Brownian Motion?

e Brownian motion is a stochastic process { X(¢),t >0}

with the following properties.

1. X(0) = 0, unless stated otherwise.
2. forany 0 <tyg <ty <---<t,, the random variables

X(tk) — X(tk_l)

for 1 < k <n are independent.”

3. for 0 <s<t, X(t)— X(s) is normally distributed

with mean pu(t — s) and variance o?(t — s), where pu

and o # 0 are real numbers.

2Robert Brown (1773—-1858).
PSo X(t) — X(s) is independent of X(r) for r < s < t.
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Brownian Motion (concluded)

Such a process will be called a (i, c) Brownian motion

with drift p and variance o?.

The existence and uniqueness of such a process is

guaranteed by Wiener’s theorem.?

Although Brownian motion is a continuous function of ¢

with probability one, it is almost nowhere differentiable.

The (0,1) Brownian motion is also called the Wiener

process.

2Norbert Wiener (1894-1964).
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Example

o If { X(¢),t >0} is the Wiener process, then
X(t) — X(s) ~ N(0,t—s).

e A (u,0) Brownian motion ¥ ={Y(¢),t >0} can be
expressed in terms of the Wiener process:

Y (t) = pt + o X (t). (46)

e Note that Y (t+s) — Y (t) ~ N(us,0°s).
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Brownian Motion as Limit of Random Walk

Claim 1 A (u,0) Brownian motion is the limiting case of

random walk.

e A particle moves Az to the left with probability 1 — p.

e It moves to the right with probability p after At time.

e Assume n =t/At is an integer.

e Its position at time ¢ is

Yt)=Ax (X1 +Xo+ -+ X,,).
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Brownian Motion as Limit of Random Walk (continued)

e (continued)

— Here

¥ - +1 if the ith move is to the right,
T —1 if the 2th move is to the left.

— X, are independent with
Prob[X; =1]=p=1—Prob| X; = —1].

e Recall E[X;]=2p—1 and Var[X;]=1- (2p— 1)
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Brownian Motion as Limit of Random Walk (continued)

e Therefore,

Var[Y(t)] = n(Az)* [1—(2p —1)*].

e With Az =oVAt and p=[1+ (u/o)VAL]/2,

= noVAt(p/o)VAL = ut,
= no’At[1— (p/o)*At] — ot
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Brownian Motion as Limit of Random Walk (concluded)

Thus, {Y(t),t > 0} converges to a (u,c) Brownian
motion by the central limit theorem.

Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing p© = 0.
Note that
Var[Y (t + At) — Y (t) ]
=Var[ Az X, 41] = (Ax)? x Var[ X,,11] — 0 At.

Similarity to the the BOPM: The p is identical to the
probability in Eq. (24) on p. 242 and Az = Inu.
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Geometric Brownian Motion
Let X ={X(¢),t >0} be a Brownian motion process.

The process
{(Y(t)=eX XD t >0},

is called geometric Brownian motion.
Suppose further that X is a (u, o) Brownian motion.

X(t) ~ N(ut,0?t) with moment generating function

B[eX0] = By (p)] = e/

from Eq. (17) on p 143.
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Geometric Brownian Motion (continued)

e In particular,

E[Y(t)] = eut+(02t/2),

Var[Y(t)] = E[Y()?] — E[Y (1) ]2

2 2
_ 2utto’t (60' t 1) .
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Geometric Brownian Motion (continued)

e It is useful for situations in which percentage changes
are independent and identically distributed.

e Let Y,, denote the stock price at time n and Yy = 1.

e Assume relative returns
Y,

X;
Yi1

are independent and identically distributed.
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Geometric Brownian Motion (concluded)

e Then

is a sum of independent, identically distributed random
variables.
e Thus {InY,,n >0} is approximately Brownian motion.

— And {Y,,,n >0} is approximately geometric

Brownian motion.
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.
— Mark Kac (1914-1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861-1947),
Science and the Modern World
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Stochastic Integrals

Use W ={W(t),t >0} to denote the Wiener process.

