Implicit Methods

- Suppose we use $t = t_{j+1}$ in Eq. (64) on p. 601 instead.
- The finite-difference equation becomes

$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}.$$
 (66)

- The stencil involves $\theta_{i,j}$, $\theta_{i,j+1}$, $\theta_{i+1,j+1}$, and $\theta_{i-1,j+1}$.
- This method is implicit:
 - The value of any one of the three quantities at t_{j+1} cannot be calculated unless the other two are known.
 - See exhibit (b) on p. 604.

Implicit Methods (continued)

• Equation (66) can be rearranged as

$$\theta_{i-1,j+1} - (2+\gamma) \,\theta_{i,j+1} + \theta_{i+1,j+1} = -\gamma \theta_{i,j},$$
where $\gamma \equiv (\Delta x)^2/(D\Delta t)$.

- This equation is unconditionally stable.
- Suppose the boundary conditions are given at $x = x_0$ and $x = x_{N+1}$.
- After $\theta_{i,j}$ has been calculated for i = 1, 2, ..., N, the values of $\theta_{i,j+1}$ at time t_{j+1} can be computed as the solution to the following tridiagonal linear system,

Implicit Methods (continued)

where $a \equiv -2 - \gamma$.

Implicit Methods (concluded)

- Tridiagonal systems can be solved in O(N) time and O(N) space.
- The matrix above is nonsingular when $\gamma \geq 0$.
 - A square matrix is nonsingular if its inverse exists.

Crank-Nicolson Method

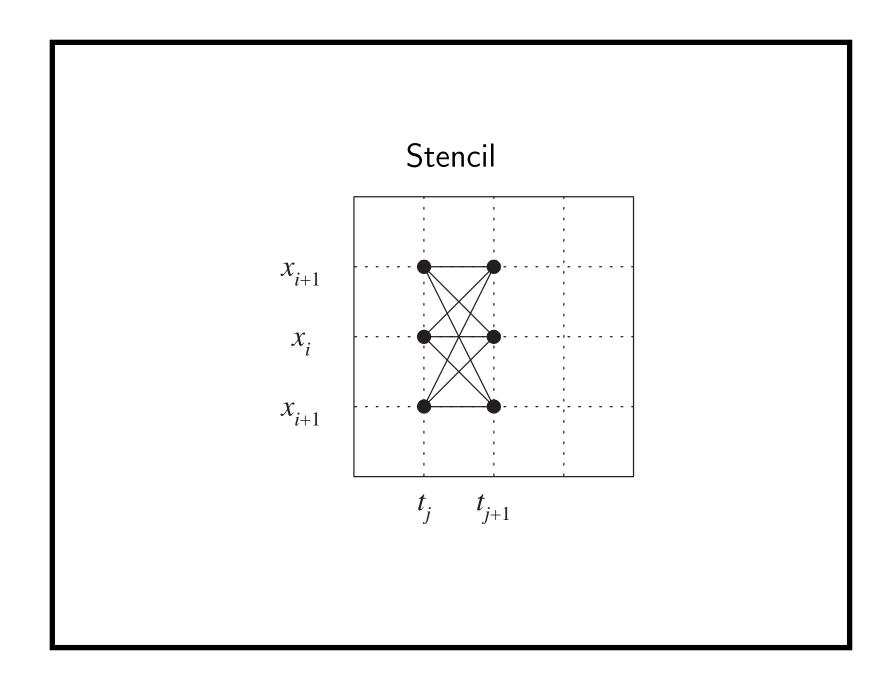
• Take the average of explicit method (65) on p. 602 and implicit method (66) on p. 608:

$$\begin{split} & \frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} \\ = & \frac{1}{2} \left(D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2} + D \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2} \right). \end{split}$$

• After rearrangement,

$$\gamma \theta_{i,j+1} - \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{2} = \gamma \theta_{i,j} + \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{2}.$$

• This is an unconditionally stable implicit method with excellent rates of convergence.



