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Class Information

• Yuh-Dauh Lyuu. Financial Engineering & Computation:
Principles, Mathematics, Algorithms. Cambridge
University Press. 2002.

• Official Web page is

www.csie.ntu.edu.tw/~lyuu/finance1.html

• Check

www.csie.ntu.edu.tw/~lyuu/capitals.html

for some of the software.
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Class Information (concluded)

• Please ask many questions in class.

– The best way for me to remember you in a large
class.a

• Teaching assistants will be announced later.
a“[A] science concentrator [...] said that in his eighth semester of

[Harvard] college, there was not a single science professor who could

identify him by name.” (New York Times, September 3, 2003.)
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Useful Journals

• Applied Mathematical Finance.

• Finance and Stochastics.

• Financial Analysts Journal.

• Journal of Banking & Finance.

• Journal of Computational Finance.

• Journal of Derivatives.

• Journal of Economic Dynamics & Control.

• Journal of Finance.

• Journal of Financial Economics.
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Useful Journals (continued)

• Journal of Fixed Income.

• Journal of Futures Markets.

• Journal of Financial and Quantitative Analysis.

• Journal of Portfolio Management.

• Journal of Real Estate Finance and Economics.

• Management Science.

• Mathematical Finance.
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Useful Journals (concluded)

• Quantitative Finance.

• Review of Financial Studies.

• Review of Derivatives Research.

• Risk Magazine.

• Stochastics and Stochastics Reports.
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Introduction
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[An] investment bank could be
more collegial than a college.

— Emanuel Derman,
My Life as a Quant (2004)

The two most dangerous words in Wall Street
vocabulary are “financial engineering.”

— Wilbur Ross (2007)
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What This Course Is About

• Financial theories in pricing.

• Mathematical backgrounds.

• Derivative securities.

• Pricing models.

• Efficient algorithms in pricing financial instruments.

• Research problems.

• Finding your thesis directions.
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What This Course Is Not About

• How to program.

• Basic mathematics in calculus, probability, and algebra.

• Details of the financial markets.

• How to be rich.

• How the markets will perform tomorrow.
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The Modelers’ Hippocratic Oatha

• I will remember that I didn’t make the world, and it doesn’t

satisfy my equations.

• Though I will use models boldly to estimate value, I will not

be overly impressed by mathematics.

• I will never sacrifice reality for elegance without explaining

why I have done so.

• Nor will I give the people who use my model false comfort

about its accuracy. Instead, I will make explicit its

assumptions and oversights.

• I understand that my work may have enormous effects on

society and the economy, many of them beyond my

comprehension.
aEmanuel Derman and Paul Wilmott, January 7, 2009.
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Analysis of Algorithms
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It is unworthy of excellent men
to lose hours like slaves

in the labor of computation.
— Gottfried Wilhelm Leibniz (1646–1716)
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Computability and Algorithms

• Algorithms are precise procedures that can be turned
into computer programs.

• Uncomputable problems.

– Does this program have infinite loops?

– Is this program bug free?

• Computable problems.

– Intractable problems.

– Tractable problems.
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Complexity

• Start with a set of basic operations which will be
assumed to take one unit of time.

• The total number of these operations is the total work
done by an algorithm (its computational complexity).

• The space complexity is the amount of memory space
used by an algorithm.

• Concentrate on the abstract complexity of an algorithm
instead of its detailed implementation.

• Complexity is a good guide to an algorithm’s actual
running time.
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Asymptotics

• Consider the search algorithm on p. 16.

• The worst-case complexity is n comparisons (why?).

• There are operations besides comparison.

• We care only about the asymptotic growth rate not the
exact number of operations.

– So the complexity of maintaining the loop is
subsumed by the complexity of the body of the loop.

• The complexity is hence O(n).
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Algorithm for Searching an Element

1: for k = 1, 2, 3, . . . , n do
2: if x = Ak then
3: return k;
4: end if
5: end for
6: return not-found;
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Common Complexities

• Let n stand for the “size” of the problem.

– Number of elements, number of cash flows, etc.

• Linear time if the complexity is O(n).

• Quadratic time if the complexity is O(n2).

• Cubic time if the complexity is O(n3).

• Exponential time if the complexity is 2O(n).

• Superpolynomial if the complexity is less than
exponential but higher than polynomials, say 2O(

√
n ).
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Basic Financial Mathematics
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In the fifteenth century
mathematics was mainly concerned with
questions of commercial arithmetic and

the problems of the architect.
— Joseph Alois Schumpeter (1883–1950)

I’m more concerned about the return of
my money than the return on my money.

— Will Rogers (1879–1935)
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The Time Line

-
Time 0 Time 1 Time 2 Time 3 Time 4

Period 1 Period 2 Period 3 Period 4
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Time Value of Moneya

FV = PV(1 + r)n,

PV = FV× (1 + r)−n.

• FV (future value).

• PV (present value).

