \Delta t \right],$$

• The tracking error is path dependent.

Tracking Error Revisited (concluded) a

- The tracking error ϵ_n over *n* rebalancing acts (such as 251,235 on p. 549) has about the same probability of being positive as being negative.
- Subject to certain regularity conditions, the root-mean-square tracking error $\sqrt{E[\epsilon_n^2]}$ is $O(1/\sqrt{n})$.^b
- The root-mean-square tracking error increases with σ at first and then decreases.

^aBertsimas, Kogan, and Lo (2000). ^bSee also Grannan and Swindle (1996).

Delta-Gamma Hedge

- Delta hedge is based on the first-order approximation to changes in the derivative price, Δf , due to changes in the stock price, ΔS .
- When ΔS is not small, the second-order term, gamma $\Gamma \equiv \partial^2 f / \partial S^2$, helps (theoretically).
- A delta-gamma hedge is a delta hedge that maintains zero portfolio gamma, or gamma neutrality.
- To meet this extra condition, one more security needs to be brought in.

Delta-Gamma Hedge (concluded)

- Suppose we want to hedge short calls as before.
- A hedging call f_2 is brought in.
- To set up a delta-gamma hedge, we solve

$$-N \times f + n_1 \times S + n_2 \times f_2 - B = 0 \quad \text{(self-financing)},$$

$$-N \times \Delta + n_1 + n_2 \times \Delta_2 - 0 = 0 \quad \text{(delta neutrality)},$$

$$-N \times \Gamma + 0 + n_2 \times \Gamma_2 - 0 = 0 \quad \text{(gamma neutrality)},$$

for n_1, n_2 , and B.

- The gammas of the stock and bond are 0.

Other Hedges

- If volatility changes, delta-gamma hedge may not work well.
- An enhancement is the delta-gamma-vega hedge, which also maintains vega zero portfolio vega.
- To accomplish this, one more security has to be brought into the process.
- In practice, delta-vega hedge, which may not maintain gamma neutrality, performs better than delta hedge.

I love a tree more than a man. — Ludwig van Beethoven (1770–1827)

And though the holes were rather small, they had to count them all. — The Beatles, A Day in the Life (1967)

The Combinatorial Method

- The combinatorial method can often cut the running time by an order of magnitude.
- The basic paradigm is to count the number of admissible paths that lead from the root to any terminal node.
- We first used this method in the linear-time algorithm for standard European option pricing on p. 238.
- We will now apply it to price barrier options.

The Reflection $\mathsf{Principle}^{\mathrm{a}}$

- Imagine a particle at position (0, -a) on the integral lattice that is to reach (n, -b).
- Without loss of generality, assume a > 0 and $b \ge 0$.
- This particle's movement:

$$(i,j) \underbrace{ \begin{array}{c} \bullet \\ (i+1,j+1) & \text{up move } S \to Su \\ \bullet \\ (i+1,j-1) & \text{down move } S \to Sd \end{array} }$$

• How many paths touch the x axis?

 $^{\mathrm{a}}\mathrm{Andr\acute{e}}$ (1887).

The Reflection Principle (continued)

- For a path from (0, -a) to (n, -b) that touches the x axis, let J denote the first point this happens.
- Reflect the portion of the path from (0, -a) to J.
- A path from $(0, \mathbf{a})$ to $(n, -\mathbf{b})$ is constructed.
- It also hits the x axis at J for the first time.
- The one-to-one mapping shows the number of paths from (0, -a) to (n, -b) that touch the x axis equals the number of paths from (0, a) to (n, -b).

The Reflection Principle (concluded)

- A path of this kind has (n + b + a)/2 down moves and (n b a)/2 up moves.
- Hence there are

$$\binom{n}{\frac{n+a+b}{2}}\tag{59}$$

such paths for even n + a + b.

- Convention: $\binom{n}{k} = 0$ for k < 0 or k > n.