Numerically Solving the Black-Scholes PDE • See text.	

Monte Carlo Simulation^a

- Monte Carlo simulation is a sampling scheme.
- In many important applications within finance and without, Monte Carlo is one of the few feasible tools.
- When the time evolution of a stochastic process is not easy to describe analytically, Monte Carlo may very well be the only strategy that succeeds consistently.

^aA top 10 algorithm according to Dongarra and Sullivan (2000).

The Big Idea

- Assume X_1, X_2, \ldots, X_n have a joint distribution.
- $\theta \equiv E[g(X_1, X_2, \dots, X_n)]$ for some function g is desired.
- We generate

$$(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}), \quad 1 \le i \le N$$

independently with the same joint distribution as (X_1, X_2, \ldots, X_n) .

• Set

$$Y_i \equiv g\left(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\right).$$

The Big Idea (concluded)

- Y_1, Y_2, \ldots, Y_N are independent and identically distributed random variables.
- Each Y_i has the same distribution as

$$Y \equiv g(X_1, X_2, \dots, X_n).$$

- Since the average of these N random variables, \overline{Y} , satisfies $E[\overline{Y}] = \theta$, it can be used to estimate θ .
- The strong law of large numbers says that this procedure converges almost surely.
- The number of replications (or independent trials), N, is called the sample size.

Accuracy

- The Monte Carlo estimate and true value may differ owing to two reasons:
 - 1. Sampling variation.
 - 2. The discreteness of the sample paths.^a
- The first can be controlled by the number of replications.
- The second can be controlled by the number of observations along the sample path.

^aThis may not be an issue if the derivative only requires discrete sampling along the time dimension.

Accuracy and Number of Replications

- The statistical error of the sample mean \overline{Y} of the random variable Y grows as $1/\sqrt{N}$.
 - Because $Var[\overline{Y}] = Var[Y]/N$.
- In fact, this convergence rate is asymptotically optimal by the Berry-Esseen theorem.
- So the variance of the estimator \overline{Y} can be reduced by a factor of 1/N by doing N times as much work.
- This is amazing because the same order of convergence holds independently of the dimension n.

Accuracy and Number of Replications (concluded)

- In contrast, classic numerical integration schemes have an error bound of $O(N^{-c/n})$ for some constant c > 0.
 - -n is the dimension.
- The required number of evaluations thus grows exponentially in n to achieve a given level of accuracy.
 - The curse of dimensionality.
- The Monte Carlo method, for example, is more efficient than alternative procedures for securities depending on more than one asset, the multivariate derivatives.

Variance Reduction

- The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output.
- If this variance can be lowered without changing the expected value, fewer replications are needed.
- Methods that improve efficiency in this manner are called variance-reduction techniques.
- Such techniques become practical when the added costs are outweighed by the reduction in sampling.

Monte Carlo Option Pricing

- For the pricing of European options on a dividend-paying stock, we may proceed as follows.
- Stock prices S_1, S_2, S_3, \ldots at times $\Delta t, 2\Delta t, 3\Delta t, \ldots$ can be generated via

$$S_{i+1} = S_i e^{(\mu - \sigma^2/2) \Delta t + \sigma \sqrt{\Delta t} \xi}, \quad \xi \sim N(0, 1)$$
 (67)

when $dS/S = \mu dt + \sigma dW$.

Monte Carlo Option Pricing (continued)

• If we discretize $dS/S = \mu dt + \sigma dW$, we will obtain

$$S_{i+1} = S_i + (\mu - \sigma^2/2) \Delta t + \sigma \sqrt{\Delta t} \xi.$$

- But this is locally normally distributed, not lognormally, hence biased.^a
- In practice, this is not expected to be a major problem as long as Δt is sufficiently small.

^aContributed by Mr. Tai, Hui-Chin (R97723028) on April 22, 2009.