• r: interest rate.
aFibonacci (1170–1240) and Irving Fisher (1867–1947).
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Periodic Compounding

• Suppose the interest is compounded m times per
annum, then

1 →
(
1 +

r

m

)
→

(
1 +

r

m

)2

→
(
1 +

r

m

)3

→ · · ·

• Hence

FV = PV
(
1 +

r

m

)nm

. (1)
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Common Compounding Methods

• Annual compounding: m = 1.

• Semiannual compounding: m = 2.

• Quarterly compounding: m = 4.

• Monthly compounding: m = 12.

• Weekly compounding: m = 52.

• Daily compounding: m = 365.
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Easy Translations

• An interest rate of r compounded m times a year is
“equivalent to” an interest rate of r/m per 1/m year.

• If a loan asks for a return of 1% per month, the annual
interest rate will be 12% with monthly compounding.
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Example

• Annual interest rate is 10% compounded twice per
annum.

• Each dollar will grow to be

[ 1 + (0.1/2) ]2 = 1.1025

one year from now.

• The rate is equivalent to an interest rate of 10.25%
compounded once per annum.
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Continuous Compoundinga

• Let m →∞ so that
(
1 +

r

m

)m

→ er

in Eq. (1) on p. 22.

• Then
FV = PV× ern,

where e = 2.71828 . . . .
aJacob Bernoulli (1654–1705) in 1685.
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Continuous Compounding (concluded)

• Continuous compounding is easier to work with.

• Suppose the annual interest rate is r1 for n1 years and
r2 for the following n2 years.

• Then the FV of one dollar will be

er1n1+r2n2 .
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Efficient Algorithms for PV and FV

• The PV of the cash flow C1, C2, . . . , Cn at times
1, 2, . . . , n is

C1

1 + y
+

C2

(1 + y)2
+ · · ·+ Cn

(1 + y)n
.

• This formula and its variations are the engine behind
most of financial calculations.a

– What is y?

– What are Ci?

– What is n?
a“Asset pricing theory all stems from one simple concept [...]: price

equals expected discounted payoff” (see Cochrane (2005)).
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Algorithm for Evaluating PV

1: x := 0;
2: d := 1 + y;
3: for i = n, n− 1, . . . , 1 do
4: x := (x + Ci)/d;
5: end for
6: return x;
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Horner’s Rule: The Idea Behind p. 29

• This idea is
(
· · ·

((
Cn

1 + y
+ Cn−1

)
1

1 + y
+ Cn−2

)
1

1 + y
+ · · ·

)
1

1 + y
.

– Due to Horner (1786–1837) in 1819.

• The algorithm takes O(n) time.

• It is the most efficient possible in terms of the absolute
number of arithmetic operations.a

aBorodin and Munro (1975).
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Conversion between Compounding Methods

• Suppose r1 is the annual rate with continuous
compounding.

• Suppose r2 is the equivalent rate compounded m times
per annum.

• How are they related?
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Conversion between Compounding Methods
(concluded)

• Both interest rates must produce the same amount of
money after one year.

• That is, (
1 +

r2

m

)m

= er1 .

• Therefore,

r1 = m ln
(
1 +

r2

m

)
,

r2 = m
(
er1/m − 1

)
.
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Annuitiesa

• An annuity pays out the same C dollars at the end of
each year for n years.

• With a rate of r, the FV at the end of the nth year is

n−1∑

i=0

C(1 + r)i = C
(1 + r)n − 1

r
. (2)

aJan de Witt (1625–1672) in 1671 and Nicholas Bernoulli (1687–1759)

in 1709.
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General Annuities

• If m payments of C dollars each are received per year
(the general annuity), then Eq. (2) becomes

C

(
1 + r

m

)nm − 1
r
m

.

• The PV of a general annuity is

nm∑

i=1

C
(
1 +

r

m

)−i

= C
1− (

1 + r
m

)−nm

r
m

. (3)
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Amortization

• It is a method of repaying a loan through regular
payments of interest and principal.

• The size of the loan (the original balance) is reduced by
the principal part of each payment.

• The interest part of each payment pays the interest
incurred on the remaining principal balance.

• As the principal gets paid down over the term of the
loan, the interest part of the payment diminishes.
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Example: Home Mortgage

• By paying down the principal consistently, the risk to
the lender is lowered.

• When the borrower sells the house, the remaining
principal is due the lender.

• Consider the equal-payment case, i.e., fixed-rate,
level-payment, fully amortized mortgages.

– They are called traditional mortgages in the U.S.
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A Numerical Example

• Consider a 15-year, $250,000 loan at 8.0% interest rate.

• Solving Eq. (3) on p. 34 with PV = 250000, n = 15,
m = 12, and r = 0.08 gives a monthly payment of
C = 2389.13.

• The amortization schedule is shown on p. 38.

