
Barrier Optionsa

• Their payoff depends on whether the underlying asset’s
price reaches a certain price level H.

• A knock-out option is an ordinary European option
which ceases to exist if the barrier H is reached by the
price of its underlying asset.

• A call knock-out option is sometimes called a
down-and-out option if H < S.

• A put knock-out option is sometimes called an
up-and-out option when H > S.

aA former student told me on March 26, 2004, that she did not un-

derstand why I covered barrier options until she started working in a

bank. She was working for Lehman Brothers in HK as of April, 2006.
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Barrier Options (concluded)

• A knock-in option comes into existence if a certain
barrier is reached.

• A down-and-in option is a call knock-in option that
comes into existence only when the barrier is reached
and H < S.

• An up-and-in is a put knock-in option that comes into
existence only when the barrier is reached and H > S.

• Formulas exist for all kinds of barrier options.
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A Formula for Down-and-In Callsa

• Assume X ≥ H.

• The value of a European down-and-in call on a stock
paying a dividend yield of q is

Se−qτ

(
H

S

)2λ

N(x)−Xe−rτ

(
H

S

)2λ−2

N(x− σ
√

τ),

(28)

– x ≡ ln(H2/(SX))+(r−q+σ2/2) τ
σ
√

τ
.

– λ ≡ (r − q + σ2/2)/σ2.

• A European down-and-out call can be priced via the
in-out parity (see text).

aMerton (1973).
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A Formula for Up-and-In Putsa

• Assume X ≤ H.

• The value of a European up-and-in put is

Xe−rτ

(
H

S

)2λ−2

N(−x + σ
√

τ)− Se−qτ

(
H

S

)2λ

N(−x).

• A European up-and-out put can be priced via the in-out
parity.

aMerton (1973).
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Are American Options Barrier Options?a

• It looks like American options are barrier options with
the exercise boundary treated as the barrier and the
payoff as the rebate.

• One salient difference is that the exercise boundary must
be derived during backward induction, whereas the
barrier in a barrier option is given a priori.

aContributed by Mr. Jui-Chung Yang (D97723002) on March 25, 2009.
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Interesting Observations

• Assume H < X.

• Replace S in the pricing formula for the down-and-in
call, Eq. (28) on p. 315, with H2/S.

• Equation (28) becomes Eq. (25) on p. 267 when
r − q = σ2/2.

• Equation (28) becomes S/H times Eq. (25) on p. 267
when r − q = 0.

• Why?
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Binomial Tree Algorithms

• Barrier options can be priced by binomial tree
algorithms.

• Below is for the down-and-out option.

0
 H


c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 319



H


8


16


4


32


8


2


64


16


4


1


4.992


12.48


1.6


27.2


4.0


0


58


10


0


0


X


0.0


S = 8, X = 6, H = 4, R = 1.25, u = 2, and d = 0.5.
Backward-induction: C = (0.5× Cu + 0.5× Cd)/1.25.
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Binomial Tree Algorithms (concluded)

• But convergence is erratic because H is not at a price
level on the tree (see plot on next page).

– The barrier has to be adjusted to be at a price level.

– The “effective barrier” changes as n increases.

• Solutions will be presented later.
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Daily Monitoring

• Almost all barrier options monitor the barrier only for
the daily closing prices.

• In that case, only nodes at the end of a day need to
check for the barrier condition.

• We can even remove intraday nodes to create a
multinomial tree.

– A node is then followed by d + 1 nodes if each day is
partitioned into d periods.

• Does this saves time or space?a

aContributed by Ms. Chen, Tzu-Chun (R94922003) and others on

April 12, 2006.
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A Heptanomial Tree (6 Periods Per Day)

-¾ 1 day
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Foreign Currencies

• S denotes the spot exchange rate in domestic/foreign
terms.

• σ denotes the volatility of the exchange rate.

• r denotes the domestic interest rate.

• r̂ denotes the foreign interest rate.

• A foreign currency is analogous to a stock paying a
known dividend yield.