The goal is to develop integrals of X from a class of

stochastic processes,?

t
It(X)E/ X dW, t>0.
0

I[;(X) is a random variable called the stochastic integral
of X with respect to W.

The stochastic process {I;(X),t > 0} will be denoted
by [XdW.

aKiyoshi Ito (1915-2008).
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Stochastic Integrals (concluded)

e Typical requirements for X in financial applications are:

— Prob[fOtXQ(s) ds <oo]=1 forall t >0 or the
stronger fot E[X?(s)]ds < oo.

— The information set at time ¢ includes the history of

X and W up to that point in time.

— But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).
— The future cannot influence the present.

o { X(5),0<s <t} isindependent of
{W(t+u)—W(t),u>0}.
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lto Integral

e A theory of stochastic integration.
e As with calculus, it starts with step functions.

e A stochastic process { X(t) } is simple if there exist
0=ty <t; <--- such that

X(t) = X(tk_l) for t € [tk—17tk)7 k=1,2,...

for any realization (see figure on next page).
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Ito Integral (continued)

e The Ito integral of a simple process is defined as

LX) = S X () Wter) - W(t)], (47
k=0

where t,, = t.
— The integrand X is evaluated at tg, not tx4;.
e Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.
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Ito Integral (continued)

e Let X ={X(t),t >0} be a general stochastic process.

e Then there exists a random variable I;(X), unique
almost certainly, such that I;(X,) converges in
probability to I;(X) for each sequence of simple
stochastic processes X7, X5, ... such that X,, converges

in probability to X.

If X is continuous with probability one, then I;(X,)
converges in probability to I;(X) as

0p, = maxj<p<n(tx —tk—1) goes to zero.
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Ito Integral (concluded)

e It is a fundamental fact that [ X dW is continuous
almost surely.

e The following theorem says the Ito integral is a
martingale.

— A corollary is the mean value formula

b
5 /XdW]:o.

Theorem 15 The Ito integral [ X dW is a martingale.
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Discrete Approximation
e Recall Eq. (47) on p. 471.

e The following simple stochastic process { X(¢)} can be

used in place of X to approximate the stochastic
integral fot X dW,

AN

X(S) = X(tk_l) for s € [tk—lytk), k=1,2,... ,n.

e Note the nonanticipating feature of X.

— The information up to time s,
{X(t),W(t),0<t< s},

cannot determine the future evolution of X or W.
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Discrete Approximation (concluded)

e Suppose we defined the stochastic integral as

S Xt ) [ Wltisr) — With) |
k=0

e Then we would be using the following different simple
stochastic process in the approximation,

Y(s) = X(t) for s € [tr_1,te), k=1,2,... ,n.

e This clearly anticipates the future evolution of X.
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lto Process

e The stochastic process X = { X;,t > 0} that solves

t t
Xt:X0+/ a(XS,s)ds+/ b(Xs,s)dWs, t>0
0 0

is called an Ito process.

— X 1is a scalar starting point.

— {a(X¢,t):t >0} and {b(X;,t):t >0} are
stochastic processes satisfying certain regularity

conditions.

e The terms a(X,t) and b(X,t) are the drift and the
diffusion, respectively.
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Ito Process (continued)

A shorthand? is the following stochastic differential
equation for the Ito differential d.X;,

dXt = CL(Xt, t) dt + b(Xt, t) th (48)
— Or Slmply dXt — Q¢ dt + bt th

e This is Brownian motion with an instantaneous drift a.

and an instantaneous variance b?.

e X is a martingale if the drift a; is zero by Theorem 15
(p. 473).

2Paul Langevin (1904).
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Ito Process (concluded)

e dWW is normally distributed with mean zero and

variance dt.

e An equivalent form to Eq. (48) is
dXt = Q¢ dt + bt\/% g,

where & ~ N(0,1).
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Euler Approximation

The following approximation follows from Eq. (49),

AN

X(tn-l-l)

=X (t,) + a(X (tn), tn) At + b(X (£,), tn) AW (£,,),
(50)

where t,, = nAt.

