
Tracking Error Revisited

• Define the dollar gamma as S2Γ.

• The change in value of a delta-hedged long option
position after a duration of ∆t is proportional to the
dollar gamma.

• It is about

(1/2)S2Γ[ (∆S/S)2 − σ2∆t ].

– (∆S/S)2 is called the daily realized variance.
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Tracking Error Revisited (continued)

• Let the rebalancing times be t1, t2, . . . , tn.

• Let ∆Si = Si+1 − Si.

• The total tracking error at expiration is about

n−1∑

i=0

er(T−ti)
S2

i Γi

2

[ (
∆Si

Si

)2

− σ2∆t

]
,

• The tracking error is path dependent.
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Tracking Error Revisited (concluded)a

• The tracking error εn over n rebalancing acts (such as
251,235 on p. 534) has about the same probability of
being positive as being negative.

• Subject to certain regularity conditions, the
root-mean-square tracking error

√
E[ ε2n ] is O(1/

√
n ).b

• The root-mean-square tracking error increases with σ at
first and then decreases.

aBertsimas, Kogan, and Lo (2000).
bSee also Grannan and Swindle (1996).
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Delta-Gamma Hedge

• Delta hedge is based on the first-order approximation to
changes in the derivative price, ∆f , due to changes in
the stock price, ∆S.

• When ∆S is not small, the second-order term, gamma
Γ ≡ ∂2f/∂S2, helps (theoretically).

• A delta-gamma hedge is a delta hedge that maintains
zero portfolio gamma, or gamma neutrality.

• To meet this extra condition, one more security needs to
be brought in.
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Delta-Gamma Hedge (concluded)

• Suppose we want to hedge short calls as before.

• A hedging call f2 is brought in.

• To set up a delta-gamma hedge, we solve

−N × f + n1 × S + n2 × f2 −B = 0 (self-financing),

−N ×∆ + n1 + n2 ×∆2 − 0 = 0 (delta neutrality),

−N × Γ + 0 + n2 × Γ2 − 0 = 0 (gamma neutrality),

for n1, n2, and B.

– The gammas of the stock and bond are 0.
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Other Hedges

• If volatility changes, delta-gamma hedge may not work
well.

• An enhancement is the delta-gamma-vega hedge, which
also maintains vega zero portfolio vega.

• To accomplish this, one more security has to be brought
into the process.

• In practice, delta-vega hedge, which may not maintain
gamma neutrality, performs better than delta hedge.
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Trees
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I love a tree more than a man.
— Ludwig van Beethoven (1770–1827)

And though the holes were rather small,
they had to count them all.

— The Beatles, A Day in the Life (1967)
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The Combinatorial Method

• The combinatorial method can often cut the running
time by an order of magnitude.

• The basic paradigm is to count the number of admissible
paths that lead from the root to any terminal node.

• We first used this method in the linear-time algorithm
for standard European option pricing on p. 234.

– In general, it cannot apply to American options.

• We will now apply it to price barrier options.
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The Reflection Principlea

• Imagine a particle at position (0,−a) on the integral
lattice that is to reach (n,−b).

• Without loss of generality, assume a > 0 and b ≥ 0.

• This particle’s movement:

(i, j)
*(i + 1, j + 1) up move S → Su

j(i + 1, j − 1) down move S → Sd

• How many paths touch the x axis?
aAndré (1887).
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(0, a) (n, b)

(0, a)

J
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The Reflection Principle (continued)

• For a path from (0,−a) to (n,−b) that touches the x

axis, let J denote the first point this happens.

• Reflect the portion of the path from (0,−a) to J .

• A path from (0, a) to (n,−b) is constructed.

• It also hits the x axis at J for the first time.

• The one-to-one mapping shows the number of paths
from (0,−a) to (n,−b) that touch the x axis equals
the number of paths from (0,a) to (n,−b).
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The Reflection Principle (concluded)

• A path of this kind has (n + b + a)/2 down moves and
(n− b− a)/2 up moves.

• Hence there are
(

n
n+a+b

2

)
(57)

such paths for even n + a + b.

– Convention:
(
n
k

)
= 0 for k < 0 or k > n.
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Pricing Barrier Options (Lyuu, 1998)

• Focus on the down-and-in call with barrier H < X.