Monte Carlo Option Pricing (concluded)

• Non-dividend-paying stock prices in a risk-neutral economy can be generated by setting $\mu = r$.

```
1: C := 0;
```

2: **for**
$$i = 1, 2, 3, \ldots, m$$
 do

3:
$$P := S \times e^{(r - \sigma^2/2)T + \sigma\sqrt{T}\xi};$$

4:
$$C := C + \max(P - X, 0);$$

5: end for

6: return
$$Ce^{-rT}/m$$
;

• Pricing Asian options is easy (see text).

Pricing American Options

- Standard Monte Carlo simulation is inappropriate for American options because of early exercise (why?).
- It is difficult to determine the early-exercise point based on one single path.
- Monte Carlo simulation can be modified to price American options with small biases (p. 669ff).^a

^aLongstaff and Schwartz (2001).

Delta and Common Random Numbers

• In estimating delta, it is natural to start with the finite-difference estimate

$$e^{-r\tau} \frac{E[P(S+\epsilon)] - E[P(S-\epsilon)]}{2\epsilon}$$
.

- -P(x) is the terminal payoff of the derivative security when the underlying asset's initial price equals x.
- Use simulation to estimate $E[P(S+\epsilon)]$ first.
- Use another simulation to estimate $E[P(S-\epsilon)]$.
- Finally, apply the formula to approximate the delta.

Delta and Common Random Numbers (concluded)

- This method is not recommended because of its high variance.
- A much better approach is to use common random numbers to lower the variance:

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - P(S-\epsilon)}{2\epsilon}\right].$$

- Here, the same random numbers are used for $P(S + \epsilon)$ and $P(S \epsilon)$.
- This holds for gamma and cross gammas (for multivariate derivatives).

Gamma

• The finite-difference formula for gamma is

$$e^{-r\tau} E\left[\frac{P(S+\epsilon)-2\times P(S)+P(S-\epsilon)}{\epsilon^2}\right].$$

• For a correlation option with multiple underlying assets, the finite-difference formula for the cross gammas $\partial^2 P(S_1, S_2, \dots)/(\partial S_1 \partial S_2)$ is:

$$e^{-r\tau} E \left[\frac{P(S_1 + \epsilon_1, S_2 + \epsilon_2) - P(S_1 - \epsilon_1, S_2 + \epsilon_2)}{4\epsilon_1 \epsilon_2} - \frac{P(S_1 + \epsilon_1, S_2 - \epsilon_2) + P(S_1 - \epsilon_1, S_2 - \epsilon_2)}{4\epsilon_1 \epsilon_2} \right].$$

Gamma (concluded)

- Choosing an ϵ of the right magnitude can be challenging.
 - If ϵ is too large, inaccurate Greeks result.
 - If ϵ is too small, unstable Greeks result.
- This phenomenon is sometimes called the curse of differentiation.
- Need formulas for Greeks which are integrals (thus avoiding ϵ , finite differences, and resimulation).^a

^aLyuu and Teng (2008).

Biases in Pricing Continuously Monitored Options with Monte Carlo

- We are asked to price a continuously monitored up-and-out call with barrier H.
- The Monte Carlo method samples the stock price at n discrete time points t_1, t_2, \ldots, t_n .
- A sample path $S(t_0), S(t_1), \ldots, S(t_n)$ is produced.
 - Here, $t_0 = 0$ is the current time, and $t_n = T$ is the expiration time of the option.

