
Hedging
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When Professors Scholes and Merton and I

invested in warrants,

Professor Merton lost the most money.

And I lost the least.

— Fischer Black (1938–1995)
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Delta Hedge

• The delta (hedge ratio) of a derivative f is defined as

∆ ≡ ∂f/∂S.

• Thus ∆f ≈ ∆×∆S for relatively small changes in the

stock price, ∆S.

• A delta-neutral portfolio is hedged in the sense that it is

immunized against small changes in the stock price.

• A trading strategy that dynamically maintains a

delta-neutral portfolio is called delta hedge.
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Delta Hedge (concluded)

• Delta changes with the stock price.

• A delta hedge needs to be rebalanced periodically in

order to maintain delta neutrality.

• In the limit where the portfolio is adjusted continuously,

perfect hedge is achieved and the strategy becomes

self-financing.
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Implementing Delta Hedge

• We want to hedge N short derivatives.

• Assume the stock pays no dividends.

• The delta-neutral portfolio maintains N ×∆ shares of

stock plus B borrowed dollars such that

−N × f +N ×∆× S −B = 0.

• At next rebalancing point when the delta is ∆′, buy

N × (∆′ −∆) shares to maintain N ×∆′ shares with a

total borrowing of B′ = N ×∆′ × S′ −N × f ′.

• Delta hedge is the discrete-time analog of the

continuous-time limit and will rarely be self-financing.
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Example

• A hedger is short 10,000 European calls.

• σ = 30% and r = 6%.

• This call’s expiration is four weeks away, its strike price

is $50, and each call has a current value of f = 1.76791.

• As an option covers 100 shares of stock, N = 1,000,000.

• The trader adjusts the portfolio weekly.

• The calls are replicated well if the cumulative cost of

trading stock is close to the call premium’s FV.a

aThis example takes the replication viewpoint.
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Example (continued)

• As ∆ = 0.538560, N ×∆ = 538, 560 shares are

purchased for a total cost of 538,560× 50 = 26,928,000

dollars to make the portfolio delta-neutral.

• The trader finances the purchase by borrowing

B = N ×∆× S −N × f = 25,160,090

dollars net.a

• The portfolio has zero net value now.

aThis takes the hedging viewpoint — an alternative. See an exercise

in the text.
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Example (continued)

• At 3 weeks to expiration, the stock price rises to $51.

• The new call value is f ′ = 2.10580.

• So the portfolio is worth

−N × f ′ + 538,560× 51−Be0.06/52 = 171, 622

before rebalancing.
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Example (continued)

• A delta hedge does not replicate the calls perfectly; it is

not self-financing as $171,622 can be withdrawn.

• The magnitude of the tracking error—the variation in

the net portfolio value—can be mitigated if adjustments

are made more frequently.

• In fact, the tracking error over one rebalancing act is

positive about 68% of the time, but its expected value is

essentially zero.a

• It is furthermore proportional to vega.

aBoyle and Emanuel (1980).
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Example (continued)

• In practice tracking errors will cease to decrease beyond

a certain rebalancing frequency.

• With a higher delta ∆′ = 0.640355, the trader buys

N × (∆′ −∆) = 101, 795 shares for $5,191,545.

• The number of shares is increased to N ×∆′ = 640, 355.
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Example (continued)

• The cumulative cost is

26,928,000× e0.06/52 + 5,191,545 = 32,150,634.

• The portfolio is again delta-neutral.
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Option Change in No. shares Cost of Cumulative

value Delta delta bought shares cost

τ S f ∆ N×(5) (1)×(6) FV(8’)+(7)

(1) (2) (3) (5) (6) (7) (8)

4 50 1.7679 0.53856 — 538,560 26,928,000 26,928,000

3 51 2.1058 0.64036 0.10180 101,795 5,191,545 32,150,634

2 53 3.3509 0.85578 0.21542 215,425 11,417,525 43,605,277

1 52 2.2427 0.83983 −0.01595 −15,955 −829,660 42,825,960

0 54 4.0000 1.00000 0.16017 160,175 8,649,450 51,524,853

The total number of shares is 1,000,000 at expiration

(trading takes place at expiration, too).
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Example (concluded)

• At expiration, the trader has 1,000,000 shares.

• They are exercised against by the in-the-money calls for

$50,000,000.

• The trader is left with an obligation of

51,524,853− 50,000,000 = 1,524,853,

which represents the replication cost.