Pricing Barrier Options (Lyuu, 1998)

- Focus on the down-and-in call with barrier H < X.
- Assume H < S without loss of generality.
- Define

$$a \equiv \left[\frac{\ln\left(X/\left(Sd^{n}\right)\right)}{\ln\left(u/d\right)}\right] = \left[\frac{\ln(X/S)}{2\sigma\sqrt{\Delta t}} + \frac{n}{2}\right],$$
$$h \equiv \left[\frac{\ln\left(H/\left(Sd^{n}\right)\right)}{\ln\left(u/d\right)}\right] = \left[\frac{\ln(H/S)}{2\sigma\sqrt{\Delta t}} + \frac{n}{2}\right].$$

- h is such that $\tilde{H} \equiv Su^h d^{n-h}$ is the *terminal* price that is closest to, but does not exceed H.
- a is such that $\tilde{X} \equiv Su^a d^{n-a}$ is the terminal price that is closest to, but is not exceeded by X.

Pricing Barrier Options (continued)

- The true barrier is replaced by the effective barrier \tilde{H} in the binomial model.
- A process with *n* moves hence ends up in the money if and only if the number of up moves is at least *a*.
- The price $Su^k d^{n-k}$ is at a distance of 2k from the lowest possible price Sd^n on the binomial tree.

$$Su^{k}d^{n-k} = Sd^{-k}d^{n-k} = Sd^{n-2k}.$$
 (60)

Pricing Barrier Options (continued)

- The number of paths from S to the terminal price $Su^{j}d^{n-j}$ is $\binom{n}{j}$, each with probability $p^{j}(1-p)^{n-j}$.
- With reference to p. 565, the reflection principle can be applied with *a* = n 2h and *b* = 2j 2h in Eq. (59) on p. 562 by treating the S line as the x axis.
- Therefore,

$$\binom{n}{\frac{n+(n-2h)+(2j-2h)}{2}} = \binom{n}{n-2h+j}$$

paths hit \tilde{H} in the process for $h \leq n/2$.

Pricing Barrier Options (concluded)

• The terminal price $Su^{j}d^{n-j}$ is reached by a path that hits the effective barrier with probability

$$\binom{n}{n-2h+j}p^j(1-p)^{n-j}.$$

• The option value equals

$$\frac{\sum_{j=a}^{2h} \binom{n}{n-2h+j} p^j (1-p)^{n-j} \left(S u^j d^{n-j} - X\right)}{R^n}.$$
 (61)

 $-R \equiv e^{r\tau/n}$ is the riskless return per period.

• It implies a linear-time algorithm.

Convergence of BOPM

- Equation (61) results in the sawtooth-like convergence shown on p. 327.
- The reasons are not hard to see.
- The true barrier most likely does not equal the effective barrier.
- The same holds for the strike price and the effective strike price.
- The issue of the strike price is less critical.
- But the issue of the barrier is not negligible.

Convergence of BOPM (continued)

- Convergence is actually good if we limit n to certain values—191, for example.
- These values make the true barrier coincide with or just above one of the stock price levels, that is,

$$H \approx S d^j = S e^{-j\sigma \sqrt{\tau/n}}$$

for some integer j.

• The preferred n's are thus

$$n = \left\lfloor \frac{\tau}{\left(\ln(S/H)/(j\sigma)\right)^2} \right\rfloor, \quad j = 1, 2, 3, \dots$$

Convergence of BOPM (continued)

- There is only one minor technicality left.
- We picked the effective barrier to be one of the n+1 possible terminal stock prices.
- However, the effective barrier above, Sd^{j} , corresponds to a terminal stock price only when n - j is even.^a
- To close this gap, we decrement n by one, if necessary, to make n j an even number.

^aThis is because j = n - 2k for some k by Eq. (60) on p. 564. Of course we could have adopted the form Sd^j $(-n \leq j \leq n)$ for the effective barrier.