• Assume H < S without loss of generality.

• Define

a ≡
⌈

ln (X/ (Sdn))

ln(u/d)

⌉
=

⌈
ln(X/S)

2σ
√

∆t
+

n

2

⌉
,

h ≡
⌊

ln (H/ (Sdn))

ln(u/d)

⌋
=

⌊
ln(H/S)

2σ
√

∆t
+

n

2

⌋
.

– h is such that H̃ ≡ Suhdn−h is the terminal price
that is closest to, but does not exceed H.

– a is such that X̃ ≡ Suadn−a is the terminal price
that is closest to, but is not exceeded by X.
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Pricing Barrier Options (continued)

• The true barrier is replaced by the effective barrier H̃

in the binomial model.

• A process with n moves hence ends up in the money if
and only if the number of up moves is at least a.

• The price Sukdn−k is at a distance of 2k from the
lowest possible price Sdn on the binomial tree.

–

Sukdn−k = Sd−kdn−k = Sdn−2k. (58)
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Su dj n j
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Pricing Barrier Options (continued)

• The number of paths from S to the terminal price
Sujdn−j is

(
n
j

)
, each with probability pj(1− p)n−j .

• With reference to p. 550, the reflection principle can be
applied with a = n− 2h and b = 2j − 2h in Eq. (57)
on p. 547 by treating the S line as the x axis.

• Therefore,
(

n
n+(n−2h)+(2j−2h)

2

)
=

(
n

n− 2h + j

)

paths hit H̃ in the process for h ≤ n/2.
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Pricing Barrier Options (concluded)

• The terminal price Sujdn−j is reached by a path that
hits the effective barrier with probability

(
n

n− 2h + j

)
pj(1− p)n−j .

• The option value equals
∑2h

j=a

(
n

n−2h+j

)
pj(1− p)n−j

(
Sujdn−j −X

)

Rn
. (59)

– R ≡ erτ/n is the riskless return per period.

• It implies a linear-time algorithm.
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Convergence of BOPM

• Equation (59) results in the sawtooth-like convergence
shown on p. 321.

• The reasons are not hard to see.

• The true barrier most likely does not equal the effective
barrier.

• The same holds for the strike price and the effective
strike price.

• The issue of the strike price is less critical.

• But the issue of the barrier is not negligible.
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Convergence of BOPM (continued)

• Convergence is actually good if we limit n to certain
values—191, for example.

• These values make the true barrier coincide with or
occur just above one of the stock price levels, that is,
H ≈ Sdj = Se−jσ

√
τ/n for some integer j.

• The preferred n’s are thus

n =

⌊
τ

(ln(S/H)/(jσ))2

⌋
, j = 1, 2, 3, . . .

• There is only one minor technicality left.
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Convergence of BOPM (continued)

• We picked the effective barrier to be one of the n + 1
possible terminal stock prices.

• However, the effective barrier above, Sdj , corresponds to
a terminal stock price only when n− j is even.a

• To close this gap, we decrement n by one, if necessary,
to make n− j an even number.

aThis is because j = n − 2k for some k by Eq. (58) on p. 549. Of

course we could have adopted the form Sdj (−n ≤ j ≤ n) for the

effective barrier.
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Convergence of BOPM (concluded)

• The preferred n’s are now

n =





` if `− j is even

`− 1 otherwise
,

j = 1, 2, 3, . . . , where

` ≡
⌊

τ

(ln(S/H)/(jσ))2

⌋
.

• Evaluate pricing formula (59) on p. 552 only with the
n’s above.
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Practical Implications

• Now that barrier options can be efficiently priced, we
can afford to pick very large n’s (p. 559).

• This has profound consequences.
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n Combinatorial method

Value Time (milliseconds)

21 5.507548 0.30

84 5.597597 0.90

191 5.635415 2.00

342 5.655812 3.60

533 5.652253 5.60

768 5.654609 8.00

1047 5.658622 11.10

1368 5.659711 15.00

1731 5.659416 19.40

2138 5.660511 24.70

2587 5.660592 30.20

3078 5.660099 36.70

3613 5.660498 43.70

4190 5.660388 44.10

4809 5.659955 51.60

5472 5.660122 68.70

6177 5.659981 76.70

6926 5.660263 86.90

7717 5.660272 97.20
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Practical Implications (concluded)

• Pricing is prohibitively time consuming when S ≈ H

because n ∼ 1/ ln2(S/H).