• Compared with the FV of the call premium,

1,767,910× e0.06×4/52 = 1,776,088,

the net gain is 1,776,088− 1,524,853 = 251,235.
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Tracking Error Revisited

• Define the dollar gamma as S2Γ.

• The change in value of a delta-hedged long option

position after a duration of ∆t is proportional to the

dollar gamma.

• It is about

(1/2)S2Γ[ (∆S/S)2 − σ2∆t ].

– (∆S/S)2 is called the daily realized variance.
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Tracking Error Revisited (continued)

• Let the rebalancing times be t1, t2, . . . , tn.

• Let ∆Si = Si+1 − Si.

• The total tracking error at expiration is about

n−1∑
i=0

er(T−ti)
S2
i Γi

2

[(
∆Si

Si

)2

− σ2∆t

]
,

• The tracking error is path dependent.

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 551



Tracking Error Revisited (concluded)a

• The tracking error ϵn over n rebalancing acts (such as

251,235 on p. 549) has about the same probability of

being positive as being negative.

• Subject to certain regularity conditions, the

root-mean-square tracking error
√
E[ ϵ2n ] is O(1/

√
n ).b

• The root-mean-square tracking error increases with σ at

first and then decreases.

aBertsimas, Kogan, and Lo (2000).
bSee also Grannan and Swindle (1996).
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Delta-Gamma Hedge

• Delta hedge is based on the first-order approximation to

changes in the derivative price, ∆f , due to changes in

the stock price, ∆S.

• When ∆S is not small, the second-order term, gamma

Γ ≡ ∂2f/∂S2, helps (theoretically).

• A delta-gamma hedge is a delta hedge that maintains

zero portfolio gamma, or gamma neutrality.

• To meet this extra condition, one more security needs to

be brought in.
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Delta-Gamma Hedge (concluded)

• Suppose we want to hedge short calls as before.

• A hedging call f2 is brought in.

• To set up a delta-gamma hedge, we solve

−N × f + n1 × S + n2 × f2 −B = 0 (self-financing),

−N ×∆+ n1 + n2 ×∆2 − 0 = 0 (delta neutrality),

−N × Γ + 0 + n2 × Γ2 − 0 = 0 (gamma neutrality),

for n1, n2, and B.

– The gammas of the stock and bond are 0.
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Other Hedges

• If volatility changes, delta-gamma hedge may not work

well.

• An enhancement is the delta-gamma-vega hedge, which

also maintains vega zero portfolio vega.

• To accomplish this, one more security has to be brought

into the process.

• In practice, delta-vega hedge, which may not maintain

gamma neutrality, performs better than delta hedge.
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Trees
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I love a tree more than a man.

— Ludwig van Beethoven (1770–1827)

And though the holes were rather small,

they had to count them all.

— The Beatles, A Day in the Life (1967)
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The Combinatorial Method

• The combinatorial method can often cut the running

time by an order of magnitude.

• The basic paradigm is to count the number of admissible

paths that lead from the root to any terminal node.

• We first used this method in the linear-time algorithm

for standard European option pricing on p. 238.

• We will now apply it to price barrier options.
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The Reflection Principlea

• Imagine a particle at position (0,−a) on the integral

lattice that is to reach (n,−b).

• Without loss of generality, assume a > 0 and b ≥ 0.

• This particle’s movement:

(i, j)
*(i+ 1, j + 1) up move S → Su

j(i+ 1, j − 1) down move S → Sd

• How many paths touch the x axis?

aAndré (1887).
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(0, a) (n, b)

(0, a)

J
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The Reflection Principle (continued)

• For a path from (0,−a) to (n,−b) that touches the x

axis, let J denote the first point this happens.

• Reflect the portion of the path from (0,−a) to J .

• A path from (0,a) to (n,−b) is constructed.

• It also hits the x axis at J for the first time.

• The one-to-one mapping shows the number of paths

from (0,−a) to (n,−b) that touch the x axis equals

the number of paths from (0,a) to (n,−b).
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The Reflection Principle (concluded)

• A path of this kind has (n+ b+ a)/2 down moves and

(n− b− a)/2 up moves.

• Hence there are (
n

n+a+b
2

)
(59)

such paths for even n+ a+ b.

– Convention:
(
n
k

)
= 0 for k < 0 or k > n.
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Pricing Barrier Options (Lyuu, 1998)

• Focus on the down-and-in call with barrier H < X.