Convergence of BOPM (concluded)

• The preferred n's are now

$$n = \begin{cases} \ell & \text{if } \ell - j \text{ is even} \\ \ell - 1 & \text{otherwise} \end{cases},$$

 $j = 1, 2, 3, \dots$, where

$$\ell \equiv \left\lfloor \frac{\tau}{\left(\ln(S/H)/(j\sigma)\right)^2} \right\rfloor$$

• Evaluate pricing formula (61) on p. 567 only with the *n*'s above.

Practical Implications

- Now that barrier options can be efficiently priced, we can afford to pick very large n's (p. 574).
- This has profound consequences.

n	Combinatorial method					
	Value	Time (milliseconds)				
21	5.507548	0.30				
84	5.597597	0.90				
191	5.635415	2.00				
342	5.655812	3.60				
533	5.652253	5.60				
768	5.654609	8.00				
1047	5.658622	11.10				
1368	5.659711	15.00				
1731	5.659416	19.40				
2138	5.660511	24.70				
2587	5.660592	30.20				
3078	5.660099	36.70				
3613	5.660498	43.70				
4190	5.660388	44.10				
4809	5.659955	51.60				
5472	5.660122	68.70				
5177	5.659981	76.70				
5926	5.660263	86.90				
7717	5.660272	97.20				

O2010 Prof. Yuh-Dauh Lyuu, National Taiwan University

Practical Implications (concluded)

• Pricing is prohibitively time consuming when $S \approx H$ because $n \sim 1/\ln^2(S/H)$.

- This is called the barrier-too-close problem.

- This observation is indeed true of standard quadratic-time binomial tree algorithms.
- But it no longer applies to linear-time algorithms (see p. 576).
- In fact, this model is O(1/n) convergent.^a

^aLin (**R95221010**) (2008).

	Barrier at 95.0		E	Barrier at 99.5		E	Barrier at 99.9	
n	Value	Time	n	Value	Time	n	Value	Time
	•		795	7.47761	8	19979	8.11304	253
2743	2.56095	31.1	3184	7.47626	38	79920	8.11297	1013
3040	2.56065	35.5	7163	7.47682	88	179819	8.11300	2200
3351	2.56098	40.1	12736	7.47661	166	319680	8.11299	4100
3678	2.56055	43.8	19899	7.47676	253	499499	8.11299	6300
4021	2.56152	48.1	28656	7.47667	368	719280	8.11299	8500
True	2.5615			7.4767			8.1130	

(All times in milliseconds.)

Trinomial Tree

- Set up a trinomial approximation to the geometric Brownian motion $dS/S = r dt + \sigma dW$.^a
- The three stock prices at time Δt are S, Su, and Sd, where ud = 1.
- Impose the matching of mean and that of variance:

$$1 = p_{u} + p_{m} + p_{d},$$

$$SM \equiv (p_{u}u + p_{m} + (p_{d}/u))S,$$

$$S^{2}V \equiv p_{u}(Su - SM)^{2} + p_{m}(S - SM)^{2} + p_{d}(Sd - SM)^{2}.$$

^aBoyle (1988).

• Above,

$$M \equiv e^{r\Delta t},$$
$$V \equiv M^2(e^{\sigma^2 \Delta t} - 1),$$

by Eqs. (18) on p. 151.

Trinomial Tree (continued)

• Use linear algebra to verify that

$$p_{u} = \frac{u \left(V + M^{2} - M\right) - (M - 1)}{(u - 1) (u^{2} - 1)},$$

$$p_{d} = \frac{u^{2} \left(V + M^{2} - M\right) - u^{3} (M - 1)}{(u - 1) (u^{2} - 1)}.$$

- In practice, must make sure the probabilities lie between 0 and 1.
- Countless variations.

Trinomial Tree (concluded)

- Use $u = e^{\lambda \sigma \sqrt{\Delta t}}$, where $\lambda \ge 1$ is a tunable parameter.
- Then

$$p_u \rightarrow \frac{1}{2\lambda^2} + \frac{(r+\sigma^2)\sqrt{\Delta t}}{2\lambda\sigma},$$

 $p_d \rightarrow \frac{1}{2\lambda^2} - \frac{(r-2\sigma^2)\sqrt{\Delta t}}{2\lambda\sigma}.$

• A nice choice for λ is $\sqrt{\pi/2}$.^a

^aOmberg (1988).

