
Brownian Motiona

• Brownian motion is a stochastic process {X(t), t ≥ 0 }
with the following properties.

1. X(0) = 0, unless stated otherwise.

2. for any 0 ≤ t0 < t1 < · · · < tn, the random variables

X(tk)−X(tk−1)

for 1 ≤ k ≤ n are independent.b

3. for 0 ≤ s < t, X(t)−X(s) is normally distributed
with mean µ(t− s) and variance σ2(t− s), where µ

and σ 6= 0 are real numbers.
aRobert Brown (1773–1858).
bSo X(t)−X(s) is independent of X(r) for r ≤ s < t.
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Brownian Motion (concluded)

• Such a process will be called a (µ, σ) Brownian motion
with drift µ and variance σ2.

• The existence and uniqueness of such a process is
guaranteed by Wiener’s theorem.a

• Although Brownian motion is a continuous function of t

with probability one, it is almost nowhere differentiable.

• The (0, 1) Brownian motion is also called the Wiener
process.

aNorbert Wiener (1894–1964).
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Example

• If {X(t), t ≥ 0 } is the Wiener process, then
X(t)−X(s) ∼ N(0, t− s).

• A (µ, σ) Brownian motion Y = {Y (t), t ≥ 0 } can be
expressed in terms of the Wiener process:

Y (t) = µt + σX(t). (47)

• Note that Y (t + s)− Y (t) ∼ N(µs, σ2s).
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Brownian Motion as Limit of Random Walk

Claim 1 A (µ, σ) Brownian motion is the limiting case of
random walk.

• A particle moves ∆x to the left with probability 1− p.

• It moves to the right with probability p after ∆t time.

• Assume n ≡ t/∆t is an integer.

• Its position at time t is

Y (t) ≡ ∆x (X1 + X2 + · · ·+ Xn) .
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Brownian Motion as Limit of Random Walk (continued)

• (continued)

– Here

Xi ≡




+1 if the ith move is to the right,

−1 if the ith move is to the left.

– Xi are independent with
Prob[ Xi = 1 ] = p = 1− Prob[ Xi = −1 ].

• Recall E[Xi ] = 2p− 1 and Var[ Xi ] = 1− (2p− 1)2.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 464



Brownian Motion as Limit of Random Walk (continued)

• Therefore,

E[ Y (t) ] = n(∆x)(2p− 1),

Var[ Y (t) ] = n(∆x)2
[
1− (2p− 1)2

]
.

• With ∆x ≡ σ
√

∆t and p ≡ [ 1 + (µ/σ)
√

∆t ]/2,

E[ Y (t) ] = nσ
√

∆t (µ/σ)
√

∆t = µt,

Var[Y (t) ] = nσ2∆t
[
1− (µ/σ)2∆t

] → σ2t,

as ∆t → 0.
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Brownian Motion as Limit of Random Walk (concluded)

• Thus, {Y (t), t ≥ 0 } converges to a (µ, σ) Brownian
motion by the central limit theorem.

• Brownian motion with zero drift is the limiting case of
symmetric random walk by choosing µ = 0.

• Note that

Var[Y (t + ∆t)− Y (t) ]

=Var[∆xXn+1 ] = (∆x)2 ×Var[ Xn+1 ] → σ2∆t.

• Similarity to the the BOPM: The p is identical to the
probability in Eq. (24) on p. 246 and ∆x = ln u.
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Geometric Brownian Motion

• Let X ≡ {X(t), t ≥ 0 } be a Brownian motion process.

• The process
{Y (t) ≡ eX(t), t ≥ 0 },

is called geometric Brownian motion.

• Suppose further that X is a (µ, σ) Brownian motion.

• X(t) ∼ N(µt, σ2t) with moment generating function

E
[
esX(t)

]
= E [ Y (t)s ] = eµts+(σ2ts2/2)

from Eq. (17) on p 145.
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Geometric Brownian Motion (continued)

• In particular,

E[ Y (t) ] = eµt+(σ2t/2),

Var[Y (t) ] = E
[
Y (t)2

]− E[ Y (t) ]2

= e2µt+σ2t
(
eσ2t − 1

)
.
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Geometric Brownian Motion (continued)

• It is useful for situations in which percentage changes
are independent and identically distributed.