It is called the Euler or Euler-Maruyama method.

Under mild conditions, X (t,) converges to X (t,).

Recall that AW (t,,) should be interpreted as
Wi(tni1) — W(t,) instead of W(t,,) — W(t,_1).
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More Discrete Approximations

e Under fairly loose regularity conditions, approximation
(50) on p. 480 can be replaced by

P

X(thrl)
=X (tn) + a(X (tn), tn) At + b(X (t0), tn) VALY (£,).

— Y (t9),Y (t1),... are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

e An even simpler discrete approximation scheme:

X (tpi1)

AN

=X (t,) + a(X (tn), tn) At + b(X (t), tn VAL E.

— Prob[¢ =1] = Prob[¢( = —-1] =1/2.
— Note that E[¢] =0 and Var[{] = 1.

e This clearly defines a binomial model.

AN

e As At goes to zero, X converges to X.
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Trading and the Ito Integral

e Consider an Ito process dS; = p dt + o dWs.
— S, is the vector of security prices at time ¢.

e Let ¢, be a trading strategy denoting the quantity of
each type of security held at time t.
— Hence the stochastic process ¢,S; is the value of the

portfolio ¢, at time t.
o ¢,dS: = ¢, (s dt + o dW,) represents the change in the

value from security price changes occurring at time ¢.
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Trading and the Ito Integral (concluded)

e The equivalent Ito integral,

Gr(¢) = /OT ¢, dSt = /OT Oy 1be dt + /OT Q.0 AWy,

measures the gains realized by the trading strategy over
the period [0,7'].
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lto's Lemma

A smooth function of an Ito process is itself an Ito process.

Theorem 16 Suppose f: R — R 1is twice continuously
differentiable and dX = asdt + by dW. Then f(X) is the
Ito process,
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Ito’s Lemma (continued)
e In differential form, Ito’s lemma becomes

f(X)adt+ f/(X)bdW + % (X)) b2 dt.
(51)

e Compared with calculus, the interesting part is the third
term on the right-hand side.

e A convenient formulation of Ito’s lemma is

f(X)dX + % 7 (X)(dX)?.
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Ito’s Lemma (continued)

e We are supposed to multiply out
(dX)? = (adt + bdW)? symbolically according to

X dW  dt
dW | dt 0
dt 0 0

— The (dW)? = dt entry is justified by a known result.

e This form is easy to remember because of its similarity
to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 17 (Higher-Dimensional Ito’s Lemma) Let
Wi, Wo, ... W, be independent Wiener processes and

X = (X1, Xo,...,X.m) be a vector process. Suppose

f: R™ — R 1is twice continuously differentiable and X; 1is
an Ito process with dX; = a; dt + 2?21 bij dW;. Then

df (X)) s an Ito process with the differential,

) = 3 H0) X+ 530S Fal(X) dX dX,

1=1 1=1 k=1

where f; = 0f/0x; and fi, = 0*f/0x;0xy.
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Ito’s Lemma (continued)

e The multiplication table for Theorem 17 is

X dWZ dt
dWy | i dt O
dt 0 0

in which
1 if ¢ =k,
Oik, =
0 otherwise.
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Ito’s Lemma (continued)

Theorem 18 (Alternative Ito’s Lemma) Let

Wi, Wo, ... , W,, be Wiener processes and

X = (X1,Xo,..., X)) be a vector process. Suppose

f: R™ — R 1is twice continuously differentiable and X; 1is
an Ito process with dX; = a; dt + b; dW;. Then df(X) is the

following Ito process,

) =3 LX) dX+ 530D faX) X dX
1=1

1=1 k=1
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Ito’s Lemma (concluded)

e The multiplication table for Theorem 18 is

X sz dt
de Pik dt 0
dt 0 0

e Here, p;r denotes the correlation between dW,; and
dWy.
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Geometric Brownian Motion

e Consider the geometric Brownian motion process
Y(t) = eX(®)
— X(t) is a (u,0) Brownian motion.
— Hence dX = pudt + odW by Eq. (46) on p. 455.