• This observation is indeed true of standard
quadratic-time binomial tree algorithms.

• But it no longer applies to linear-time algorithms
(p. 561).

• In fact, this model is O(1/n) convergent.a

aLin (2008).
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Barrier at 95.0 Barrier at 99.5 Barrier at 99.9

n Value Time n Value Time n Value Time

.

.

. 795 7.47761 8 19979 8.11304 253

2743 2.56095 31.1 3184 7.47626 38 79920 8.11297 1013

3040 2.56065 35.5 7163 7.47682 88 179819 8.11300 2200

3351 2.56098 40.1 12736 7.47661 166 319680 8.11299 4100

3678 2.56055 43.8 19899 7.47676 253 499499 8.11299 6300

4021 2.56152 48.1 28656 7.47667 368 719280 8.11299 8500

True 2.5615 7.4767 8.1130

(All times in milliseconds.)
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Trinomial Tree

• Set up a trinomial approximation to the geometric
Brownian motion dS/S = r dt + σ dW .a

• The three stock prices at time ∆t are S, Su, and Sd,
where ud = 1.

• Impose the matching of mean and that of variance:

1 = pu + pm + pd,

SM ≡ (puu + pm + (pd/u)) S,

S2V ≡ pu(Su− SM)2 + pm(S − SM)2 + pd(Sd− SM)2.

aBoyle (1988).
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• Above,

M ≡ er∆t,

V ≡ M2(eσ2∆t − 1),

by Eqs. (18) on p. 149.
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Trinomial Tree (continued)

• Use linear algebra to verify that

pu =
u

(
V + M2 −M

)− (M − 1)
(u− 1) (u2 − 1)

,

pd =
u2

(
V + M2 −M

)− u3(M − 1)
(u− 1) (u2 − 1)

.

– In practice, must make sure the probabilities lie
between 0 and 1.

• Countless variations.
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Trinomial Tree (concluded)

• Use u = eλσ
√

∆t, where λ ≥ 1 is a tunable parameter.

• Then

pu → 1
2λ2

+

(
r + σ2

)√
∆t

2λσ
,

pd → 1
2λ2

−
(
r − 2σ2

)√
∆t

2λσ
.

• A nice choice for λ is
√

π/2 .a

aOmberg (1988).
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Barrier Options Revisited

• BOPM introduces a specification error by replacing the
barrier with a nonidentical effective barrier.

• The trinomial model solves the problem by adjusting λ

so that the barrier is hit exactly.a

• It takes

h =
ln(S/H)
λσ
√

∆t

consecutive down moves to go from S to H if h is an
integer, which is easy to achieve by adjusting λ.

– This is because Se−hλσ
√

∆t = H.
aRitchken (1995).
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Barrier Options Revisited (continued)

• Typically, we find the smallest λ ≥ 1 such that h is an
integer.

• That is, we find the largest integer j ≥ 1 that satisfies
ln(S/H)

jσ
√

∆t
≥ 1 and then let

λ =
ln(S/H)
jσ
√

∆t
.

– Such a λ may not exist for very small n’s.

– This is not hard to check.

• This done, one of the layers of the trinomial tree
coincides with the barrier.
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Barrier Options Revisited (concluded)

• The following probabilities may be used,

pu =
1

2λ2
+

µ′
√

∆t

2λσ
,

pm = 1− 1
λ2

,

pd =
1

2λ2
− µ′

√
∆t

2λσ
.

– µ′ ≡ r − σ2/2.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 570



0 50 100 150 200

#Periods

5.61

5.62

5.63

5.64

5.65

5.66
 

Down-and-in call value

 

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 571



Algorithms Comparisona

• So which algorithm is better, binomial or trinomial?

• Algorithms are often compared based on the n value at
which they converge.

– The one with the smallest n wins.

• So giraffes are faster than cheetahs because they take
fewer strides to travel the same distance!

• Performance must be based on actual running times.
aLyuu (1998).
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Algorithms Comparison (concluded)

• Pages 321 and 570 show the trinomial model converges
at a smaller n than BOPM.

• It is in this sense when people say trinomial models
converge faster than binomial ones.

