The BDT Model: Continuous-Time Limit

e The continuous-time limit of the BDT model is

dlnr = (e(t) L o) 1nr> dt + o (t) dW.

o(t)

e The short rate volatility clearly should be a declining
function of time for the model to display mean reversion.

— That makes o’(t) < 0.

e In particular, constant volatility will not attain mean

reversion.
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The Black-Karasinski Model®

The BK model stipulates that the short rate follows

dinr = k(t)(0(t) — Inr) dt + o(t) dW.

This explicitly mean-reverting model depends on time

through x(-), 6(-), and o(-).

The BK model hence has one more degree of freedom
than the BDT model.

The speed of mean reversion k(t) and the short rate

volatility o(t) are independent.

2Black and Karasinski (1991).
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The Black-Karasinski Model: Discrete Time

e The discrete-time version of the BK model has the same

representation as the BDT model.

e To maintain a combining binomial tree, however,

requires some manipulations.

e The next plot illustrates the ideas in which

t2 = tl + Atla
ts = to+ Ats.
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In r4q4 (tg) = Inruq (t3>
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The Black-Karasinski Model: Discrete Time
(continued)

e Note that

Inrq(te) = Inr(t)+rsE)OE) —Inr(t)) Aty — o(ti)/ Aty ,
Inru(tz) = Inr(t)+ k(t1)(0(t) — Inr(t)) Aty + o(t1)V/ Aty .
e To ensure that an up move followed by a down move
coincides with a down move followed by an up move,
impose
Inrq(t2) + K(t2)(0(t2) — InTa(t2)) Atz + o(t2)y/ Ata,
= Inra(t) + k(2)(0(t2) — Inry(t2)) Aty — o(t2)y/Ats .
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The Black-Karasinski Model: Discrete Time
(concluded)

e They imply

1 — (O‘(tg)/O'(tl))\/AtQ/Atl .

Hj(tg) = Atz

(107)

e So from Aty, we can calculate the Aty that satisfies the
combining condition and then iterate.
—tg— Atg —=t1 = Aty —to 5 Aty — -+~ — T
(roughly).
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Problems with Lognormal Models in General

Lognormal models such as BDT and BK share the
problem that E™[M(t)] = oo for any finite t if they
the continuously compounded rate.

Hence periodic compounding should be used.
Another issue is computational.

Lognormal models usually do not give analytical

solutions to even basic fixed-income securities.

As a result, to price short-dated derivatives on long-term
bonds, the tree has to be built over the life of the
underlying asset instead of the life of the derivative.
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Problems with Lognormal Models in General
(concluded)

e This problem can be somewhat mitigated by adopting
different time steps: Use a fine time step up to the
maturity of the short-dated derivative and a coarse time

step beyond the maturity.?

e A down side of this procedure is that it has to be carried

out for each derivative.

e Finally, empirically, interest rates do not follow the

lognormal distribution.

aHull and White (1993).
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The Extended Vasicek Model?

Hull and White proposed models that extend the
Vasicek model and the CIR model.

They are called the extended Vasicek model and the
extended CIR model.

The extended Vasicek model adds time dependence to
the original Vasicek model,

dr = (0(t) —a(t)r)dt + o(t) dW.

Like the Ho-Lee model, this is a normal model, and the

inclusion of 0(t) allows for an exact fit to the current

spot rate curve.

aHull and White (1990).

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 947



The Extended Vasicek Model (concluded)

e Function o(t) defines the short rate volatility, and a(t)
determines the shape of the volatility structure.

e Under this model, many European-style securities can be
evaluated analytically, and efficient numerical procedures
can be developed for American-style securities.
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The Hull-White Model

e The Hull-White model is the following special case,

dr = (0(t) — ar)dt + o dW.

e When the current term structure is matched,?

2
0(t) = 8f(a(z, 2 +af(0,t) + ;—a (1—e 2.

aHull and White (1993).
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The Extended CIR Model

e In the extended CIR model the short rate follows

dr = (0(t) — a(t) r)dt + o(t)/r dW.

e The functions 60(t), a(t), and o(t) are implied from

market observables.

e With constant parameters, there exist analytical
solutions to a small set of interest rate-sensitive

securities.
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The Hull-White Model: Calibration®

We describe a trinomial forward induction scheme to
calibrate the Hull-White model given a and o.

As with the Ho-Lee model, the set of achievable short
rates is evenly spaced.

Let rg be the annualized, continuously compounded
short rate at time zero.