Barrier Options Revisited

- BOPM introduces a specification error by replacing the barrier with a nonidentical effective barrier.
- The trinomial model solves the problem by adjusting λ so that the barrier is hit exactly.^a
- It takes

$$h = \frac{\ln(S/H)}{\lambda \sigma \sqrt{\Delta t}}$$

consecutive down moves to go from S to H if h is an integer, which is easy to achieve by adjusting λ .

- This is because $Se^{-h\lambda\sigma\sqrt{\Delta t}} = H$.

^aRitchken (1995).

Barrier Options Revisited (continued)

- Typically, we find the smallest $\lambda \ge 1$ such that h is an integer.
- That is, we find the largest integer $j \ge 1$ that satisfies $\frac{\ln(S/H)}{j\sigma\sqrt{\Delta t}} \ge 1$ and then let

$$\lambda = \frac{\ln(S/H)}{j\sigma\sqrt{\Delta t}}.$$

- Such a λ may not exist for very small *n*'s.
- This is not hard to check.
- This done, one of the layers of the trinomial tree coincides with the barrier.

Barrier Options Revisited (concluded)

• The following probabilities may be used,

$$p_u = \frac{1}{2\lambda^2} + \frac{\mu'\sqrt{\Delta t}}{2\lambda\sigma},$$

$$p_m = 1 - \frac{1}{\lambda^2},$$

$$p_d = \frac{1}{2\lambda^2} - \frac{\mu'\sqrt{\Delta t}}{2\lambda\sigma}.$$

$$-\mu' \equiv r - \sigma^2/2.$$

Algorithms Comparison^a

- So which algorithm is better, binomial or trinomial?
- Algorithms are often compared based on the *n* value at which they converge.
 - The one with the smallest n wins.
- So giraffes are faster than cheetahs because they take fewer strides to travel the same distance!
- Performance must be based on actual running times.

^aLyuu (1998).

Algorithms Comparison (concluded)

- Pages 327 and 585 show the trinomial model converges at a smaller n than BOPM.
- It is in this sense when people say trinomial models converge faster than binomial ones.
- But is the trinomial model better then?
- The linear-time binomial tree algorithm actually performs better than the trinomial one.
- See the next page, expanded from p. 574.

n	Combinatorial	method	Trinomial tree algorithm		
	Value	Time	Value	Time	
21	5.507548	0.30			
84	5.597597	0.90	5.634936	35.0	
191	5.635415	2.00	5.655082	185.0	
342	5.655812	3.60	5.658590	590.0	
533	5.652253	5.60	5.659692	1440.0	
768	5.654609	8.00	5.660137	3080.0	
1047	5.658622	11.10	5.660338	5700.0	
1368	5.659711	15.00	5.660432	9500.0	
1731	5.659416	19.40	5.660474	15400.0	
2138	5.660511	24.70	5.660491	23400.0	
2587	5.660592	30.20	5.660493	34800.0	
3078	5.660099	36.70	5.660488	48800.0	
3613	5.660498	43.70	5.660478	67500.0	
4190	5.660388	44.10	5.660466	92000.0	
4809	5.659955	51.60	5.660454	130000.0	
5472	5.660122	68.70			
6177	5.659981	76.70			

(All times in milliseconds.)

Double-Barrier Options

- Double-barrier options are barrier options with two barriers L < H.
- Assume L < S < H.
- The binomial model produces oscillating option values (see plot on next page).^a

^aChao (**R86526053**) (1999); Dai (**R86526008**, **D8852600**) and Lyuu (2005).

Double-Barrier Knock-Out Options

- We knew how to pick the λ so that one of the layers of the trinomial tree coincides with one barrier, say H.
- This choice, however, does not guarantee that the other barrier, *L*, is also hit.
- One way to handle this problem is to lower the layer of the tree just above L to coincide with L.^a
 - More general ways to make the trinomial model hit both barriers are available.^b

^aRitchken (1995).