• Let Yn denote the stock price at time n and Y0 = 1.

• Assume relative returns

Xi ≡ Yi

Yi−1

are independent and identically distributed.
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Geometric Brownian Motion (concluded)

• Then

ln Yn =
n∑

i=1

ln Xi

is a sum of independent, identically distributed random
variables.

• Thus { ln Yn, n ≥ 0 } is approximately Brownian motion.

– And {Yn, n ≥ 0 } is approximately geometric
Brownian motion.
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;
a rigorous proof is that which convinces an

unreasonable man.
— Mark Kac (1914–1984)

The pursuit of mathematics is a
divine madness of the human spirit.

— Alfred North Whitehead (1861–1947),
Science and the Modern World
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Stochastic Integrals

• Use W ≡ {W (t), t ≥ 0 } to denote the Wiener process.

• The goal is to develop integrals of X from a class of
stochastic processes,a

It(X) ≡
∫ t

0

X dW, t ≥ 0.

• It(X) is a random variable called the stochastic integral
of X with respect to W .

• The stochastic process { It(X), t ≥ 0 } will be denoted
by

∫
X dW .

aKiyoshi Ito (1915–2008).
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Stochastic Integrals (concluded)

• Typical requirements for X in financial applications are:

– Prob[
∫ t

0
X2(s) ds < ∞ ] = 1 for all t ≥ 0 or the

stronger
∫ t

0
E[ X2(s) ] ds < ∞.

– The information set at time t includes the history of
X and W up to that point in time.

– But it contains nothing about the evolution of X or
W after t (nonanticipating, so to speak).

– The future cannot influence the present.

• {X(s), 0 ≤ s ≤ t } is independent of
{W (t + u)−W (t), u > 0 }.
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Ito Integral

• A theory of stochastic integration.

• As with calculus, it starts with step functions.

• A stochastic process {X(t) } is simple if there exist
0 = t0 < t1 < · · · such that

X(t) = X(tk−1) for t ∈ [ tk−1, tk), k = 1, 2, . . .

for any realization (see figure on next page).
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Ito Integral (continued)

• The Ito integral of a simple process is defined as

It(X) ≡
n−1∑

k=0

X(tk)[ W (tk+1)−W (tk) ], (48)

where tn = t.

– The integrand X is evaluated at tk, not tk+1.

• Define the Ito integral of more general processes as a
limiting random variable of the Ito integral of simple
stochastic processes.
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Ito Integral (continued)

• Let X = {X(t), t ≥ 0 } be a general stochastic process.

• Then there exists a random variable It(X), unique
almost certainly, such that It(Xn) converges in
probability to It(X) for each sequence of simple
stochastic processes X1, X2, . . . such that Xn converges
in probability to X.

• If X is continuous with probability one, then It(Xn)
converges in probability to It(X) as
δn ≡ max1≤k≤n(tk − tk−1) goes to zero.
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Ito Integral (concluded)

• It is a fundamental fact that
∫

X dW is continuous
almost surely.

• The following theorem says the Ito integral is a
martingale.

– A corollary is the mean value formula

E

[ ∫ b

a

X dW

]
= 0.

Theorem 15 The Ito integral
∫

X dW is a martingale.
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Discrete Approximation

• Recall Eq. (48) on p. 478.

• The following simple stochastic process { X̂(t) } can be
used in place of X to approximate the stochastic
integral

∫ t

0
X dW ,

X̂(s) ≡ X(tk−1) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• Note the nonanticipating feature of X̂.

– The information up to time s,

{ X̂(t),W (t), 0 ≤ t ≤ s },

cannot determine the future evolution of X or W .
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Discrete Approximation (concluded)

• Suppose we defined the stochastic integral as

n−1∑

k=0

X(tk+1)[ W (tk+1)−W (tk) ].

• Then we would be using the following different simple
stochastic process in the approximation,

Ŷ (s) ≡ X(tk) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• This clearly anticipates the future evolution of X.a

aSee Exercise 14.1.2 of the textbook for an example where it matters.
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Ito Process

• The stochastic process X = {Xt, t ≥ 0 } that solves

Xt = X0 +
∫ t

0

a(Xs, s) ds +
∫ t

0

b(Xs, s) dWs, t ≥ 0

is called an Ito process.