– Foreign currencies pay a “continuous dividend yield”
equal to r̂ in the foreign currency.
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Foreign Exchange Options

• Foreign exchange options are settled via delivery of the
underlying currency.

• A primary use of foreign exchange (or forex) options is
to hedge currency risk.

• Consider a U.S. company expecting to receive 100
million Japanese yen in March 2000.

• Those 100 million Japanese yen will be exchanged for
U.S. dollars.
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Foreign Exchange Options (continued)

• The contract size for the Japanese yen option is
JPY6,250,000.

• The company purchases 100,000,000/6,250,000 = 16
puts on the Japanese yen with a strike price of $.0088
and an exercise month in March 2000.

• This gives the company the right to sell 100,000,000
Japanese yen for 100,000,000× .0088 = 880,000 U.S.
dollars.
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Foreign Exchange Options (concluded)

• The formulas derived for stock index options in Eqs. (25)
on p. 267 apply with the dividend yield equal to r̂:

C = Se−r̂τN(x)−Xe−rτN(x− σ
√

τ), (29)

P = Xe−rτN(−x + σ
√

τ)− Se−r̂τN(−x).
(29′)

– Above,

x ≡ ln(S/X) + (r − r̂ + σ2/2) τ

σ
√

τ
.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 328



Bar the roads!
Bar the paths!

Wert thou to flee from here, wert thou
to find all the roads of the world,

the way thou seekst
the path to that thou’dst find not[.]

— Richard Wagner (1813–1883), Parsifal
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Path-Dependent Derivatives

• Let S0, S1, . . . , Sn denote the prices of the underlying
asset over the life of the option.

• S0 is the known price at time zero.

• Sn is the price at expiration.

• The standard European call has a terminal value
depending only on the last price, max(Sn −X, 0).

• Its value thus depends only on the underlying asset’s
terminal price regardless of how it gets there.
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Path-Dependent Derivatives (continued)

• Some derivatives are path-dependent in that their
terminal payoff depends critically on the path.

• The (arithmetic) average-rate call has this terminal
value:

max

(
1

n + 1

n∑

i=0

Si −X, 0

)
.

• The average-rate put’s terminal value is given by

max

(
X − 1

n + 1

n∑

i=0

Si, 0

)
.
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Path-Dependent Derivatives (continued)

• Average-rate options are also called Asian options.

• They are very popular.a

• They are useful hedging tools for firms that will make a
stream of purchases over a time period because the costs
are likely to be linked to the average price.

• They are mostly European.
aAs of the late 1990s, the outstanding volume was in the range of

5–10 billion U.S. dollars according to Nielsen and Sandmann (2003).
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Path-Dependent Derivatives (concluded)

• A lookback call option on the minimum has a terminal
payoff of Sn −min0≤i≤n Si.

• A lookback put on the maximum has a terminal payoff
of max0≤i≤n Si − Sn.

• The fixed-strike lookback option provides a payoff of

– max(max0≤i≤n Si −X, 0) for the call.

– max(X −min0≤i≤n Si, 0) for the put.

• Lookback calls and puts on the average (instead of a
constant X) are called average-strike options.
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Average-Rate Options

• Average-rate options are notoriously hard to price.

• The binomial tree for the averages does not combine.

• A straightforward algorithm enumerates the 2n price
paths for an n-period binomial tree and then averages
the payoffs.

• But the complexity is exponential.

• As a result, the Monte Carlo method and approximation
algorithms are some of the alternatives left.
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States and Their Transitions

• The tuple
(i, S, P )

captures the statea for the Asian option.

– i: the time.

– S: the prevailing stock price.

– P : the running sum.
aIt is a sufficient statistic.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 336



States and Their Transitions (concluded)

• For the binomial model, the state transition is:

(i + 1, Su, P + Su), for the up move

↗
(i, S, P )

↘
(i + 1, Sd, P + Sd), for the down move
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Pricing Some Path-Dependent Options

• Not all path-dependent derivatives are hard to price.

• Barrier options are easy to price.