^bHsu (R7526001) and Lyuu (2006). Dai (R86526008, D8852600) and Lyuu (2006) combine binomial and trinomial trees to derive an O(n)-time algorithm for double-barrier options (see pp. 596ff).

Double-Barrier Knock-Out Options (continued)

- The probabilities of the nodes on the layer above L must be adjusted.
- Let ℓ be the positive integer such that

$$Sd^{\ell+1} < L < Sd^{\ell}.$$

• Hence the layer of the tree just above L has price Sd^{ℓ} .

Double-Barrier Knock-Out Options (concluded)

• Define $\gamma > 1$ as the number satisfying

$$L = S d^{\ell - 1} e^{-\gamma \lambda \sigma \sqrt{\Delta t}}$$

- The prices between the barriers are

$$L, Sd^{\ell-1}, \dots, Sd^2, Sd, S, Su, Su^2, \dots, Su^{h-1}, Su^h = H.$$

• The probabilities for the nodes with price equal to $Sd^{\ell-1}$ are

$$p'_u = \frac{b + a\gamma}{1 + \gamma}, \quad p'_d = \frac{b - a}{\gamma + \gamma^2}, \text{ and } p'_m = 1 - p'_u - p'_d,$$

where $a \equiv \mu' \sqrt{\Delta t} / (\lambda \sigma)$ and $b \equiv 1/\lambda^2$.

The Binomial-Trinomial Tree

- Embedding a trinomial structure to a binomial tree can lead to improved convergence and efficiency.^a
- The resulting tree is called the binomial-trinomial tree.
- Suppose the binomial tree is built with Δt as the duration of one period.
- Node X at time t needs to pick three nodes on the binomial tree at time $t + \Delta t'$ as its successor nodes.

 $-\Delta t \le \Delta t' < 2\Delta t.$

^aDai (R86526008, D8852600) and Lyuu (2006, 2008).

- These three nodes should guarantee:
 - 1. The mean and variance of the stock price are matched.
 - 2. The branching probabilities are between 0 and 1.
- Let S be the stock price at node X.
- Use s(z) to denote the stock price at node z.

• The expected value of the logarithmic return $\ln(S_{t+\Delta t'}/S)$ at time $t + \Delta t'$ equals

$$\mu \equiv \left(r - \sigma^2/2\right) \Delta t'. \tag{62}$$

• Its variance equals

$$\operatorname{Var} \equiv \sigma^2 \Delta t'. \tag{63}$$

- Let node B be the node whose logarithmic return $\hat{\mu} \equiv \ln(s(B)/S)$ is closest to μ among all the nodes on the binomial tree at time $t + \Delta t'$.
- The middle branch from node X will end at node B.
- The two nodes A and C, which bracket node B, are the destinations of the other two branches from node X.
- Recall that adjacent nodes on the binomial tree are spaced at $2\sigma\sqrt{\Delta t}$ apart.
- See the figure on p. 600 for illustration.

- The three branching probabilities from node X are obtained through matching the mean and variance of the logarithmic return $\ln(S_{t+\Delta t'}/S)$.
- Let $\hat{\mu} \equiv \ln (s(B)/S)$ be the logarithmic return of the middle node B.
- Also, let α, β, and γ be the differences between μ and the logarithmic returns ln(s(Z)/S) of nodes Z = A, B, C, in that order.

• In other words,

$$\alpha \equiv \hat{\mu} + 2\sigma\sqrt{\Delta t} - \mu = \beta + 2\sigma\sqrt{\Delta t}, \qquad (64)$$

$$\beta \equiv \hat{\mu} - \mu, \tag{65}$$

$$\gamma \equiv \hat{\mu} - 2\sigma\sqrt{\Delta t} - \mu = \beta - 2\sigma\sqrt{\Delta t} \,. \tag{66}$$

• The three branching probabilities p_u, p_m, p_d then satisfy

$$p_u \alpha + p_m \beta + p_d \gamma = 0, \qquad (67)$$

$$p_u \alpha^2 + p_m \beta^2 + p_d \gamma^2 = \text{Var}, \qquad (68)$$

$$p_u + p_m + p_d = 1.$$
 (69)

- Equation (67) matches the mean (62) of the logarithmic return $\ln(S_{t+\Delta t'}/S)$ on p. 598.
- Equation (68) matches its variance (63) on p. 598.
- The three probabilities can be proved to lie between 0 and 1.