– X0 is a scalar starting point.

– { a(Xt, t) : t ≥ 0 } and { b(Xt, t) : t ≥ 0 } are
stochastic processes satisfying certain regularity
conditions.

• The terms a(Xt, t) and b(Xt, t) are the drift and the
diffusion, respectively.
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Ito Process (continued)

• A shorthanda is the following stochastic differential
equation for the Ito differential dXt,

dXt = a(Xt, t) dt + b(Xt, t) dWt. (49)

– Or simply dXt = at dt + bt dWt.

• This is Brownian motion with an instantaneous drift at

and an instantaneous variance b2
t .

• X is a martingale if the drift at is zero by Theorem 15
(p. 480).

aPaul Langevin (1904).
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Ito Process (concluded)

• dW is normally distributed with mean zero and
variance dt.

• An equivalent form to Eq. (49) is

dXt = at dt + bt

√
dt ξ, (50)

where ξ ∼ N(0, 1).
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Euler Approximation

• The following approximation follows from Eq. (50),

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t + b(X̂(tn), tn) ∆W (tn),
(51)

where tn ≡ n∆t.

• It is called the Euler or Euler-Maruyama method.

• Under mild conditions, X̂(tn) converges to X(tn).

• Recall that ∆W (tn) should be interpreted as
W (tn+1)−W (tn) instead of W (tn)−W (tn−1).
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More Discrete Approximations

• Under fairly loose regularity conditions, approximation
(51) on p. 487 can be replaced by

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t + b(X̂(tn), tn)
√

∆t Y (tn).

– Y (t0), Y (t1), . . . are independent and identically
distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

• An even simpler discrete approximation scheme:

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t + b(X̂(tn), tn)
√

∆t ξ.

– Prob[ ξ = 1 ] = Prob[ ξ = −1 ] = 1/2.

– Note that E[ ξ ] = 0 and Var[ ξ ] = 1.

• This clearly defines a binomial model.

• As ∆t goes to zero, X̂ converges to X.
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Trading and the Ito Integral

• Consider an Ito process dSt = µt dt + σt dWt.

– St is the vector of security prices at time t.

• Let φt be a trading strategy denoting the quantity of
each type of security held at time t.

– Hence the stochastic process φtSt is the value of the
portfolio φt at time t.

• φt dSt ≡ φt(µt dt + σt dWt) represents the change in the
value from security price changes occurring at time t.
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Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

GT (φ) ≡
∫ T

0

φt dSt =
∫ T

0

φtµt dt +
∫ T

0

φtσt dWt,

measures the gains realized by the trading strategy over
the period [ 0, T ].
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Ito’s Lemma

A smooth function of an Ito process is itself an Ito process.

Theorem 16 Suppose f : R → R is twice continuously
differentiable and dX = at dt + bt dW . Then f(X) is the
Ito process,

f(Xt)

= f(X0) +
∫ t

0

f ′(Xs) as ds +
∫ t

0

f ′(Xs) bs dW

+
1
2

∫ t

0

f ′′(Xs) b2
s ds

for t ≥ 0.
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Ito’s Lemma (continued)

• In differential form, Ito’s lemma becomes

df(X) = f ′(X) a dt + f ′(X) b dW +
1
2

f ′′(X) b2 dt.

(52)

• Compared with calculus, the interesting part is the third
term on the right-hand side.

• A convenient formulation of Ito’s lemma is

df(X) = f ′(X) dX +
1
2

f ′′(X)(dX)2.
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Ito’s Lemma (continued)

• We are supposed to multiply out
(dX)2 = (a dt + b dW )2 symbolically according to

× dW dt

dW dt 0

dt 0 0

– The (dW )2 = dt entry is justified by a known result.

• This form is easy to remember because of its similarity
to the Taylor expansion.