• When averaging is done geometrically, the option payoffs
are

max
(
(S0S1 · · ·Sn)1/(n+1) −X, 0

)
,

max
(
X − (S0S1 · · ·Sn)1/(n+1), 0

)
.
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Pricing Some Path-Dependent Options (concluded)

• The limiting analytical solutions are the Black-Scholes
formulas.

– With the volatility set to σa ≡ σ/
√

3 .

– With the dividend yield set to qa ≡ (r + q + σ2/6)/2.

• The formula is therefore

C = Se−qaτN(x)−Xe−rτN(x− σa

√
τ), (30)

P = Xe−rτN(−x + σa

√
τ)− Se−qaτN(−x),

(30′)

– x ≡ ln(S/X)+(r−qa+σ2
a/2)τ

σa
√

τ
.
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An Approximate Formula for Asian Callsa

C = e−rτ

[
S

τ

∫ τ

0

eµt+σ2t/2N

(
−γ + (σt/τ)(τ − t/2)√

τ/3

)
dt

−XN

(
−γ√
τ/3

)]
,

where

• µ ≡ r − σ2/2.

• γ is the unique value that satisfies

S

τ

∫ τ

0

e3γσt(τ−t/2)/τ2+µt+σ2[ t−(3t2/τ3)(τ−t/2)2 ]/2 dt = X.

aRogers and Shi (1995); Thompson (1999); Chen (2005); Chen and

Lyuu (2006).
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Approximation Algorithm for Asian Options

• Based on the BOPM.

• Consider a node at time j with the underlying asset
price equal to S0u

j−idi.

• Name such a node N(j, i).

• The running sum
∑j

m=0 Sm at this node has a
maximum value of

S0(1 +

j︷ ︸︸ ︷
u + u2 + · · ·+ uj−i + uj−id + · · ·+ uj−idi)

= S0
1− uj−i+1

1− u
+ S0u

j−id
1− di

1− d
.
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Approximation Algorithm for Asian Options
(continued)

• Divide this value by j + 1 and call it Amax(j, i).

• Similarly, the running sum has a minimum value of

S0(1 +

j︷ ︸︸ ︷
d + d2 + · · ·+ di + diu + · · ·+ diuj−i)

= S0
1− di+1

1− d
+ S0d

iu
1− uj−i

1− u
.

• Divide this value by j + 1 and call it Amin(j, i).

• Amin and Amax are running averages.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 343



Approximation Algorithm for Asian Options
(continued)

• The possible running averages at N(j, i) are far too
many:

(
j
i

)
.

– For example,
(

j
j/2

) ≈ 2j
√

2/(πj) .

• But all must lie between Amin(j, i) and Amax(j, i).

• Pick k + 1 equally spaced values in this range and treat
them as the true and only running averages:

Am(j, i) ≡
(

k −m

k

)
Amin(j, i) +

(m

k

)
Amax(j, i)

for m = 0, 1, . . . , k.

c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 344



m


A
min
(
j
,
i
)


A
max
(
j
,
i
)


A
m
(
j
,
i
)


c©2009 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 345



Approximation Algorithm for Asian Options
(continued)

• Such “bucketing” introduces errors, but it works
reasonably well in practice.a

• A better alternative picks values whose logarithms are
equally spaced.

• Still other alternatives are possible.

• Generally, k must scale with at least n to show
convergence.b

aHull and White (1993).
bDai, Huang, and Lyuu (2002).
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Approximation Algorithm for Asian Options
(continued)

• Backward induction calculates the option values at each
node for the k + 1 running averages.

• Suppose the current node is N(j, i) and the running
average is a.

• Assume the next node is N(j + 1, i), after an up move.

• As the asset price there is S0u
j+1−idi, we seek the

option value corresponding to the running average

Au ≡ (j + 1) a + S0u
j+1−idi

j + 2
.
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Approximation Algorithm for Asian Options
(continued)

• But Au is not likely to be one of the k + 1 running
averages at N(j + 1, i)!