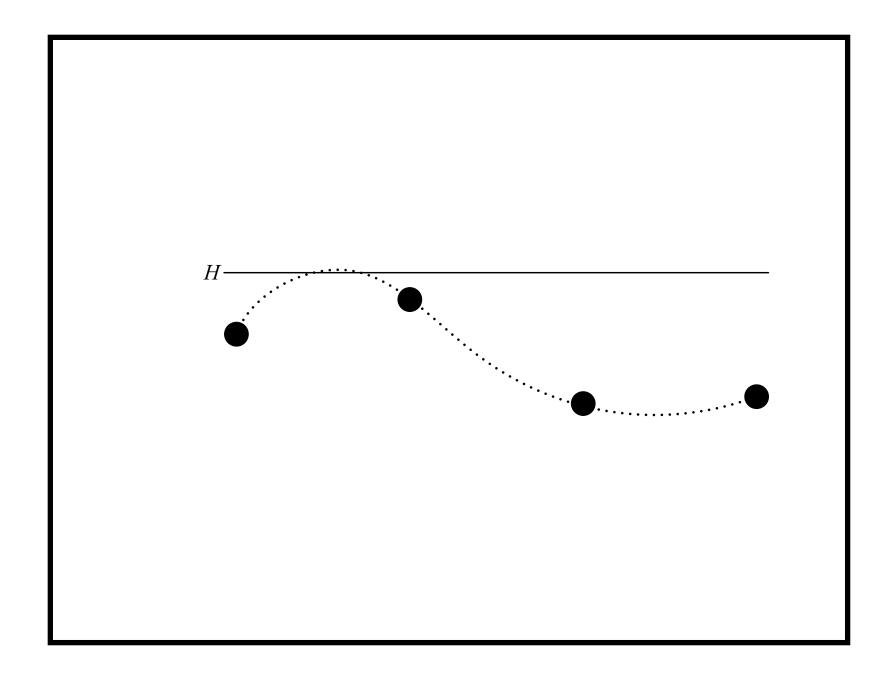
Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- If all of the sampled prices are below the barrier, this sample path pays $\max(S(t_n) X, 0)$.
- Repeating these steps and averaging the payoffs yield a Monte Carlo estimate.

```
1: C := 0;
 2: for i = 1, 2, 3, \ldots, m do
 3: P := S; hit := 0;
4: for j = 1, 2, 3, ..., n do
5: P := P \times e^{(r - \sigma^2/2)(T/n) + \sigma \sqrt{(T/n)}} \xi;
 6: if P \ge H then
 7: hit := 1;
 8: break;
 9: end if
    end for
10:
11: if hit = 0 then
12: C := C + \max(P - X, 0);
      end if
13:
14: end for
15: return Ce^{-rT}/m;
```

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- This estimate is biased.
 - Suppose none of the sampled prices on a sample path equals or exceeds the barrier H.
 - It remains possible for the continuous sample path that passes through them to hit the barrier between sampled time points (see plot on next page).



Biases in Pricing Continuously Monitored Options with Monte Carlo (concluded)

- The bias can certainly be lowered by increasing the number of observations along the sample path.
- However, even daily sampling may not suffice.
- The computational cost also rises as a result.

Brownian Bridge Approach to Pricing Barrier Options

- We desire an unbiased estimate efficiently.
- So the above-mentioned payoff should be multiplied by the probability p that a continuous sample path does not hit the barrier conditional on the sampled prices.
- This methodology is called the Brownian bridge approach.
- Formally, we have

$$p \equiv \text{Prob}[S(t) < H, 0 \le t \le T \mid S(t_0), S(t_1), \dots, S(t_n)].$$

• As a barrier is hit over a time interval if and only if the maximum stock price over that period is at least H,

$$p = \operatorname{Prob} \left[\max_{0 \le t \le T} S(t) < H \mid S(t_0), S(t_1), \dots, S(t_n) \right].$$

• Luckily, the conditional distribution of the maximum over a time interval given the beginning and ending stock prices is known.