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 494



Ito’s Lemma (continued)

Theorem 17 (Higher-Dimensional Ito’s Lemma) Let
W1,W2, . . . , Wn be independent Wiener processes and
X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose
f : Rm → R is twice continuously differentiable and Xi is
an Ito process with dXi = ai dt +

∑n
j=1 bij dWj. Then

df(X) is an Ito process with the differential,

df(X) =
m∑

i=1

fi(X) dXi +
1
2

m∑

i=1

m∑

k=1

fik(X) dXi dXk,

where fi ≡ ∂f/∂xi and fik ≡ ∂2f/∂xi∂xk.
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Ito’s Lemma (continued)

• The multiplication table for Theorem 17 is

× dWi dt

dWk δik dt 0

dt 0 0

in which

δik =





1 if i = k,

0 otherwise.
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Ito’s Lemma (continued)

Theorem 18 (Alternative Ito’s Lemma) Let
W1,W2, . . . , Wm be Wiener processes and
X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose
f : Rm → R is twice continuously differentiable and Xi is
an Ito process with dXi = ai dt + bi dWi. Then df(X) is the
following Ito process,

df(X) =
m∑

i=1

fi(X) dXi +
1
2

m∑

i=1

m∑

k=1

fik(X) dXi dXk.
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Ito’s Lemma (concluded)

• The multiplication table for Theorem 18 is

× dWi dt

dWk ρik dt 0

dt 0 0

• Here, ρik denotes the correlation between dWi and
dWk.
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Geometric Brownian Motion

• Consider the geometric Brownian motion process
Y (t) ≡ eX(t)

– X(t) is a (µ, σ) Brownian motion.

– Hence dX = µdt + σ dW by Eq. (47) on p. 462.

• As ∂Y/∂X = Y and ∂2Y/∂X2 = Y , Ito’s formula (52)
on p. 493 implies

dY = Y dX + (1/2)Y (dX)2

= Y (µdt + σ dW ) + (1/2)Y (µdt + σ dW )2

= Y (µdt + σ dW ) + (1/2)Y σ2 dt.
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Geometric Brownian Motion (concluded)

• Hence
dY

Y
=

(
µ + σ2/2

)
dt + σ dW.

• The annualized instantaneous rate of return is µ + σ2/2
not µ.
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Product of Geometric Brownian Motion Processes

• Let

dY/Y = a dt + b dWY ,

dZ/Z = f dt + g dWZ .

• Consider the Ito process U ≡ Y Z.

• Apply Ito’s lemma (Theorem 18 on p. 497):

dU = Z dY + Y dZ + dY dZ

= ZY (a dt + b dWY ) + Y Z(f dt + g dWZ)

+Y Z(a dt + b dWY )(f dt + g dWZ)

= U(a + f + bgρ) dt + Ub dWY + Ug dWZ .
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Product of Geometric Brownian Motion Processes
(continued)

• The product of two (or more) correlated geometric
Brownian motion processes thus remains geometric
Brownian motion.

• Note that

Y = exp
[(

a− b2/2
)
dt + b dWY

]
,

Z = exp
[(

f − g2/2
)
dt + g dWZ

]
,

U = exp
[ (

a + f − (
b2 + g2

)
/2

)
dt + b dWY + g dWZ

]
.
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Product of Geometric Brownian Motion Processes
(concluded)

• ln U is Brownian motion with a mean equal to the sum
of the means of ln Y and ln Z.

• This holds even if Y and Z are correlated.

• Finally, ln Y and ln Z have correlation ρ.
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Quotients of Geometric Brownian Motion Processes

• Suppose Y and Z are drawn from p. 501.

• Let U ≡ Y/Z.

• We now show thata

dU

U
= (a− f + g2 − bgρ) dt + b dWY − g dWZ .

(53)

• Keep in mind that dWY and dWZ have correlation ρ.
aExercise 14.3.6 of the textbook is erroneous.
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Quotients of Geometric Brownian Motion Processes
(concluded)

• The multidimensional Ito’s lemma (Theorem 18 on
p. 497) can be employed to show that

dU

= (1/Z) dY − (Y/Z2) dZ − (1/Z2) dY dZ + (Y/Z3) (dZ)2

= (1/Z)(aY dt + bY dWY )− (Y/Z2)(fZ dt + gZ dWZ)

−(1/Z2)(bgY Zρ dt) + (Y/Z3)(g2Z2 dt)

= U(a dt + b dWY )− U(f dt + g dWZ)

−U(bgρ dt) + U(g2 dt)

= U(a− f + g2 − bgρ) dt + Ub dWY − Ug dWZ .
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Forward Price

• Suppose S follows

dS

S
= µdt + σ dW.