Every short rate on the tree takes on a value rg+ jAr

for some integer j.

aHull and White (1993).

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 951



The Hull-White Model: Calibration (continued)

Time increments on the tree are also equally spaced at
At apart.

Hence nodes are located at times 1At for : =0,1,2,....

We shall refer to the node on the tree with ¢; = ¢At and
r; =710+ jAr as the (7,7) node.

The short rate at node (¢, ), which equals r;, is
effective for the time period [t;,t;11).
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The Hull-White Model: Calibration (continued)

e Use
pi g =0(t;) —ar; (108)

to denote the drift rate, or the expected change, of the
short rate as seen from node (i, 7).

e The three distinct possibilities for node (7,j) with three
branches incident from it are displayed on p. 954.

e The interest rate movement described by the middle
branch may be an increase of Ar, no change, or a
decrease of Ar.
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The Hull-White Model: Calibration (continued)

(i+1,5+2)
+1,5+1)
(i+1,5) (4
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The Hull-White Model: Calibration (continued)

e The upper and the lower branches bracket the middle

branch.

e Define

p1(%,7) = the probability of following the upper branch from node (%, j)
po(i,J) the probability of following the middle branch from node (%, j)

p3 (i, 7) the probability of following the lower branch from node (%, j)

e The root of the tree is set to the current short rate rq.

e Inductively, the drift p, ; at node (7,7) is a function of

a(t;).
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The Hull-White Model: Calibration (continued)

e Once 6(¢;) is available, p; ; can be derived via
Eq. (108) on p. 953.

e This in turn determines the branching scheme at every

node (i,7) for each j, as we will see shortly.

e The value of 6(t;) must thus be made consistent with

the spot rate 7(0,t;42).
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The Hull-White Model: Calibration (continued)

The branches emanating from node (¢,7) with their
accompanying probabilities® must be chosen to be

consistent with p; ; and o.

This is accomplished by letting the middle node be as
close as possible to the current value of the short rate
plus the drift.

Let k be the number among {j —1,7,5 + 1} that
makes the short rate reached by the middle branch, 7,
closest to r; + p; jAL.

apl(iuj)? pQ(Z‘aj% and pS(Z7])
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The Hull-White Model: Calibration (continued)

e Then the three nodes following node (i, j) are nodes
(t+1,k+1),i+1,k),and (i +1,k—1).

e The resulting tree may have the geometry depicted on
p. 959.

e The resulting tree combines because of the constant

jump sizes to reach k.
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The Hull-White Model: Calibration (continued)

e The probabilities for moving along these branches are

functions of u; ;, o, j, and k:
. o? At + n? n
pi(i;J) = 2(Ar)? * 2Ar
o2 At + n?

(109)

p2(7’7]) =1- (AT)Q (109/)

(i) = c?At+n° 1
Pa\hJ) = 2(Ar)? 2Ar

(109")

where n = u,; ;At + (j — k) Ar.
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The Hull-White Model: Calibration (continued)

As trinomial tree algorithms are but explicit methods in

disguise, certain relations must hold for Ar and At to
guarantee stability.

It can be shown that their values must satisfy

< Ar <20V At

oV 3AL
2

for the probabilities to lie between zero and one.

— For example, Ar can be set to ov3At .2

2Hull and White (1988).
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The Hull-White Model: Calibration (continued)

Now it only remains to determine 6(¢;).

At this point at time t;, r(0,%¢1), r(0,t2), ..., 7(0,t;11)

have already been matched.

Let Q(7,7) denote the value of the state contingent
claim that pays one dollar at node (7,j) and zero

otherwise.

By construction, the state prices Q(7,j) for all j are

known by now.

We begin with state price Q(0,0) = 1.
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The Hull-White Model: Calibration (continued)

e Let 7(i) refer to the short rate value at time ¢;.

e The value at time zero of a zero-coupon bond maturing

at time ¢, is then

—’I“(O,t7;+2)(’i—|—2) At

ZQ i ] eIt p [ —7(i+1) At ?/;() _ ’I“]} .(110)

J

e The right-hand side represents the value of $1 obtained
by holding a zero-coupon bond until time ;.1 and then
reinvesting the proceeds at that time at the prevailing

short rate 7(¢ 4+ 1), which is stochastic.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 963