e As9Y/0X =Y and 0°Y/0X? =Y, Ito’s formula (51)
on p. 486 implies

dY YdX +(1/2)Y (dX)?
Y (pdt +odW)+(1/2)Y (pndt + o dW)?
Y (udt +odW)+(1/2) Yo dt.
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Geometric Brownian Motion (concluded)

e Hence

ar _ (1 +0%/2) dt + o dW.

Y

e The annualized instantaneous rate of return is p -+ 02/2
not u.
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Product of Geometric Brownian Motion Processes
o Let

dY /)Y adt+bdWy,
A Fdt+gdWsy.

e Consider the Ito process U =Y Z.

e Apply Ito’s lemma (Theorem 18 on p. 490):

dU ZdY +YdZ +dY dZ
ZY (adt +bdWy )+ Y Z(fdt + gdWz)
+Y Z(adt +bdWy)(f dt + gdWz)
U(a+ f+bgp)dt + UbdWy + UgdWy.
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Product of Geometric Brownian Motion Processes
(continued)

e The product of two (or more) correlated geometric
Brownian motion processes thus remains geometric

Brownian motion.

e Note that

exp :(a - b2/2) dt + dey] :
exp (f —g2/2) dt+gdWZ] :
exp[(a+f— (b®+g%)/2)dt+bdWy + gdWy].
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Product of Geometric Brownian Motion Processes
(concluded)

e InU is Brownian motion with a mean equal to the sum
of the means of InY and InZ.

e This holds even if Y and Z are correlated.

e Finally, InY and InZ have correlation p.
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Quotients of Geometric Brownian Motion Processes

e Suppose Y and Z are drawn from p. 494.
e et U=Y/Z.

e We now show that?

dU
= =(a—f+g" —bgp)dt +bdWy — gdWy.
(52)

e Keep in mind that dWy and dW; have correlation p.

2 xercise 14.3.6 of the textbook is erroneous.
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Quotients of Geometric Brownian Motion Processes
(concluded)

e The multidimensional Ito’s lemma (Theorem 18 on
p. 490) can be employed to show that

dU
(1/2)dY — (Y/Z*)dZ — (1)Z°)dY dZ + (Y/Z?) (dZ)?

(1/Z)(aY dt +bY dWy) — (Y/Z*)(fZ dt + gZ dWz)
—(1/Z%)(bgY Zpdt) + (Y/Z")(g° Z* dt)

U(adt +bdWy) —U(fdt + gdWz)

—U(bgpdt) + U(g” dt)

U(a— f+g° —bgp)dt +UbdWy — UgdWy.
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Ornstein-Uhlenbeck Process

e The Ornstein-Uhlenbeck process:
dX = —rX dt + o dW,

where k,o0 > 0.

e It is known that
E[X(t)] e "710) Blag ],

2
Var[ X (t) ] 7 <1 — 6_2'€(t_t0)> + ¢~ 2r(t=t0) Var[ xg |,

2K

2
Cov|[ X (s), X (t)] ;_ e—fi(t—s) [1 . e—Qm(s—tO)]
K

4 n(tts—2t0) Var[ xg |,

for tg < s <t and X(ty) = xo.
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Ornstein-Uhlenbeck Process (continued)

X (t) is normally distributed if z( is a constant or
normally distributed.

X 1is said to be a normal process.
Elxg] = z9 and Var[zg] =0 if xg is a constant.

The Ornstein-Uhlenbeck process has the following mean
reversion property.