• Consider F (S, t) ≡ Sey(T−t).

• Observe that

∂F

∂S
= ey(T−t),

∂F

∂t
= −ySey(T−t).
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Forward Prices (concluded)

• Then

dF = ey(T−t) dS − ySey(T−t) dt

= Sey(T−t) (µdt + σ dW )− ySey(T−t) dt

= F (µ− y) dt + Fσ dW

by Theorem 17 (p. 495).

• Thus F follows
dF

F
= (µ− y) dt + σ dW.

• This result has applications in forward and futures
contracts.a

aThis is also consistent with p. 453.
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Ornstein-Uhlenbeck Process

• The Ornstein-Uhlenbeck process:

dX = −κX dt + σ dW,

where κ, σ ≥ 0.

• It is known that

E[ X(t) ] = e
−κ(t−t0)

E[ x0 ],

Var[ X(t) ] =
σ2

2κ

(
1− e

−2κ(t−t0)
)

+ e
−2κ(t−t0)

Var[ x0 ],

Cov[ X(s), X(t) ] =
σ2

2κ
e
−κ(t−s)

[
1− e

−2κ(s−t0)
]

+e
−κ(t+s−2t0)

Var[ x0 ],

for t0 ≤ s ≤ t and X(t0) = x0.
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Ornstein-Uhlenbeck Process (continued)

• X(t) is normally distributed if x0 is a constant or
normally distributed.

• X is said to be a normal process.

• E[ x0 ] = x0 and Var[x0 ] = 0 if x0 is a constant.

• The Ornstein-Uhlenbeck process has the following mean
reversion property.

– When X > 0, X is pulled toward zero.

– When X < 0, it is pulled toward zero again.
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Ornstein-Uhlenbeck Process (continued)

• Another version:

dX = κ(µ−X) dt + σ dW,

where σ ≥ 0.

• Given X(t0) = x0, a constant, it is known that

E[ X(t) ] = µ + (x0 − µ) e−κ(t−t0), (54)

Var[ X(t) ] =
σ2

2κ

[
1− e−2κ(t−t0)

]
,

for t0 ≤ t.
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Ornstein-Uhlenbeck Process (concluded)

• The mean and standard deviation are roughly µ and
σ/
√

2κ , respectively.

• For large t, the probability of X < 0 is extremely
unlikely in any finite time interval when µ > 0 is large
relative to σ/

√
2κ .

• The process is mean-reverting.

– X tends to move toward µ.

– Useful for modeling term structure, stock price
volatility, and stock price return.
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Square-Root Process

• Suppose X is an Ornstein-Uhlenbeck process.

• Ito’s lemma says V ≡ X2 has the differential,

dV = 2X dX + (dX)2

= 2
√

V (−κ
√

V dt + σ dW ) + σ2 dt

=
(−2κV + σ2

)
dt + 2σ

√
V dW,

a square-root process.
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Square-Root Process (continued)

• In general, the square-root process has the stochastic
differential equation,

dX = κ(µ−X) dt + σ
√

X dW,

where κ, σ ≥ 0 and the initial value of X is a
nonnegative constant.

• Like the Ornstein-Uhlenbeck process, it possesses mean
reversion: X tends to move toward µ, but the volatility
is proportional to

√
X instead of a constant.
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Square-Root Process (continued)

• When X hits zero and µ ≥ 0, the probability is one
that it will not move below zero.

– Zero is a reflecting boundary.

• Hence, the square-root process is a good candidate for
modeling interest rate movements.a

• The Ornstein-Uhlenbeck process, in contrast, allows
negative interest rates.

• The two processes are related (see p. 512).

aCox, Ingersoll, and Ross (1985).
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Square-Root Process (concluded)

• The random variable 2cX(t) follows the noncentral
chi-square distribution,a

χ

(
4κµ

σ2
, 2cX(0) e−κt

)
,

where c ≡ (2κ/σ2)(1− e−κt)−1.

• Given X(0) = x0, a constant,

E[ X(t) ] = x0e
−κt + µ

(
1− e−κt

)
,

Var[X(t) ] = x0
σ2

κ

(
e−κt − e−2κt

)
+ µ

σ2

2κ

(
1− e−κt

)2
,

for t ≥ 0.
aWilliam Feller (1906–1970) in 1951.
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Continuous-Time Derivatives Pricing

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 516



I have hardly met a mathematician
who was capable of reasoning.
— Plato (428 B.C.–347 B.C.)