• But is the trinomial model better then?

• The linear-time binomial tree algorithm actually
performs better than the trinomial one (see next page
expanded from p. 559).
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n Combinatorial method Trinomial tree algorithm

Value Time Value Time

21 5.507548 0.30

84 5.597597 0.90 5.634936 35.0

191 5.635415 2.00 5.655082 185.0

342 5.655812 3.60 5.658590 590.0

533 5.652253 5.60 5.659692 1440.0

768 5.654609 8.00 5.660137 3080.0

1047 5.658622 11.10 5.660338 5700.0

1368 5.659711 15.00 5.660432 9500.0

1731 5.659416 19.40 5.660474 15400.0

2138 5.660511 24.70 5.660491 23400.0

2587 5.660592 30.20 5.660493 34800.0

3078 5.660099 36.70 5.660488 48800.0

3613 5.660498 43.70 5.660478 67500.0

4190 5.660388 44.10 5.660466 92000.0

4809 5.659955 51.60 5.660454 130000.0

5472 5.660122 68.70

6177 5.659981 76.70

(All times in milliseconds.)
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Double-Barrier Options

• Double-barrier options are barrier options with two
barriers L < H.

• Assume L < S < H.

• The binomial model produces oscillating option values
(see plot next page).a

aChao (1999); Dai and Lyuu (2005);

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 575



20 40 60 80 100

8

10

12

14

16

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 576



Double-Barrier Knock-Out Options

• We knew how to pick the λ so that one of the layers of
the trinomial tree coincides with one barrier, say H.

• This choice, however, does not guarantee that the other
barrier, L, is also hit.

• One way to handle this problem is to lower the layer of
the tree just above L to coincide with L.a

– More general ways to make the trinomial model hit
both barriers are available.b

aRitchken (1995).
bHsu and Lyuu (2006). Dai and Lyuu (2006) combine binomial and

trinomial trees to derive an O(n)-time algorithm for double-barrier op-

tions!
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Double-Barrier Knock-Out Options (continued)

• The probabilities of the nodes on the layer above L

must be adjusted.

• Let ` be the positive integer such that

Sd`+1 < L < Sd`.

• Hence the layer of the tree just above L has price Sd`.
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Double-Barrier Knock-Out Options (concluded)

• Define γ > 1 as the number satisfying

L = Sd`−1e−γλσ
√

∆t.

– The prices between the barriers are

L, Sd`−1, . . . , Sd2, Sd, S, Su, Su2, . . . , Suh−1, Suh = H.

• The probabilities for the nodes with price equal to
Sd`−1 are

p′u =
b + aγ

1 + γ
, p′d =

b− a

γ + γ2
, and p′m = 1− p′u − p′d,

where a ≡ µ′
√

∆t/(λσ) and b ≡ 1/λ2.
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Convergence: Binomial vs. Trinomial
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Multivariate Contingent Claims

• They depend on two or more underlying assets.

• The basket call on m assets has the terminal payoff
max(

∑m
i=1 αiSi(τ)−X, 0), where αi is the percentage

of asset i.

• Basket options are essentially options on a portfolio of
stocks or index options.

• Option on the best of two risky assets and cash has a
terminal payoff of max(S1(τ), S2(τ), X).
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Correlated Trinomial Modela

• Two risky assets S1 and S2 follow
dSi/Si = r dt + σi dWi in a risk-neutral economy,
i = 1, 2.

• Let

Mi ≡ er∆t,

Vi ≡ M2
i (eσ2

i ∆t − 1).

– SiMi is the mean of Si at time ∆t.

– S2
i Vi the variance of Si at time ∆t.

aBoyle, Evnine, and Gibbs (1989).
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Correlated Trinomial Model (continued)

• The value of S1S2 at time ∆t has a joint lognormal
distribution with mean S1S2M1M2e

ρσ1σ2∆t, where ρ is
the correlation between dW1 and dW2.

• Next match the 1st and 2nd moments of the
approximating discrete distribution to those of the
continuous counterpart.