Lemma 19 Assume S follows $dS/S = \mu dt + \sigma dW$ and define

$$\zeta(x) \equiv \exp \left[-\frac{2\ln(x/S(t))\ln(x/S(t+\Delta t))}{\sigma^2 \Delta t} \right].$$

(1) If $H > \max(S(t), S(t + \Delta t))$, then

Prob
$$\left[\max_{t \le u \le t + \Delta t} S(u) < H \mid S(t), S(t + \Delta t)\right] = 1 - \zeta(H).$$

(2) If $h < \min(S(t), S(t + \Delta t))$, then

Prob
$$\left[\min_{t \le u \le t + \Delta t} S(u) > h \mid S(t), S(t + \Delta t) \right] = 1 - \zeta(h).$$

- Lemma 19 gives the probability that the barrier is not hit in a time interval, given the starting and ending stock prices.
- For our up-and-out call, choose n = 1.
- As a result,

$$p = \begin{cases} 1 - \exp\left[-\frac{2\ln(H/S(0))\ln(H/S(T))}{\sigma^2 T}\right], & \text{if } H > \max(S(0), S(T)), \\ 0, & \text{otherwise.} \end{cases}$$

```
1: C := 0;
```

2: **for**
$$i = 1, 2, 3, \ldots, m$$
 do

3:
$$P := S \times e^{(r-q-\sigma^2/2)T + \sigma\sqrt{T} \xi()};$$

4: if
$$(S < H \text{ and } P < H) \text{ or } (S > H \text{ and } P > H)$$
 then

5:
$$C := C + \max(P - X, 0) \times \left\{ 1 - \exp\left[-\frac{2\ln(H/S) \times \ln(H/P)}{\sigma^2 T}\right] \right\};$$

6: end if

7: end for

8: return Ce^{-rT}/m ;

- The idea can be generalized.
- For example, we can handle more complex barrier options.
- Consider an up-and-out call with barrier H_i for the time interval $(t_i, t_{i+1}], 0 \le i < n$.
- This option thus contains n barriers.
- It is a simple matter of multiplying the probabilities for the n time intervals properly to obtain the desired probability adjustment term.

Variance Reduction: Antithetic Variates

- We are interested in estimating $E[g(X_1, X_2, ..., X_n)]$, where $X_1, X_2, ..., X_n$ are independent.
- Let Y_1 and Y_2 be random variables with the same distribution as $g(X_1, X_2, \ldots, X_n)$.
- Then

$$\operatorname{Var}\left[\frac{Y_1 + Y_2}{2}\right] = \frac{\operatorname{Var}[Y_1]}{2} + \frac{\operatorname{Cov}[Y_1, Y_2]}{2}.$$

- $Var[Y_1]/2$ is the variance of the Monte Carlo method with two (independent) replications.
- The variance $Var[(Y_1 + Y_2)/2]$ is smaller than $Var[Y_1]/2$ when Y_1 and Y_2 are negatively correlated.

Variance Reduction: Antithetic Variates (continued)

- For each simulated sample path X, a second one is obtained by reusing the random numbers on which the first path is based.
- This yields a second sample path Y.
- Two estimates are then obtained: One based on X and the other on Y.
- If N independent sample paths are generated, the antithetic-variates estimator averages over 2N estimates.

Variance Reduction: Antithetic Variates (continued)

- Consider process $dX = a_t dt + b_t \sqrt{dt} \xi$.
- Let g be a function of n samples X_1, X_2, \ldots, X_n on the sample path.
- We are interested in $E[g(X_1, X_2, \dots, X_n)]$.
- Suppose one simulation run has realizations $\xi_1, \xi_2, \ldots, \xi_n$ for the normally distributed fluctuation term ξ .
- This generates samples x_1, x_2, \ldots, x_n .
- The estimate is then $g(\mathbf{x})$, where $\mathbf{x} \equiv (x_1, x_2, \dots, x_n)$.

Variance Reduction: Antithetic Variates (concluded)

- The antithetic-variates method does not sample n more numbers from ξ for the second estimate g(x').
- Instead, generate the sample path $\mathbf{x}' \equiv (x'_1, x'_2, \dots, x'_n)$ from $-\xi_1, -\xi_2, \dots, -\xi_n$.
- Compute g(x').
- Output (g(x) + g(x'))/2.
- Repeat the above steps for as many times as required by accuracy.