— When X > 0, X is pulled toward zero.
— When X < 0, it is pulled toward zero again.
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Ornstein-Uhlenbeck Process (continued)

e Another version:
dX = k(p— X)dt + o dW,
where o > 0.

e Given X(tg) = xp, a constant, it is known that

ot (wo — p)e "7 (53)

02 1 . —QH(t—to)

2K
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Ornstein-Uhlenbeck Process (concluded)

e The mean and standard deviation are roughly 1 and
o /v 2k , respectively.

e For large ¢, the probability of X < 0 is extremely
unlikely in any finite time interval when p > 0 is large
relative to o/v2k.

e The process is mean-reverting.

— X tends to move toward .

— Usetul for modeling term structure, stock price

volatility, and stock price return.
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Continuous-Time Derivatives Pricing
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I have hardly met a mathematician

who was capable of reasoning.
— Plato (428 B.C.-347 B.C.)
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Toward the Black-Scholes Differential Equation

The price of any derivative on a non-dividend-paying

stock must satisfy a partial differential equation.

The key step is recognizing that the same random

process drives both securities.

As their prices are perfectly correlated, we figure out the
amount of stock such that the gain from it offsets

exactly the loss from the derivative.

The removal of uncertainty forces the portfolio’s return

to be the riskless rate.
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Assumptions

The stock price follows dS = uSdt + oS dW'.
There are no dividends.

Trading is continuous, and short selling is allowed.
There are no transactions costs or taxes.

All securities are infinitely divisible.

The term structure of riskless rates is flat at r.
There is unlimited riskless borrowing and lending.

t is the current time, 1’ is the expiration time, and
T=1—1.
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Black-Scholes Differential Equation
Let C' be the price of a derivative on S.

From Ito’s lemma (p. 488),
6’0 oC 1

+ =~ 0282 ——

85 ot 2 0852
— The same W drives both C and S.

dt + oS — dW.

0*C oC
0S

dC' = (uS

Short one derivative and long 0C'/0S shares of stock
(call it II).

By construction,

= —C + S(3C/98).
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Black-Scholes Differential Equation (continued)

e The change in the value of the portfolio at time dt is®

oC
II=—d —dS.
d O+8S S

Substitute the formulas for dC and dS into the partial
differential equation to yield

oc 1 0%C

_( oL 1 590,00
dﬂ—( 5 205 aSQ)clt.

As this equation does not involve dW, the portfolio is
riskless during dt time: dII = rIldt.

@Mathematically speaking, it is not quite right (Bergman, 1982).
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Black-Scholes Differential Equation (concluded)

e So

oc 1 ,_,0°C B oC
(at+—03852>dt 7°<C’ S(‘?S)d

e Equate the terms to finally obtain

oC oc 1 , 2820_
57 TS% —O’S aSQ—TC.

e When there is a dividend yield g,

oC oc 1 , 2820_
57 (r—q)S% —O'S 852—7“0.
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Rephrase

e The Black-Scholes differential equation can be expressed

in terms of sensitivity numbers,

1
O+ rSA+ 50252F = rC. (54)

e Identity (54) leads to an alternative way of computing

© numerically from A and I

e When a portfolio is delta-neutral,
1
O + 5 oS°T = rC.

— A definite relation thus exists between I' and ©.
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PDEs for Asian Options
e Add the new variable A(t fo

e Then the value V of the Asian option satisfies this
two-dimensional PDE:?

oV OV 1,V OV
8 TS% —O'S 852 Sa—A rV.

e The terminal conditions are

V(T,S,A) max (% — X, O) for call,

V(T,S,A) ) for put.

2Kemna and Vorst (1990).
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PDEs for Asian Options (continued)

e The two-dimensional PDE produces algorithms similar
to that on pp. 3401t.

e But one-dimensional PDEs are available for Asian

options.®

e For example, Vecer (2001) derives the following PDE for
Asian calls:
2
auw( : )8u Uor o) 7 O,

el 1 — — _
ot T © 8z+ 2

with the terminal condition u(7), z) = max(z,0).