• At time ∆t from now, there are five distinct outcomes.
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Correlated Trinomial Model (continued)

• The five-point probability distribution of the asset prices
is (as usual, we impose uidi = 1)

Probability Asset 1 Asset 2

p1 S1u1 S2u2

p2 S1u1 S2d2

p3 S1d1 S2d2

p4 S1d1 S2u2

p5 S1 S2
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Correlated Trinomial Model (continued)

• The probabilities must sum to one, and the means must
be matched:

1 = p1 + p2 + p3 + p4 + p5,

S1M1 = (p1 + p2)S1u1 + p5S1 + (p3 + p4) S1d1,

S2M2 = (p1 + p4)S2u2 + p5S2 + (p2 + p3) S2d2.
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Correlated Trinomial Model (concluded)

• Let R ≡ M1M2e
ρσ1σ2∆t.

• Match the variances and covariance:

S
2
1V1 = (p1 + p2)((S1u1)

2 − (S1M1)
2
) + p5(S

2
1 − (S1M1)

2
)

+(p3 + p4)((S1d1)
2 − (S1M1)

2
),

S
2
2V2 = (p1 + p4)((S2u2)

2 − (S2M2)
2
) + p5(S

2
2 − (S2M2)

2
)

+(p2 + p3)((S2d2)
2 − (S2M2)

2
),

S1S2R = (p1u1u2 + p2u1d2 + p3d1d2 + p4d1u2 + p5) S1S2.

• The solutions are complex (see text).
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Correlated Trinomial Model Simplifieda

• Let µ′i ≡ r − σ2
i /2 and ui ≡ eλσi

√
∆t for i = 1, 2.

• The following simpler scheme is good enough:

p1 =
1

4

[
1

λ2
+

√
∆t

λ

(
µ′1
σ1

+
µ′2
σ2

)
+

ρ

λ2

]
,

p2 =
1

4

[
1

λ2
+

√
∆t

λ

(
µ′1
σ1

−
µ′2
σ2

)
−

ρ

λ2

]
,

p3 =
1

4

[
1

λ2
+

√
∆t

λ

(
−

µ′1
σ1

−
µ′2
σ2

)
+

ρ

λ2

]
,

p4 =
1

4

[
1

λ2
+

√
∆t

λ

(
−

µ′1
σ1

+
µ′2
σ2

)
−

ρ

λ2

]
,

p5 = 1 −
1

λ2
.

• It cannot price 2-asset 2-barrier options accurately.b

aMadan, Milne, and Shefrin (1989).
bSee Chang, Hsu, and Lyuu (2006) for a solution.
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Extrapolation

• It is a method to speed up numerical convergence.

• Say f(n) converges to an unknown limit f at rate of
1/n:

f(n) = f +
c

n
+ o

(
1
n

)
. (60)

• Assume c is an unknown constant independent of n.

– Convergence is basically monotonic and smooth.
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Extrapolation (concluded)

• From two approximations f(n1) and f(n2) and by
ignoring the smaller terms,

f(n1) = f +
c

n1
,

f(n2) = f +
c

n2
.

• A better approximation to the desired f is

f =
n1f(n1)− n2f(n2)

n1 − n2
. (61)

• This estimate should converge faster than 1/n.

• The Richardson extrapolation uses n2 = 2n1.
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Improving BOPM with Extrapolation

• Consider standard European options.

• Denote the option value under BOPM using n time
periods by f(n).

• It is known that BOPM convergences at the rate of 1/n,
consistent with Eq. (60) on p. 588.

• But the plots on p. 249 (redrawn on next page)
demonstrate that convergence to the true option value
oscillates with n.

• Extrapolation is inapplicable at this stage.
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Improving BOPM with Extrapolation (concluded)

• Take the at-the-money option in the left plot on p. 591.

• The sequence with odd n turns out to be monotonic
and smooth (see the left plot on p. 593).a

• Apply extrapolation (61) on p. 589 with n2 = n1 + 2,
where n1 is odd.

• Result is shown in the right plot on p. 593.

• The convergence rate is amazing.

• See Exercise 9.3.8 of the text (p. 111) for ideas in the
general case.

aThis can be proved; see Chang and Palmer (2007).
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Numerical Methods
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All science is dominated
by the idea of approximation.

— Bertrand Russell
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Finite-Difference Methods

• Place a grid of points on the space over which the
desired function takes value.

• Then approximate the function value at each of these
points (p. 597).