Pricing Barrier Options

- Consider a double-barrier option with two barriers Land H, where L < S < H.
- We need to make each barrier coincide with a layer of the binomial tree for better convergence.
- This means choosing a Δt such that

$$\kappa \equiv \frac{\ln(H/L)}{2\sigma\sqrt{\Delta t}}$$

is a positive integer.

- The distance between two adjacent nodes such as nodes Y and Z in the figure on p. 605 is $2\sigma\sqrt{\Delta t}$.

Pricing Barrier Options (continued)

- Suppose that the goal is a tree with about m periods.
- Suppose we pick $\Delta \tau \equiv T/m$ for the length of each period.
- There is no guarantee that $\frac{\ln(H/L)}{2\sigma\sqrt{\Delta\tau}}$ is an integer.
- So we pick a Δt that is close to, but does not exceed, $\Delta \tau$ and makes $\frac{\ln(H/L)}{2\sigma\sqrt{\Delta t}}$ an integer.
- Specifically, we select

$$\Delta t = \left(\frac{\ln(H/L)}{2\kappa\sigma}\right)^2,$$

where
$$\kappa = \left[\frac{\ln(H/L)}{2\sigma\sqrt{\Delta\tau}}\right]$$
.

Pricing Barrier Options (continued)

- We now proceed to build the binomial-trinomial tree.
- Start with the binomial part.
- Lay out the nodes from the low barrier L upward and downward.
- Automatically, a layer coincides with the high barrier H.
- It is unlikely that Δt divides T, however.
- As a consequence, the position at time 0 and with logarithmic return $\ln(S/S) = 0$ is not occupied by a binomial node to serve as the root node.

Pricing Barrier Options (continued)

- The binomial-trinomial structure can address this problem as follows.
- Between time 0 and time T, the binomial tree spans $T/\Delta t$ periods.
- Keep only the last $\lfloor T/\Delta t \rfloor 1$ periods and let the first period have a duration equal to

$$\Delta t' = T - \left(\left\lfloor \frac{T}{\Delta t} \right\rfloor - 1 \right) \Delta t.$$

- Then these $\lfloor T/\Delta t \rfloor$ periods span T years.
- It is easy to verify that $\Delta t \leq \Delta t' < 2\Delta t$.
Pricing Barrier Options (continued)

- Start with the root node at time 0 and at a price with logarithmic return $\ln(S/S) = 0$.
- Find the three nodes on the binomial tree at time $\Delta t'$ as described earlier.
- Calculate the three branching probabilities to them.
- Grow the binomial tree from these three nodes until time T to obtain a binomial-trinomial tree with $\lfloor T/\Delta t \rfloor$ periods.
- See the figure on p. 605 for illustration.

Pricing Barrier Options (continued)

- Now the binomial-trinomial tree can be used to price double-barrier options by backward induction.
- That takes quadratic time.
- But we know a linear-time algorithm exists for double-barrier options on the binomial tree (see text).
- Apply that algorithm to price the double-barrier option's prices at the three nodes at time $\Delta t'$.

– That is, nodes A, B, and C on p. 605.

- Then calculate their expected discounted value for the root node.
- The overall running time is only linear.

Pricing Barrier Options (continued)

- Binomial trees have troubles with pricing barrier options (see p. 327 and p. 595).
- Even compared with the much better trinomial tree, the binomial-trinomial tree converges faster and smoother (see p. 612).

The thin line denotes the double-barrier option prices computed by the trinomial tree against the running time in seconds (such as point A). The thick line denotes those computed by the binomial-trinomial tree (such as point B).