• Assume H < S without loss of generality.

• Define

a ≡
⌈
ln (X/ (Sdn))

ln(u/d)

⌉
=

⌈
ln(X/S)

2σ
√
∆t

+
n

2

⌉
,

h ≡
⌊
ln (H/ (Sdn))

ln(u/d)

⌋
=

⌊
ln(H/S)

2σ
√
∆t

+
n

2

⌋
.

– h is such that H̃ ≡ Suhdn−h is the terminal price

that is closest to, but does not exceed H.

– a is such that X̃ ≡ Suadn−a is the terminal price

that is closest to, but is not exceeded by X.
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Pricing Barrier Options (continued)

• The true barrier is replaced by the effective barrier H̃

in the binomial model.

• A process with n moves hence ends up in the money if

and only if the number of up moves is at least a.

• The price Sukdn−k is at a distance of 2k from the

lowest possible price Sdn on the binomial tree.

–

Sukdn−k = Sd−kdn−k = Sdn−2k. (60)
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Pricing Barrier Options (continued)

• The number of paths from S to the terminal price

Sujdn−j is
(
n
j

)
, each with probability pj(1− p)n−j .

• With reference to p. 565, the reflection principle can be

applied with a = n− 2h and b = 2j − 2h in Eq. (59)

on p. 562 by treating the S line as the x axis.

• Therefore,(
n

n+(n−2h)+(2j−2h)
2

)
=

(
n

n− 2h+ j

)
paths hit H̃ in the process for h ≤ n/2.
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Pricing Barrier Options (concluded)

• The terminal price Sujdn−j is reached by a path that

hits the effective barrier with probability(
n

n− 2h+ j

)
pj(1− p)n−j .

• The option value equals∑2h
j=a

(
n

n−2h+j

)
pj(1− p)n−j

(
Sujdn−j −X

)
Rn

. (61)

– R ≡ erτ/n is the riskless return per period.

• It implies a linear-time algorithm.
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Convergence of BOPM

• Equation (61) results in the sawtooth-like convergence

shown on p. 327.

• The reasons are not hard to see.

• The true barrier most likely does not equal the effective

barrier.

• The same holds for the strike price and the effective

strike price.

• The issue of the strike price is less critical.

• But the issue of the barrier is not negligible.
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Convergence of BOPM (continued)

• Convergence is actually good if we limit n to certain

values—191, for example.

• These values make the true barrier coincide with or just

above one of the stock price levels, that is,

H ≈ Sdj = Se−jσ
√

τ/n

for some integer j.

• The preferred n’s are thus

n =

⌊
τ

(ln(S/H)/(jσ))
2

⌋
, j = 1, 2, 3, . . .
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Convergence of BOPM (continued)

• There is only one minor technicality left.

• We picked the effective barrier to be one of the n+ 1

possible terminal stock prices.

• However, the effective barrier above, Sdj , corresponds to

a terminal stock price only when n− j is even.a

• To close this gap, we decrement n by one, if necessary,

to make n− j an even number.

aThis is because j = n − 2k for some k by Eq. (60) on p. 564. Of

course we could have adopted the form Sdj (−n ≤ j ≤ n) for the

effective barrier.
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Convergence of BOPM (concluded)

• The preferred n’s are now

n =

 ℓ if ℓ− j is even

ℓ− 1 otherwise
,

j = 1, 2, 3, . . . , where

ℓ ≡

⌊
τ

(ln(S/H)/(jσ))
2

⌋
.

• Evaluate pricing formula (61) on p. 567 only with the

n’s above.
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Practical Implications

• Now that barrier options can be efficiently priced, we

can afford to pick very large n’s (p. 574).

• This has profound consequences.
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n Combinatorial method

Value Time (milliseconds)

21 5.507548 0.30

84 5.597597 0.90

191 5.635415 2.00

342 5.655812 3.60

533 5.652253 5.60

768 5.654609 8.00

1047 5.658622 11.10

1368 5.659711 15.00

1731 5.659416 19.40

2138 5.660511 24.70

2587 5.660592 30.20

3078 5.660099 36.70

3613 5.660498 43.70

4190 5.660388 44.10

4809 5.659955 51.60

5472 5.660122 68.70

6177 5.659981 76.70

6926 5.660263 86.90

7717 5.660272 97.20
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Practical Implications (concluded)

• Pricing is prohibitively time consuming when S ≈ H

because n ∼ 1/ ln2(S/H).