The Hull-White Model: Calibration (continued)

e The expectation (110) can be approximated by

ET [e—f(i—l—l) At ’f‘(’[,) _ T]i|

2 A 3
~ 6_rjAt (1 — Mi,j(At)z + ° ( t> ) . (111)

2

e Substitute Eq. (111) into Eq. (110) and replace u; ;
with 6(¢;) —ar; to obtain

—2r; At (1 +ar; (At)2 4 aQ(At)?’/Q) _ e—r(O,ti+2)(i—|—2) At

(A2 Qi 4) e 2R

S5 QG4 e
e(tz) ~
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The Hull-White Model: Calibration (continued)

e For the Hull-White model, the expectation in Eq. (111)
on p. 964 is actually known analytically by Eq. (18) on
p. 149:

Jou {e—f(i—kl)At 7(i) = rj} _ o TiAH(=0(t) Far;+o? At/2)(At)?

e Therefore, alternatively,

- 7(0,tiq2) (i + 2) +02At+ln >, Q(i, 7) o—2rjAttar;(At)?

o) = At 2 (At)2
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The Hull-White Model: Calibration (concluded)

e With 6(¢;) in hand, we can compute u; ;, the
probabilities, and finally the state prices at time ¢;,1:

Qi +1,5)

) pire " AQ, §7)

(¢,7%) is connected to (¢ + 1, 7) with probability P

e There are at most 5 choices for j*.
e The total running time is O(n?).

e The space requirement is O(n) (why?).
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Comments on the Hull-White Model

e One can try different values of ¢ and o for each option

or have an a value common to all options but use a

different o value for each option.
e Either approach can match all the option prices exactly.

e If the demand is for a single set of parameters that
replicate all option prices, the Hull-White model can be
calibrated to all the observed option prices by choosing

a and o that minimize the mean-squared pricing error.?

aHull and White (1995).
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The Hull-White Model: Calibration with Irregular
Trinomial Trees

The previous calibration algorithm is quite general.

For example, it can be modified to apply to cases where

the diffusion term has the form or?.

But it has at least two shortcomings.

First, the resulting trinomial tree is irregular (p. 959).

— So higher complexity in programming.

The second shortcoming is again a consequence of the

tree’s irregular shape.
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The Hull-White Model: Calibration with Irregular
Trinomial Trees (concluded)

Recall that the algorithm figured out 6(¢;) that matches
the spot rate r(0,t;12) in order to determine the
branching schemes for the nodes at time ¢;.

But without those branches, the tree was not specified,
and backward induction on the tree was not possible.

To avoid this dilemma, the algorithm turned to the
continuous-time model to evaluate Eq. (110) on p. 963
that helps derive 0(t;) later.

The resulting 6(¢;) hence might not yield a tree that
matches the spot rates exactly.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 969



The Hull-White Model: Calibration with Regular
Trinomial Trees®

We will simplify the previous algorithm to exploit the
fact that the Hull-White model has a constant diffusion

term o.

The resulting trinomial tree will be regular.

All the 6(t;) terms can be chosen by backward

induction to match the spot rates exactly.

e The tree is constructed in two phases.

2Hull and White (1994).
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The Hull-White Model: Calibration with Regular
Trinomial Trees (continued)

e In the first phase, a tree is built for the 6(¢) = 0 case,

which is an Ornstein-Uhlenbeck process:
dr = —ardt+odW, r(0)=0.

— The tree is dagger-shaped (p. 973).

— The number of nodes above the ry-line, 7.5, and
that below the line, j,in, Will be picked so that the
probabilities (109) on p. 960 are positive for all nodes.

— The tree’s branches and probabilities are in place.
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The Hull-White Model: Calibration with Regular
Trinomial Trees (concluded)

e Phase two fits the term structure.

— Backward induction is applied to calculate the (; to
add to the short rates on the tree at time ¢; so that
the spot rate r(0,¢;41) is matched.
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(1,1)
(0,00 —1,0) ‘

I S D

e

At
The short rate at node (0,0) equals rg = 0; here jpax = 3
and Jmin = 2.




The Hull-White Model: Calibration
Set Ar = ov3At and assume that a > 0.

Node (i, 7) is a top node if j = jhax and a bottom node
if 7 = —Jmin.

Because the root of the tree has a short rate of ro = 0,

phase one adopts r; = jAr.