Fischer [Black] is the only real genius
I’ve ever met in finance. Other people,

like Robert Merton or Stephen Ross,
are just very smart and quick,

but they think like me.
Fischer came from someplace else entirely.

— John C. Cox, quoted in Mehrling (2005)
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Toward the Black-Scholes Differential Equation

• The price of any derivative on a non-dividend-paying
stock must satisfy a partial differential equation.

• The key step is recognizing that the same random
process drives both securities.

• As their prices are perfectly correlated, we figure out the
amount of stock such that the gain from it offsets
exactly the loss from the derivative.

• The removal of uncertainty forces the portfolio’s return
to be the riskless rate.
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Assumptions

• The stock price follows dS = µS dt + σS dW .

• There are no dividends.

• Trading is continuous, and short selling is allowed.

• There are no transactions costs or taxes.

• All securities are infinitely divisible.

• The term structure of riskless rates is flat at r.

• There is unlimited riskless borrowing and lending.

• t is the current time, T is the expiration time, and
τ ≡ T − t.
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Black-Scholes Differential Equation

• Let C be the price of a derivative on S.

• From Ito’s lemma (p. 495),

dC =
(

µS
∂C

∂S
+

∂C

∂t
+

1
2

σ2S2 ∂2C

∂S2

)
dt + σS

∂C

∂S
dW.

– The same W drives both C and S.

• Short one derivative and long ∂C/∂S shares of stock
(call it Π).

• By construction,

Π = −C + S(∂C/∂S).
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Black-Scholes Differential Equation (continued)

• The change in the value of the portfolio at time dt isa

dΠ = −dC +
∂C

∂S
dS.

• Substitute the formulas for dC and dS into the partial
differential equation to yield

dΠ =
(
−∂C

∂t
− 1

2
σ2S2 ∂2C

∂S2

)
dt.

• As this equation does not involve dW , the portfolio is
riskless during dt time: dΠ = rΠ dt.

aMathematically speaking, it is not quite right (Bergman, 1982).
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Black-Scholes Differential Equation (concluded)

• So
(

∂C

∂t
+

1
2

σ2S2 ∂2C

∂S2

)
dt = r

(
C − S

∂C

∂S

)
dt.

• Equate the terms to finally obtain

∂C

∂t
+ rS

∂C

∂S
+

1
2

σ2S2 ∂2C

∂S2
= rC.

• When there is a dividend yield q,

∂C

∂t
+ (r − q)S

∂C

∂S
+

1
2

σ2S2 ∂2C

∂S2
= rC.
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Rephrase

• The Black-Scholes differential equation can be expressed
in terms of sensitivity numbers,

Θ + rS∆ +
1
2

σ2S2Γ = rC. (55)

• Identity (55) leads to an alternative way of computing
Θ numerically from ∆ and Γ.

• When a portfolio is delta-neutral,

Θ +
1
2

σ2S2Γ = rC.

– A definite relation thus exists between Γ and Θ.
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PDEs for Asian Options

• Add the new variable A(t) ≡ ∫ t

0
S(u) du.

• Then the value V of the Asian option satisfies this
two-dimensional PDE:a

∂V

∂t
+ rS

∂V

∂S
+

1
2

σ2S2 ∂2V

∂S2
+ S

∂V

∂A
= rV.

• The terminal conditions are

V (T, S, A) = max
(

A

T
−X, 0

)
for call,

V (T, S, A) = max
(

X − A

T
, 0

)
for put.

aKemna and Vorst (1990).
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PDEs for Asian Options (continued)

• The two-dimensional PDE produces algorithms similar
to that on pp. 346ff.

• But one-dimensional PDEs are available for Asian
options.a

• For example, Večeř (2001) derives the following PDE for
Asian calls:

∂u

∂t
+ r

(
1− t

T
− z

)
∂u

∂z
+

(
1− t

T − z
)2

σ2

2
∂2u

∂z2
= 0

with the terminal condition u(T, z) = max(z, 0).

aRogers and Shi (1995); Večeř (2001); Dubois and Lelièvre (2005).
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PDEs for Asian Options (concluded)

• For Asian puts:

∂u

∂t
+ r

(
t

T
− 1− z

)
∂u

∂z
+

(
t
T − 1− z

)2
σ2

2
∂2u

∂z2
= 0

with the same terminal condition.