– This is called the barrier-too-close problem.

• This observation is indeed true of standard

quadratic-time binomial tree algorithms.

• But it no longer applies to linear-time algorithms (see

p. 576).

• In fact, this model is O(1/n) convergent.a

aLin (R95221010) (2008).
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Barrier at 95.0 Barrier at 99.5 Barrier at 99.9

n Value Time n Value Time n Value Time

.

.

. 795 7.47761 8 19979 8.11304 253

2743 2.56095 31.1 3184 7.47626 38 79920 8.11297 1013

3040 2.56065 35.5 7163 7.47682 88 179819 8.11300 2200

3351 2.56098 40.1 12736 7.47661 166 319680 8.11299 4100

3678 2.56055 43.8 19899 7.47676 253 499499 8.11299 6300

4021 2.56152 48.1 28656 7.47667 368 719280 8.11299 8500

True 2.5615 7.4767 8.1130

(All times in milliseconds.)
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Trinomial Tree

• Set up a trinomial approximation to the geometric

Brownian motion dS/S = r dt+ σ dW .a

• The three stock prices at time ∆t are S, Su, and Sd,

where ud = 1.

• Impose the matching of mean and that of variance:

1 = pu + pm + pd,

SM ≡ (puu+ pm + (pd/u))S,

S2V ≡ pu(Su− SM)2 + pm(S − SM)2 + pd(Sd− SM)2.

aBoyle (1988).
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• Above,

M ≡ er∆t,

V ≡ M2(eσ
2∆t − 1),

by Eqs. (18) on p. 151.
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Trinomial Tree (continued)

• Use linear algebra to verify that

pu =
u
(
V +M2 −M

)
− (M − 1)

(u− 1) (u2 − 1)
,

pd =
u2

(
V +M2 −M

)
− u3(M − 1)

(u− 1) (u2 − 1)
.

– In practice, must make sure the probabilities lie

between 0 and 1.

• Countless variations.
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Trinomial Tree (concluded)

• Use u = eλσ
√
∆t, where λ ≥ 1 is a tunable parameter.

• Then

pu → 1

2λ2
+

(
r + σ2

)√
∆t

2λσ
,

pd → 1

2λ2
−

(
r − 2σ2

)√
∆t

2λσ
.

• A nice choice for λ is
√
π/2 .a

aOmberg (1988).
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Barrier Options Revisited

• BOPM introduces a specification error by replacing the

barrier with a nonidentical effective barrier.

• The trinomial model solves the problem by adjusting λ

so that the barrier is hit exactly.a

• It takes

h =
ln(S/H)

λσ
√
∆t

consecutive down moves to go from S to H if h is an

integer, which is easy to achieve by adjusting λ.

– This is because Se−hλσ
√
∆t = H.

aRitchken (1995).
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Barrier Options Revisited (continued)

• Typically, we find the smallest λ ≥ 1 such that h is an

integer.

• That is, we find the largest integer j ≥ 1 that satisfies
ln(S/H)

jσ
√
∆t

≥ 1 and then let

λ =
ln(S/H)

jσ
√
∆t

.

– Such a λ may not exist for very small n’s.

– This is not hard to check.

• This done, one of the layers of the trinomial tree

coincides with the barrier.
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Barrier Options Revisited (concluded)

• The following probabilities may be used,

pu =
1

2λ2
+

µ′
√
∆t

2λσ
,

pm = 1− 1

λ2
,

pd =
1

2λ2
− µ′

√
∆t

2λσ
.

– µ′ ≡ r − σ2/2.
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Algorithms Comparisona

• So which algorithm is better, binomial or trinomial?

• Algorithms are often compared based on the n value at

which they converge.

– The one with the smallest n wins.

• So giraffes are faster than cheetahs because they take

fewer strides to travel the same distance!

• Performance must be based on actual running times.

aLyuu (1998).
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Algorithms Comparison (concluded)

• Pages 327 and 585 show the trinomial model converges

at a smaller n than BOPM.

• It is in this sense when people say trinomial models

converge faster than binomial ones.

• But is the trinomial model better then?

• The linear-time binomial tree algorithm actually

performs better than the trinomial one.