Hence the probabilities in Eqs. (109) on p. 960 use

n=—ajArAt+ (j — k) Ar.
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The Hull-White Model: Calibration (continued)

e The probabilities become

a2j2(At)2 — 2ajAt(G — k) + (5 — k)2 — ajAt+ (5 — k)
2

p1 (%, ) ,(112)

P2 (i, 5) — [a®i?(a0)? = 2ajAtG — k) + (G - )], (1183)

a2j2(At)2 — 2ajAt( — k) + (5 — k)2 + ajAt — (5 — k)
2

1
6
2
3
1
6

p3 (i, 7) - (114)
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The Hull-White Model: Calibration (continued)

e The dagger shape dictates this:
— Let k=4 —1 if node (7,7) is a top node.
— Let k=454 1 if node (i,7) is a bottom node.
— Let £ = j for the rest of the nodes.
e Note that the probabilities are identical for nodes (¢, )

with the same j.

e Furthermore, p1(¢,5) = p3(i, —J).
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The Hull-White Model: Calibration (continued)

e The inequalities

— 2
) Sﬁ < jaAt < \/; (115)

ensure that all the branching probabilities are positive in
the upper half of the tree, that is, j > 0 (verify this).

e Similarly, the inequalities

2 3—\@
/2 < jaAt < —
\/;<=7a < 3

ensure that the probabilities are positive in the lower
half of the tree, that is, 7 < 0.
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The Hull-White Model: Calibration (continued)

To further make the tree symmetric across the ry-line,
we let jmin — jmax-

As 3_3\/_ ~ (0.184, a good choice is

Jmax = |0.184/(aAt)].
Phase two computes the ;s to fit the spot rates.
We begin with state price Q(0,0) = 1.

Inductively, suppose that spot rates r(0,t1), 7(0,t2),
..., r(0,t;) have already been matched at time ¢;.
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The Hull-White Model: Calibration (continued)

By construction, the state prices Q(7,j) for all j are

known by now.

The value of a zero-coupon bond maturing at time t;,4
equals

e—T(O,ti+1)(i—|—1) At — Z Q(ll/yj) 6_(5i+7°j)At
J

by risk-neutral valuation.

Hence
r(0,ti41) (i + 1) At +1Ind . Q(4, 7) o~ At
At ’
and the short rate at node (i,7) equals (§; + ;.
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The Hull-White Model: Calibration (concluded)

e The state prices at time ¢;41,
Q('L"—l,]), _jmax S] Sjmax;
can now be calculated as before.

e The total running time is O(njmax)-

e The space requirement is O(n).
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A Numerical Example

Assume a = 0.1, 0 = 0.01, and At =1 (year).
Immediately, Ar = 0.0173205 and jma.x = 2.

The plot on p. 982 illustrates the 3-period trinomial tree

after phase one.

For example, the branching probabilities for node E are
calculated by Eqs. (112)—(114) on p. 975 with j =2 and
kE=1.
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A, C G B, F E D, H I
0.00000 1.73205 3.46410 —1.73205 —3.46410

0.16667 0.12167 0.88667 0.22167 0.08667
0.66667 0.65667 0.02667 0.65667 0.02667
0.16667 0.22167 0.08667 0.12167 0.88667
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A Numerical Example (continued)

e Suppose that phase two is to fit the spot rate curve
0.08 — 0.05 x e~ V-18x¢,

e The annualized continuously compounded spot rates are
r(0,1) = 3.82365%, r(0,2) = 4.51162%, (0, 3) = 5.08626%.

e Start with state price @(0,0) =1 at node A.
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A Numerical Example (continued)

e Now,
Bo=7(0,1) +InQ(0,0) e~ "™ = r(0,1) = 3.82365%.
e Hence the short rate at node A equals

Bo + 1o = 3.82365%.

e The state prices at year one are calculated as

p1(0,0) e~ Fotro) — (.160414,
p2(0,0) e~ PoFT0) = 0.641657,
p3(0,0) e~ Fotro) — (160414
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A Numerical Example (continued)

e The 2-year rate spot rate r(0,2) is matched by picking

B1 =1r(0,2)x2+In [Q(l, 1) e 2" +Q(1,0) + Q(1,—1) em] = 5.20459%.

e Hence the short rates at nodes B, C, and D equal

61 =+ T,
where 57 = 1,0, —1, respectively.