2Rogers and Shi (1995): Vecer (2001); Dubois and Lelievre (2005).
g ) )
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PDEs for Asian Options (concluded)

e For Asian puts:

t o1 )22
@qtfr(i—l—z) +(T ! Z)U

ot T 0z 2

with the same terminal condition.

e One-dimensional PDEs lead to highly efficient numerical
methods.
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Heston's Stochastic-Volatility Model®

e Heston assumes the stock price follows

ds
S
AV = k(0 —=V)dt+ oV V dWs. (56)

(1 — q) dt + V'V dW7, (55)

— V' is the instantaneous variance, which follows a

square-root process.
— dW7 and dW5 have correlation p.
— The riskless rate r is constant.

e It may be the most popular continuous-time

stochastic-volatility model.

2Heston (1993).

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 515



Heston's Stochastic-Volatility Model (continued)

e Heston assumes the market price of risk is bsv/V .
[ SO =TT —+ bQV
e Define

AW AW, + b V'V dt,
AW dWs + pbo V'V dt,

*

K Kk + pbyo,
0

6* A

Kk + pboo

dW{ and dW3 have correlation p.

Under the risk-neutral probability measure ¢, both W7
and W5 are Wiener processes.
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Heston's Stochastic-Volatility Model (continued)

e Heston’s model becomes, under probability measure @,

ds
S
dV k50" — V) dt + oVV dW5.

(r—q)dt—kﬁde,
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Heston's Stochastic-Volatility Model (continued)
e Define

o(u, ) exp{w(InS+ (r—q)7)

* ok  —2

+0" k"o (k" — pour —d) 7 — 21n

1_ge—d7'
I—g

_|_

vo?(K* — pour —d) (1 — e~ )
1 — ge—dr ’

\/(pauz — k*)2 — 02(—wu — u?),

(k" — pour — d) /(K" — pour + d).
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Heston's Stochastic-Volatility Model (concluded)

The formulas are®

1 [ X "p(u—1,7)
C + /0 Re ( - ) du]
e (X ey )
T Jo o
1 [ X "op(u, 1)
/0 Re( ” ) du] ,

> X ""p(u—1,7)
/o Re( et ) du] ,

where 1+ = v/—1 and Re(z) denotes the real part of the

complex number x.

2Contributed by Mr. Chen, Jung-Ying (D95723006) on August 17,
2008 and Mr. Liou, Yan-Fu (R92723060) on August 26, 2008.
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Stochastic-Volatility Models and Further Extensions?®

e How to explain the October 1987 crash?

e Stochastic-volatility models require an implausibly
high-volatility level prior to and after the crash.

e Merton (1976) proposed jump models.

e Discontinuous jump models in the asset price can

alleviate the problem somewhat.

2Eraker (2004).
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Stochastic-Volatility Models and Further Extensions
(continued)

e But if the jump intensity is a constant, it cannot explain

the tendency of large movements to cluster over time.
e This assumption also has no impacts on option prices.

e Jump-diffusion models combine both.

— E.g., add a jump process to Eq. (55) on p. 514.
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Stochastic-Volatility Models and Further Extensions
(concluded)

e But they still do not adequately describe the systematic
variations in option prices.?

e Jumps in volatility are alternatives.P

— E.g., add correlated jump processes to Egs. (55) and
Eq. (56) on p. 514.

e Such models allow high level of volatility caused by a

jump to volatility.©

2Bates (2000) and Pan (2002).

PDuffie, Pan, and Singleton (2000).
“Eraker, Johnnes, and Polson (2000).
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Hedging
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When Professors Scholes and Merton and 1

invested in warrants,

Professor Merton lost the most money.
And I lost the least.
— Fischer Black (1938-1995)
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Delta Hedge

The delta (hedge ratio) of a derivative f is defined as
A=09f/0S.

Thus Af ~ A x AS for relatively small changes in the
stock price, AS.

A delta-neutral portfolio is hedged in the sense that it is
immunized against small changes in the stock price.