• Solve the equation numerically by introducing difference
equations in place of derivatives.
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Example: Poisson’s Equation

• It is ∂2θ/∂x2 + ∂2θ/∂y2 = −ρ(x, y).

• Replace second derivatives with finite differences
through central difference.

• Introduce evenly spaced grid points with distance of ∆x

along the x axis and ∆y along the y axis.

• The finite difference form is

−ρ(xi, yj) =
θ(xi+1, yj)− 2θ(xi, yj) + θ(xi−1, yj)

(∆x)2

+
θ(xi, yj+1)− 2θ(xi, yj) + θ(xi, yj−1)

(∆y)2
.
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Example: Poisson’s Equation (concluded)

• In the above, ∆x ≡ xi − xi−1 and ∆y ≡ yj − yj−1 for
i, j = 1, 2, . . . .

• When the grid points are evenly spaced in both axes so
that ∆x = ∆y = h, the difference equation becomes

−h2ρ(xi, yj) = θ(xi+1, yj) + θ(xi−1, yj)

+θ(xi, yj+1) + θ(xi, yj−1)− 4θ(xi, yj).

• Given boundary values, we can solve for the xis and the
yjs within the square [±L,±L ].

• From now on, θi,j will denote the finite-difference
approximation to the exact θ(xi, yj).

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 600



Explicit Methods

• Consider the diffusion equation
D(∂2θ/∂x2)− (∂θ/∂t) = 0.

• Use evenly spaced grid points (xi, tj) with distances
∆x and ∆t, where ∆x ≡ xi+1 − xi and ∆t ≡ tj+1 − tj .

• Employ central difference for the second derivative and
forward difference for the time derivative to obtain

∂θ(x, t)

∂t

∣∣∣∣
t=tj

=
θ(x, tj+1)− θ(x, tj)

∆t
+ · · · , (62)

∂2θ(x, t)

∂x2

∣∣∣∣
x=xi

=
θ(xi+1, t)− 2θ(xi, t) + θ(xi−1, t)

(∆x)2
+ · · · . (63)
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Explicit Methods (continued)

• Next, assemble Eqs. (62) and (63) into a single equation
at (xi, tj).

• But we need to decide how to evaluate x in the first
equation and t in the second.

• Since central difference around xi is used in Eq. (63),
we might as well use xi for x in Eq. (62).

• Two choices are possible for t in Eq. (63).

• The first choice uses t = tj to yield the following
finite-difference equation,

θi,j+1 − θi,j

∆t
= D

θi+1,j − 2θi,j + θi−1,j

(∆x)2
. (64)
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Explicit Methods (continued)

• The stencil of grid points involves four values, θi,j+1,
θi,j , θi+1,j , and θi−1,j .

• Rearrange Eq. (64) on p. 601 as

θi,j+1 =
D∆t

(∆x)2
θi+1,j +

(
1− 2D∆t

(∆x)2

)
θi,j +

D∆t

(∆x)2
θi−1,j .

• We can calculate θi,j+1 from θi,j , θi+1,j , θi−1,j , at the
previous time tj (see figure (a) on next page).
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Explicit Methods (concluded)

• Starting from the initial conditions at t0, that is,
θi,0 = θ(xi, t0), i = 1, 2, . . . , we calculate

θi,1, i = 1, 2, . . . .

• And then
θi,2, i = 1, 2, . . . .

• And so on.
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Stability

• The explicit method is numerically unstable unless

∆t ≤ (∆x)2/(2D).

– A numerical method is unstable if the solution is
highly sensitive to changes in initial conditions.

• The stability condition may lead to high running times
and memory requirements.

• For instance, halving ∆x would imply quadrupling
(∆t)−1, resulting in a running time eight times as much.
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Explicit Method and Trinomial Tree

• Rearrange Eq. (64) on p. 601 as

θi,j+1 =
D∆t

(∆x)2
θi+1,j +

(
1− 2D∆t

(∆x)2

)
θi,j +

D∆t

(∆x)2
θi−1,j .

• When the stability condition is satisfied, the three
coefficients for θi+1,j , θi,j , and θi−1,j all lie between
zero and one and sum to one.

• They can be interpreted as probabilities.

• So the finite-difference equation becomes identical to
backward induction on trinomial trees!

• The freedom in choosing ∆x corresponds to similar
freedom in the construction of the trinomial trees.
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