• Find the 2 running averages that bracket it:

A`(j + 1, i) ≤ Au ≤ A`+1(j + 1, i).

• Express Au as a linearly interpolated value of the two
running averages,

Au = xA`(j + 1, i) + (1− x)A`+1(j + 1, i), 0 ≤ x ≤ 1.
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Approximation Algorithm for Asian Options
(continued)

• Obtain the approximate option value given the running
average Au via

Cu ≡ xC`(j + 1, i) + (1− x) C`+1(j + 1, i).

– C`(t, s) denotes the option value at node N(t, s)
with running average A`(t, s).

• This interpolation introduces the second source of error.
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Approximation Algorithm for Asian Options
(continued)

• The same steps are repeated for the down node
N(j + 1, i + 1) to obtain another approximate option
value Cd.

• Finally obtain the option value as

[ pCu + (1− p) Cd ] e−r∆t.

• The running time is O(kn2).

– There are O(n2) nodes.

– Each node has O(k) buckets.
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Approximation Algorithm for Asian Options
(concluded)

• Arithmetic average-rate options were assumed to be
newly issued: no historical average to deal with.

• This problem can be easily addressed (see text).

• How about the Greeks?a

aThanks to a lively class discussion on March 31, 2004.
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A Numerical Example

• Consider a European arithmetic average-rate call with
strike price 50.

• Assume zero interest rate in order to dispense with
discounting.

• The minimum running average at node A in the figure
on p. 354 is 48.925.

• The maximum running average at node A in the same
figure is 51.149.
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A Numerical Example (continued)

• Each node picks k = 3 for 4 equally spaced running
averages.

• The same calculations are done for node A’s successor
nodes B and C.

• Suppose node A is 2 periods from the root node.

• Consider the up move from node A with running
average 49.666.
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A Numerical Example (continued)

• Because the stock price at node B is 53.447, the new
running average will be

3× 49.666 + 53.447
4

≈ 50.612.

• With 50.612 lying between 50.056 and 51.206 at node B,
we solve

50.612 = x× 50.056 + (1− x)× 51.206

to obtain x ≈ 0.517.
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A Numerical Example (continued)

• The option value corresponding to running average
50.056 at node B is 0.056.

• The option values corresponding to running average
51.206 at node B is 1.206.

• Their contribution to the option value corresponding to
running average 49.666 at node A is weighted linearly as

x× 0.056 + (1− x)× 1.206 ≈ 0.611.
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A Numerical Example (continued)

• Now consider the down move from node A with running
average 49.666.

• Because the stock price at node C is 46.775, the new
running average will be

3× 49.666 + 46.775
4

≈ 48.944.

• With 48.944 lying between 47.903 and 48.979 at node C,
we solve

48.944 = x× 47.903 + (1− x)× 48.979

to obtain x ≈ 0.033.
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A Numerical Example (concluded)

• The option values corresponding to running averages
47.903 and 48.979 at node C are both 0.0.

• Their contribution to the option value corresponding to
running average 49.666 at node A is 0.0.

• Finally, the option value corresponding to running
average 49.666 at node A equals

p× 0.611 + (1− p)× 0.0 ≈ 0.2956,

where p = 0.483.

• The remaining three option values at node A can be
computed similarly.
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Convergence Behavior of the Approximation
Algorithma
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aDai and Lyuu (2002).
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Remarks on Asian Option Pricing

• Asian option pricing is an active research area.

• The above algorithm overestimates the “true” value.a

• To guarantee convergence, k needs to grow with n.

• There is a convergent approximation algorithm that
does away with interpolation with a provable running
time of 2O(

√
n ).b

aDai, Huang, and Lyuu (2002).
bDai and Lyuu (2002, 2004).
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Remarks on Asian Option Pricing (continued)

• There is an O(kn2)-time algorithm with an error bound
of O(Xn/k) from the naive O(2n)-time binomial tree
algorithm in the case of European Asian options.a

– k can be varied for trade-off between time and
accuracy.

– If we pick k = O(n2), then the error is O(1/n), and
the running time is O(n4).