Variance Reduction: Conditioning

- We are interested in estimating E[X].
- Suppose here is a random variable Z such that E[X | Z = z] can be efficiently and precisely computed.
- E[X] = E[E[X|Z]] by the law of iterated conditional expectations.
- Hence the random variable E[X|Z] is also an unbiased estimator of E[X].

Variance Reduction: Conditioning (concluded)

• As

$$\operatorname{Var}[E[X | Z]] \le \operatorname{Var}[X],$$

E[X | Z] has a smaller variance than observing X directly.

- First obtain a random observation z on Z.
- Then calculate E[X | Z = z] as our estimate.
 - There is no need to resort to simulation in computing E[X | Z = z].
- The procedure can be repeated a few times to reduce the variance.

Control Variates

- Use the analytic solution of a similar yet simpler problem to improve the solution.
- Suppose we want to estimate E[X] and there exists a random variable Y with a known mean $\mu \equiv E[Y]$.
- Then $W \equiv X + \beta(Y \mu)$ can serve as a "controlled" estimator of E[X] for any constant β .
 - However β is chosen, W remains an unbiased estimator of E[X] as

$$E[W] = E[X] + \beta E[Y - \mu] = E[X].$$

Control Variates (continued)

• Note that

$$Var[W] = Var[X] + \beta^2 Var[Y] + 2\beta Cov[X, Y],$$
(68)

 \bullet Hence W is less variable than X if and only if

$$\beta^2 \operatorname{Var}[Y] + 2\beta \operatorname{Cov}[X, Y] < 0. \tag{69}$$

Control Variates (concluded)

- The success of the scheme clearly depends on both β and the choice of Y.
- For example, arithmetic average-rate options can be priced by choosing Y to be the otherwise identical geometric average-rate option's price and $\beta = -1$.
- This approach is much more effective than the antithetic-variates method.

Choice of Y

- In general, the choice of Y is ad hoc, and experiments must be performed to confirm the wisdom of the choice.
- Try to match calls with calls and puts with puts.^a
- On many occasions, Y is a discretized version of the derivative that gives μ .
 - Discretely monitored geometric average-rate option vs. the continuously monitored geometric average-rate option given by formulas (30) on p. 339.
- For some choices, the discrepancy can be significant, such as the lookback option.^b

^aContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.

^bContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.

Optimal Choice of β

• Equation (68) on p. 649 is minimized when

$$\beta = -\text{Cov}[X, Y]/\text{Var}[Y],$$

which was called beta in the book.

• For this specific β ,

$$Var[W] = Var[X] - \frac{Cov[X, Y]^2}{Var[Y]} = (1 - \rho_{X,Y}^2) Var[X],$$

where $\rho_{X,Y}$ is the correlation between X and Y.

• The stronger X and Y are correlated, the greater the reduction in variance.

Optimal Choice of β (continued)

- For example, if this correlation is nearly perfect (± 1) , we could control X almost exactly.
- Typically, neither Var[Y] nor Cov[X, Y] is known.
- Therefore, we cannot obtain the maximum reduction in variance.
- We can guess these values and hope that the resulting W does indeed have a smaller variance than X.
- A second possibility is to use the simulated data to estimate these quantities.
 - How to do it efficiently in terms of time and space?

Optimal Choice of β (concluded)

- Observe that $-\beta$ has the same sign as the correlation between X and Y.
- Hence, if X and Y are positively correlated, $\beta < 0$, then X is adjusted downward whenever $Y > \mu$ and upward otherwise.
- The opposite is true when X and Y are negatively correlated, in which case $\beta > 0$.

A Pitfall

- \bullet A potential pitfall is to sample X and Y independently.
- In this case, Cov[X, Y] = 0.
- Equation (68) on p. 649 becomes

$$\operatorname{Var}[W] = \operatorname{Var}[X] + \beta^2 \operatorname{Var}[Y].$$

• So whatever Y is, the variance is *increased*!

Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of \sqrt{N} does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.