• In every month (1) the principal and interest parts add
up to $2,389.13, (2) the remaining principal is reduced
by the amount indicated under the Principal heading,
and (3) the interest is computed by multiplying the
remaining balance of the previous month by 0.08/12.
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Month Payment Interest Principal
Remaining
principal

250,000.000

1 2,389.13 1,666.667 722.464 249,277.536

2 2,389.13 1,661.850 727.280 248,550.256

3 2,389.13 1,657.002 732.129 247,818.128

· · ·
178 2,389.13 47.153 2,341.980 4,730.899

179 2,389.13 31.539 2,357.591 2,373.308

180 2,389.13 15.822 2,373.308 0.000

Total 430,043.438 180,043.438 250,000.000
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Method 1 of Calculating the Remaining Principal

• Go down the amortization schedule until you reach the
particular month you are interested in.

– A month’s principal payment equals the monthly
payment subtracted by the previous month’s
remaining principal times the monthly interest rate.

– A month’s remaining principal equals the previous
month’s remaining principal subtracted by the
principal payment calculated above.
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Method 1 of Calculating the Remaining Principal
(concluded)

• This method is relatively slow but is universal in its
applicability.

• It can, for example, accommodate prepayment and
variable interest rates.
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Method 2 of Calculating the Remaining Principal

• Right after the kth payment, the remaining principal is
the PV of the future nm− k cash flows,

nm−k∑

i=1

C
(
1 +

r

m

)−i

= C
1− (

1 + r
m

)−nm+k

r
m

. (4)

• This method is faster but more limited in applications.
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Yields

• The term yield denotes the return of investment.

• Two widely used yields are the bond equivalent yield
(BEY) and the mortgage equivalent yield (MEY).

• Recall Eq. (1) on p. 22: FV = PV
(
1 + r

m

)nm.

• BEY corresponds to the r above that equates PV with
FV when m = 2.

• MEY corresponds to the r above that equates PV with
FV when m = 12.
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Internal Rate of Return (IRR)

• It is the interest rate which equates an investment’s PV
with its price P ,

P =
C1

(1 + y)
+

C2

(1 + y)2
+

C3

(1 + y)3
+ · · ·+ Cn

(1 + y)n
.

• The above formula is the foundation upon which pricing
methodologies are built.
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Numerical Methods for Yields

• Solve f(y) = 0 for y ≥ −1, where

f(y) ≡
n∑

t=1

Ct

(1 + y)t
− P.

– P is the market price.

• The function f(y) is monotonic in y if Ct > 0 for all t.

• A unique solution exists for a monotonic f(y).
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The Bisection Method

• Start with a and b where a < b and f(a) f(b) < 0.

• Then f(ξ) must be zero for some ξ ∈ [ a, b ].

• If we evaluate f at the midpoint c ≡ (a + b)/2, either
(1) f(c) = 0, (2) f(a) f(c) < 0, or (3) f(c) f(b) < 0.

• In the first case we are done, in the second case we
continue the process with the new bracket [ a, c ], and in
the third case we continue with [ c, b ].

• The bracket is halved in the latter two cases.

• After n steps, we will have confined ξ within a bracket
of length (b− a)/2n.
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D EF
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The Newton-Raphson Method

• Converges faster than the bisection method.

• Start with a first approximation x0 to a root of
f(x) = 0.

• Then

xk+1 ≡ xk − f(xk)
f ′(xk)

.

• When computing yields,

f ′(x) = −
n∑

t=1

tCt

(1 + x)t+1
.
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xk xk 1
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y

f x( )
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The Secant Method

• A variant of the Newton-Raphson method.

• Replace differentiation with difference.

• Start with two approximations x0 and x1.

• Then compute the (k + 1)st approximation with

xk+1 = xk − f(xk)(xk − xk−1)
f(xk)− f(xk−1)

.
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The Secant Method (concluded)

• Its convergence rate, 1.618.

• This is slightly worse than the Newton-Raphson
method’s 2.

• But the secant method does not need to evaluate f ′(xk)
needed by the Newton-Raphson method.

• This saves about 50% in computation efforts per
iteration.

• The convergence rate of the bisection method is 1.
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Solving Systems of Nonlinear Equations

• It is not easy to extend the bisection method to higher
dimensions.

• But the Newton-Raphson method can be extended to
higher dimensions.

• Let (xk, yk) be the kth approximation to the solution of
the two simultaneous equations,

f(x, y) = 0,

g(x, y) = 0.
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Solving Systems of Nonlinear Equations (concluded)

• The (k + 1)st approximation (xk+1, yk+1) satisfies the
following linear equations,




∂f(xk,yk)
∂x

∂f(xk,yk)
∂y

∂g(xk,yk)
∂x

∂g(xk,yk)
∂y





 ∆xk+1

∆yk+1


 = −


 f(xk, yk)

g(xk, yk)


 ,

where unknowns ∆xk+1 ≡ xk+1 − xk and
∆yk+1 ≡ yk+1 − yk.

• The above has a unique solution for (∆xk+1, ∆yk+1)
when the 2× 2 matrix is invertible.

• Set (xk+1, yk+1) = (xk + ∆xk+1, yk + ∆yk+1).
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