• In practice, log-linear interpolation works better.
aAingworth, Motwani, and Oldham (2000).
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Remarks on Asian Option Pricing (continued)

• Another approximation algorithm reduces the error to
O(X

√
n/k).a

– It varies the number of buckets per node.

– If we pick k = O(n), the error is O(n−0.5).

– If we pick k = O(n1.5), then the error is O(1/n), and
the running time is O(n3.5).

• Under “reasonable assumptions,” an O(n2)-time
algorithm with an error bound of O(1/n) exists.b

aDai, Huang, and Lyuu (2002).
bHsu and Lyuu (2004).
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Remarks on Asian Option Pricing (concluded)

• The basic idea is a nonuniform allocation of running
averages instead of a uniform k.

• It strikes a balance between error and complexity.
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A Grand Comparisona

X σ r Exact AA2 AA3 Hsu-Lyuu Chen-Lyuu

95 0.05 0.05 7.1777275 7.1777244 7.1777279 7.178812 7.177726

100 2.7161745 2.7161755 2.7161744 2.715613 2.716168

105 0.3372614 0.3372601 0.3372614 0.338863 0.337231

95 0.09 8.8088392 8.8088441 8.8088397 8.808717 8.808839

100 4.3082350 4.3082253 4.3082331 4.309247 4.308231

105 0.9583841 0.9583838 0.9583841 0.960068 0.958331

95 0.15 11.0940944 11.0940964 11.0940943 11.093903 11.094094

100 6.7943550 6.7943510 6.7943553 6.795678 6.794354

105 2.7444531 2.7444538 2.7444531 2.743798 2.744406

90 0.10 0.05 11.9510927 11.9509331 11.9510871 11.951610 11.951076

100 3.6413864 3.6414032 3.6413875 3.642325 3.641344

110 0.3312030 0.3312563 0.3311968 0.331348 0.331074

90 0.09 13.3851974 13.3851165 13.3852048 13.385563 13.385190

100 4.9151167 4.9151388 4.9151177 4.914254 4.915075

110 0.6302713 0.6302538 0.6302717 0.629843 0.630064

90 0.15 15.3987687 15.3988062 15.3987860 15.398885 15.398767

100 7.0277081 7.0276544 7.0277022 7.027385 7.027678

110 1.4136149 1.4136013 1.4136161 1.414953 1.413286

aHsu and Lyuu (2004); Zhang (2001,2003); Chen and Lyuu (2006).
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A Grand Comparison (concluded)

X σ r Exact AA2 AA3 Hsu-Lyuu Chen-Lyuu

90 0.20 0.05 12.5959916 12.5957894 12.5959304 12.596052 12.595602

100 5.7630881 5.7631987 5.7631187 5.763664 5.762708

110 1.9898945 1.9894855 1.9899382 1.989962 1.989242

90 0.09 13.8314996 13.8307782 13.8313482 13.831604 13.831220

100 6.7773481 6.7775756 6.7773833 6.777748 6.776999

110 2.5462209 2.5459150 2.5462598 2.546397 2.545459

90 0.15 15.6417575 15.6401370 15.6414533 15.641911 15.641598

100 8.4088330 8.4091957 8.4088744 8.408966 8.408519

110 3.5556100 3.5554997 3.5556415 3.556094 3.554687

90 0.30 0.05 13.9538233 13.9555691 13.9540973 13.953937 13.952421

100 7.9456288 7.9459286 7.9458549 7.945918 7.944357

110 4.0717942 4.0702869 4.0720881 4.071945 4.070115

90 0.09 14.9839595 14.9854235 14.9841522 14.984037 14.982782

100 8.8287588 8.8294164 8.8289978 8.829033 8.827548

110 4.6967089 4.6956764 4.6969698 4.696895 4.694902

90 0.15 16.5129113 16.5133090 16.5128376 16.512963 16.512024

100 10.2098305 10.2110681 10.2101058 10.210039 10.208724

110 5.7301225 5.7296982 5.7303567 5.730357 5.728161
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