A trading strategy that dynamically maintains a
delta-neutral portfolio is called delta hedge.
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Delta Hedge (concluded)

e Delta changes with the stock price.

e A delta hedge needs to be rebalanced periodically in
order to maintain delta neutrality.

e In the limit where the portfolio is adjusted continuously,
perfect hedge is achieved and the strategy becomes

self-financing.
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Implementing Delta Hedge

We want to hedge N short derivatives.
Assume the stock pays no dividends.

The delta-neutral portfolio maintains N x A shares of

stock plus B borrowed dollars such that

—NXf+ NxAxS—-—B=0.

At next rebalancing point when the delta is A’, buy
N x (A" — A) shares to maintain N x A’ shares with a
total borrowing of B =N x A’ x S"— N x f'.

Delta hedge is the discrete-time analog of the

continuous-time limit and will rarely be self-financing.
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Example

A hedger is short 10,000 European calls.
o =30% and r = 6%.

This call’s expiration is four weeks away, its strike price
is $50, and each call has a current value of f = 1.76791.

As an option covers 100 shares of stock, N = 1,000,000.
The trader adjusts the portfolio weekly.

The calls are replicated® well if the cumulative cost of
trading stock is close to the call premium’s FV.

@This example takes the replication viewpoint.
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Example (continued)

As A =0.538560, N x A = 538,560 shares are
purchased for a total cost of 538,560 x 50 = 26,928,000

dollars to make the portfolio delta-neutral.

The trader finances the purchase by borrowing
B=NxAxS-N x f=25,160,090
dollars net.?

The portfolio has zero net value now.

2This takes the hedging viewpoint — an alternative. See an exercise
in the text.
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Example (continued)

e At 3 weeks to expiration, the stock price rises to $51.
e The new call value is f’ = 2.10580.

e So the portfolio is worth
N x f' 4+ 538560 x 51 — Be®06/52 = 171,622

before rebalancing.
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Example (continued)

e A delta hedge does not replicate the calls perfectly; it is

not self-financing as $171,622 can be withdrawn.

e The magnitude of the tracking error—the variation in
the net portfolio value—can be mitigated if adjustments

are made more frequently.

e In fact, the tracking error over one rebalancing act is
positive about 68% of the time, but its expected value is

essentially zero.?

e It is furthermore proportional to vega.

2Boyle and Emanuel (1980).
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Example (continued)

e In practice tracking errors will cease to decrease beyond
a certain rebalancing frequency.

e With a higher delta A’ = 0.640355, the trader buys
N x (A" = A) =101,795 shares for $5,191,545.

e The number of shares is increased to N x A’ = 640, 355.
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Example (continued)

e The cumulative cost is

26,928,000 x ¢°:06/52 4 5191545 = 32,150,634.

e The total borrowed amount is
B’ = 640,355 x 51 — N x ' = 30,552,305.

e The portfolio is again delta-neutral with zero value.
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Change in No. shares Cost of Cumulative

Delta delta bought shares cost
A N x(5) (1)x(6) FV(8)+(7)

(3) (5) (6) (7) (8)
0.53856 — 538,560 26,928,000 26,928,000
0.64036 0.10180 101,795 5,191,545 32,150,634
0.85578 0.21542 215,425 11,417,525 43,605,277
0.83983 —0.01595 —15,955 — 829,660 42,825,960
1.00000 0.16017 160,175 8,649,450 51,524,853

The total number of shares is 1,000,000 at expiration

(trading takes place at expiration, t00).

©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 534



Example (concluded)

At expiration, the trader has 1,000,000 shares.

They are exercised against by the in-the-money calls for
$50,000,000.

The trader is left with an obligation of
51,524,853 — 50,000,000 = 1,524,853,
which represents the replication cost.

Compared with the F'V of the call premium,
1,767,910 x e2:06x4/52 — 1 776 088,

the net gain is 1,776,088 — 1,524,853 = 251,235.
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