• See the next page, expanded from p. 574.
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n Combinatorial method Trinomial tree algorithm

Value Time Value Time

21 5.507548 0.30

84 5.597597 0.90 5.634936 35.0

191 5.635415 2.00 5.655082 185.0

342 5.655812 3.60 5.658590 590.0

533 5.652253 5.60 5.659692 1440.0

768 5.654609 8.00 5.660137 3080.0

1047 5.658622 11.10 5.660338 5700.0

1368 5.659711 15.00 5.660432 9500.0

1731 5.659416 19.40 5.660474 15400.0

2138 5.660511 24.70 5.660491 23400.0

2587 5.660592 30.20 5.660493 34800.0

3078 5.660099 36.70 5.660488 48800.0

3613 5.660498 43.70 5.660478 67500.0

4190 5.660388 44.10 5.660466 92000.0

4809 5.659955 51.60 5.660454 130000.0

5472 5.660122 68.70

6177 5.659981 76.70

(All times in milliseconds.)
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Double-Barrier Options

• Double-barrier options are barrier options with two

barriers L < H.

• Assume L < S < H.

• The binomial model produces oscillating option values

(see plot on next page).a

aChao (R86526053) (1999); Dai (R86526008, D8852600) and Lyuu

(2005).
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Double-Barrier Knock-Out Options

• We knew how to pick the λ so that one of the layers of

the trinomial tree coincides with one barrier, say H.

• This choice, however, does not guarantee that the other

barrier, L, is also hit.

• One way to handle this problem is to lower the layer of

the tree just above L to coincide with L.a

– More general ways to make the trinomial model hit

both barriers are available.b

aRitchken (1995).
bHsu (R7526001) and Lyuu (2006). Dai (R86526008, D8852600) and

Lyuu (2006) combine binomial and trinomial trees to derive an O(n)-

time algorithm for double-barrier options (see pp. 596ff).

c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 591



H


L


S


c⃝2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 592



Double-Barrier Knock-Out Options (continued)

• The probabilities of the nodes on the layer above L

must be adjusted.

• Let ℓ be the positive integer such that

Sdℓ+1 < L < Sdℓ.

• Hence the layer of the tree just above L has price Sdℓ.
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Double-Barrier Knock-Out Options (concluded)

• Define γ > 1 as the number satisfying

L = Sdℓ−1e−γλσ
√
∆t.

– The prices between the barriers are

L, Sdℓ−1, . . . , Sd2, Sd, S, Su, Su2, . . . , Suh−1, Suh = H.

• The probabilities for the nodes with price equal to

Sdℓ−1 are

p′u =
b+ aγ

1 + γ
, p′d =

b− a

γ + γ2
, and p′m = 1− p′u − p′d,

where a ≡ µ′
√
∆t/(λσ) and b ≡ 1/λ2.
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Convergence: Binomial vs. Trinomial
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The Binomial-Trinomial Tree

• Embedding a trinomial structure to a binomial tree can

lead to improved convergence and efficiency.a

• The resulting tree is called the binomial-trinomial tree.

• Suppose the binomial tree is built with ∆t as the

duration of one period.

• Node X at time t needs to pick three nodes on the

binomial tree at time t+∆t′ as its successor nodes.

– ∆t ≤ ∆t′ < 2∆t.

aDai (R86526008, D8852600) and Lyuu (2006, 2008).
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The Binomial-Trinomial Tree (continued)

• These three nodes should guarantee:

1. The mean and variance of the stock price are

matched.

2. The branching probabilities are between 0 and 1.

• Let S be the stock price at node X.

• Use s(z) to denote the stock price at node z.
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The Binomial-Trinomial Tree (continued)

• The expected value of the logarithmic return

ln(St+∆t′/S) at time t+∆t′ equals

µ ≡
(
r − σ2/2

)
∆t′. (62)

• Its variance equals

Var ≡ σ2∆t′. (63)
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The Binomial-Trinomial Tree (continued)

• Let node B be the node whose logarithmic return

µ̂ ≡ ln(s(B)/S) is closest to µ among all the nodes on

the binomial tree at time t+∆t′.

• The middle branch from node X will end at node B.

• The two nodes A and C, which bracket node B, are the

destinations of the other two branches from node X.

• Recall that adjacent nodes on the binomial tree are

spaced at 2σ
√
∆t apart.

• See the figure on p. 600 for illustration.
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The Binomial-Trinomial Tree (continued)
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The Binomial-Trinomial Tree (continued)

• The three branching probabilities from node X are

obtained through matching the mean and variance of

the logarithmic return ln(St+∆t′/S).