• One-dimensional PDEs lead to highly efficient numerical
methods.
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Heston’s Stochastic-Volatility Modela

• Heston assumes the stock price follows

dS

S
= (µ− q) dt +

√
V dW1, (56)

dV = κ(θ − V ) dt + σ
√

V dW2. (57)

– V is the instantaneous variance, which follows a
square-root process.

– dW1 and dW2 have correlation ρ.

– The riskless rate r is constant.

• It may be the most popular continuous-time
stochastic-volatility model.

aHeston (1993).
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Heston’s Stochastic-Volatility Model (continued)

• Heston assumes the market price of risk is b2

√
V .

• So µ = r + b2V .

• Define

dW ∗
1 = dW1 + b2

√
V dt,

dW ∗
2 = dW2 + ρb2

√
V dt,

κ∗ = κ + ρb2σ,

θ∗ =
θκ

κ + ρb2σ
.

• dW ∗
1 and dW ∗

2 have correlation ρ.

• Under the risk-neutral probability measure Q, both W ∗
1

and W ∗
2 are Wiener processes.
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Heston’s Stochastic-Volatility Model (continued)

• Heston’s model becomes, under probability measure Q,

dS

S
= (r − q) dt +

√
V dW ∗

1 ,

dV = κ∗(θ∗ − V ) dt + σ
√

V dW ∗
2 .
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Heston’s Stochastic-Volatility Model (continued)

• Define

φ(u, τ) = exp { ıu(ln S + (r − q) τ)

+θ∗κ∗σ−2

[
(κ∗ − ρσuı− d) τ − 2 ln

1− ge−dτ

1− g

]

+
vσ−2(κ∗ − ρσuı− d)

(
1− e−dτ

)

1− ge−dτ

}
,

d =
√

(ρσuı− κ∗)2 − σ2(−ıu− u2) ,

g = (κ∗ − ρσuı− d)/(κ∗ − ρσuı + d).
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Heston’s Stochastic-Volatility Model (concluded)

The formulas area

C = S

[
1

2
+

1

π

∫ ∞

0

Re

(
X−ıuφ(u− ı, τ)

ıuSerτ

)
du

]

−Xe−rτ

[
1

2
+

1

π

∫ ∞

0

Re

(
X−ıuφ(u, τ)

ıu

)
du

]
,

P = Xe−rτ

[
1

2
− 1

π

∫ ∞

0

Re

(
X−ıuφ(u, τ)

ıu

)
du

]
,

−S

[
1

2
− 1

π

∫ ∞

0

Re

(
X−ıuφ(u− ı, τ)

ıuSerτ

)
du

]
,

where ı =
√−1 and Re(x) denotes the real part of the

complex number x.
aContributed by Mr. Chen, Chun-Ying (D95723006) on August 17,

2008 and Mr. Liou, Yan-Fu (R92723060) on August 26, 2008.
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Stochastic-Volatility Models and Further Extensionsa

• How to explain the October 1987 crash?

• Stochastic-volatility models require an implausibly
high-volatility level prior to and after the crash.

• Merton (1976) proposed jump models.

• Discontinuous jump models in the asset price can
alleviate the problem somewhat.

aEraker (2004).

c©2010 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 532



Stochastic-Volatility Models and Further Extensions
(continued)

• But if the jump intensity is a constant, it cannot explain
the tendency of large movements to cluster over time.

• This assumption also has no impacts on option prices.

• Jump-diffusion models combine both.

– E.g., add a jump process to Eq. (56) on p. 527.
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Stochastic-Volatility Models and Further Extensions
(concluded)

• But they still do not adequately describe the systematic
variations in option prices.a

• Jumps in volatility are alternatives.b

– E.g., add correlated jump processes to Eqs. (56) and
Eq. (57) on p. 527.

• Such models allow high level of volatility caused by a
jump to volatility.c

aBates (2000) and Pan (2002).
bDuffie, Pan, and Singleton (2000).
cEraker, Johnnes, and Polson (2000).
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