e They are found to be 6.93664%, 5.20459%, and
3.47254%.
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A Numerical Example (continued)

e The state prices at year two are calculated as

Q(2,2) p1(1,1)e~B1+m1)Q(1,1) = 0.018209,
Q(2,1) p2(1,1) e P14 )Q(1,1) + p1(1,0) e~ (P10 Q(1, 0)
0.199799,
Q(2,0) p3(1,1) e B Q(1,1) + pa(1,0) e~ F170)Q(1,0)
+p1(1,—1) e~ Brtm—1)Q(1, —1) = 0.473597,
Q(2,—1) p3(1,0) e F1H70)Q(1,0) + pa(l, —1) e~ P1T7-1)Q(1, —1)
0.203263,
Q(2,—2) p3(1,—1) e~ B1+t7-1)Q(1, —1) = 0.018851.
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A Numerical Example (concluded)

e The 3-year rate spot rate r(0,3) is matched by picking

= 7(0,3) x 34| Q(2,2) e A +Q(2,1) e +Q(2,0)

‘|‘Q(27 _1) eAT + Q(27 _2) €2XAT} = 6.25359%.

e Hence the short rates at nodes E, F, G, H, and I equal
B + 1, where j = 2,1,0, —1, —2, respectively.

e They are found to be 9.71769%, 7.98564%, 6.25359%,
4.52154%, and 2.78949%.

e The figure on p. 988 plots 3, for + =0,1,...,29.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 987



©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 988



Introduction to Mortgage-Backed Securities
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Anyone stupid enough to promise to be

responsible for a stranger’s debts
deserves to have his own property

held to guarantee payment.
— Proverbs 27:13
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Mortgages

e A mortgage is a loan secured by the collateral of real

estate property.

e The lender — the mortgagee — can foreclose the loan by
seizing the property if the borrower — the mortgagor —
defaults, that is, fails to make the contractual payments.
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Mortgage-Backed Securities

e A mortgage-backed security (MBS) is a bond backed by
an undivided interest in a pool of mortgages.

e MBSs traditionally enjoy high returns, wide ranges of
products, high credit quality, and liquidity.

e The mortgage market has witnessed tremendous

innovations in product design.
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Mortgage-Backed Securities (concluded)

The complexity of the products and the prepayment

option require advanced models and software techniques.

— In fact, the mortgage market probably could not

have operated efficiently without them.?
They also consume lots of computing power.
Our focus will be on residential mortgages.

But the underlying principles are applicable to other
types of assets.

@Merton (1994).
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Types of MBSs

e An MBS is issued with pools of mortgage loans as the

collateral.

e The cash flows of the mortgages making up the pool
naturally reflect upon those of the MBS.
e There are three basic types of MBSs:
1. Mortgage pass-through security (MPTS).
2. Collateralized mortgage obligation (CMO).
3. Stripped mortgage-backed security (SMBS).
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Problems Investing in Mortgages

The mortgage sector is one of the largest in the debt

market (see text).

Individual mortgages are unattractive for many

Investors.

Often at hundreds of thousands of U.S. dollars or more,

they demand too much investment.

Most investors lack the resources and knowledge to

assess the credit risk involved.
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Problems Investing in Mortgages (concluded)

e Recall that a traditional mortgage is fixed rate, level

payment, and fully amortized.

e So the percentage of principal and interest (P&I) varying
from month to month, creating accounting headaches.

e Prepayment levels fluctuate with a host of factors,
making the size and the timing of the cash flows
unpredictable.
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Mortgage Pass- Throughs

e The simplest kind of MBS.

e Payments from the underlying mortgages are passed
from the mortgage holders through the servicing agency,
after a fee is subtracted, and distributed to the security

holder on a pro rata basis.

— The holder of a $25,000 certificate from a $1 million
pool is entitled to 21/2% of the cash flow.

e Because of higher marketability, a pass-through is easier

to sell than its individual loans.
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Pass-through: $1 million
par pooled mortgage loans
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Rule for distribution of
cash flows: pro rata
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Collateralized Mortgage Obligations (CMOs)

A pass-through exposes the investor to the total
prepayment risk.

Such risk is undesirable from an asset/liability
perspective.

To deal with prepayment uncertainty, CMOs were
created.?

Mortgage pass-throughs have a single maturity and are
backed by individual mortgages.

CMOs are multiple-maturity, multiclass debt
instruments collateralized by pass-throughs, stripped
mortgage-backed securities, and whole loans.

In June 1983 by Freddie Mac with the help of First Boston.

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 999



Collateralized Mortgage Obligations (CMOQOs)
(concluded)

e The total prepayment risk is now divided among classes

of bonds called classes or tranches.?

e The principal, scheduled and prepaid, is allocated on a
prioritized basis so as to redistribute the prepayment

risk among the tranches in an unequal way.

& Tranche is a French word for “slice.”
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