• Let µ̂ ≡ ln (s(B)/S) be the logarithmic return of the

middle node B.

• Also, let α, β, and γ be the differences between µ and

the logarithmic returns ln(s(Z)/S) of nodes

Z = A,B,C, in that order.
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The Binomial-Trinomial Tree (continued)

• In other words,

α ≡ µ̂+ 2σ
√
∆t− µ = β + 2σ

√
∆t , (64)

β ≡ µ̂− µ, (65)

γ ≡ µ̂− 2σ
√
∆t− µ = β − 2σ

√
∆t . (66)

• The three branching probabilities pu, pm, pd then satisfy

puα+ pmβ + pdγ = 0, (67)

puα
2 + pmβ2 + pdγ

2 = Var, (68)

pu + pm + pd = 1. (69)
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The Binomial-Trinomial Tree (concluded)

• Equation (67) matches the mean (62) of the logarithmic

return ln(St+∆t′/S) on p. 598.

• Equation (68) matches its variance (63) on p. 598.

• The three probabilities can be proved to lie between 0

and 1.
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Pricing Barrier Options

• Consider a double-barrier option with two barriers L

and H, where L < S < H.

• We need to make each barrier coincide with a layer of

the binomial tree for better convergence.

• This means choosing a ∆t such that

κ ≡ ln(H/L)

2σ
√
∆t

is a positive integer.

– The distance between two adjacent nodes such as

nodes Y and Z in the figure on p. 605 is 2σ
√
∆t .
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Pricing Barrier Options (continued)
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Pricing Barrier Options (continued)

• Suppose that the goal is a tree with about m periods.

• Suppose we pick ∆τ ≡ T/m for the length of each

period.

• There is no guarantee that ln(H/L)

2σ
√
∆τ

is an integer.

• So we pick a ∆t that is close to, but does not exceed,

∆τ and makes ln(H/L)

2σ
√
∆t

an integer.

• Specifically, we select

∆t =

(
ln(H/L)

2κσ

)2

,

where κ =
⌈
ln(H/L)

2σ
√
∆τ

⌉
.
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Pricing Barrier Options (continued)

• We now proceed to build the binomial-trinomial tree.

• Start with the binomial part.

• Lay out the nodes from the low barrier L upward and

downward.

• Automatically, a layer coincides with the high barrier H.

• It is unlikely that ∆t divides T , however.

• As a consequence, the position at time 0 and with

logarithmic return ln(S/S) = 0 is not occupied by a

binomial node to serve as the root node.
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Pricing Barrier Options (continued)

• The binomial-trinomial structure can address this

problem as follows.

• Between time 0 and time T , the binomial tree spans

T/∆t periods.

• Keep only the last ⌊T/∆t⌋ − 1 periods and let the first

period have a duration equal to

∆t′ = T −
(⌊

T

∆t

⌋
− 1

)
∆t.

• Then these ⌊T/∆t⌋ periods span T years.

• It is easy to verify that ∆t ≤ ∆t′ < 2∆t.
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Pricing Barrier Options (continued)

• Start with the root node at time 0 and at a price with

logarithmic return ln(S/S) = 0.

• Find the three nodes on the binomial tree at time ∆t′

as described earlier.

• Calculate the three branching probabilities to them.

• Grow the binomial tree from these three nodes until

time T to obtain a binomial-trinomial tree with

⌊T/∆t⌋ periods.

• See the figure on p. 605 for illustration.
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Pricing Barrier Options (continued)

• Now the binomial-trinomial tree can be used to price

double-barrier options by backward induction.

• That takes quadratic time.

• But we know a linear-time algorithm exists for

double-barrier options on the binomial tree (see text).

• Apply that algorithm to price the double-barrier

option’s prices at the three nodes at time ∆t′.

– That is, nodes A, B, and C on p. 605.

• Then calculate their expected discounted value for the

root node.

• The overall running time is only linear.
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Pricing Barrier Options (continued)

• Binomial trees have troubles with pricing barrier options

(see p. 327 and p. 595).

• Even compared with the much better trinomial tree, the

binomial-trinomial tree converges faster and smoother

(see p. 612).
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Pricing Barrier Options (concluded)
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The thin line denotes the double-barrier option prices

computed by the trinomial tree against the running time in

seconds (such as point A). The thick line denotes those

computed by the binomial-trinomial tree (such as point B).
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