Principles of Financial Computing

Prof. Yuh-Dauh Lyuu

Dept. Computer Science & Information Engineering

and

Department of Finance National Taiwan University

Class Information

- Yuh-Dauh Lyuu. Financial Engineering & Computation: Principles, Mathematics, Algorithms. Cambridge University Press. 2002.
- Official Web page is

www.csie.ntu.edu.tw/~lyuu/finance1.html

• Check

www.csie.ntu.edu.tw/~lyuu/capitals.html

for some of the software.

Class Information (concluded)

- Please ask many questions in class.
 - The best way for me to remember you in a large class.^a
- Teaching assistants will be announced later.

^a "[A] science concentrator [...] said that in his eighth semester of [Harvard] college, there was not a single science professor who could identify him by name." (*New York Times*, September 3, 2003.)

Useful Journals

- Applied Mathematical Finance.
- Finance and Stochastics.
- Financial Analysts Journal.
- Journal of Banking & Finance.
- Journal of Computational Finance.
- Journal of Derivatives.
- Journal of Economic Dynamics & Control.
- Journal of Finance.
- Journal of Financial Economics.

Useful Journals (continued)

- Journal of Fixed Income.
- Journal of Futures Markets.
- Journal of Financial and Quantitative Analysis.
- Journal of Portfolio Management.
- Journal of Real Estate Finance and Economics.
- Management Science.
- Mathematical Finance.

Useful Journals (concluded)

- Quantitative Finance.
- Review of Financial Studies.
- Review of Derivatives Research.
- Risk Magazine.
- Stochastics and Stochastics Reports.

Introduction

[An] investment bank could be more collegial than a college.
— Emanuel Derman, My Life as a Quant (2004)

The two most dangerous words in Wall Street vocabulary are "financial engineering." — Wilbur Ross (2007)

What This Course Is About

- Financial theories in pricing.
- Mathematical backgrounds.
- Derivative securities.
- Pricing models.
- Efficient algorithms in pricing financial instruments.
- Research problems.
- Finding your thesis directions.

What This Course Is Not About

- How to program.
- Basic mathematics in calculus, probability, and algebra.
- Details of the financial markets.
- How to be rich.
- How the markets will perform tomorrow.

The Modelers' Hippocratic Oath^a

- I will remember that I didn't make the world, and it doesn't satisfy my equations.
- Though I will use models boldly to estimate value, I will not be overly impressed by mathematics.
- I will never sacrifice reality for elegance without explaining why I have done so.
- Nor will I give the people who use my model false comfort about its accuracy. Instead, I will make explicit its assumptions and oversights.
- I understand that my work may have enormous effects on society and the economy, many of them beyond my comprehension.

^aEmanuel Derman and Paul Wilmott, January 7, 2009.

Analysis of Algorithms

It is unworthy of excellent men to lose hours like slaves in the labor of computation. — Gottfried Wilhelm Leibniz (1646–1716)

Computability and Algorithms

- Algorithms are precise procedures that can be turned into computer programs.
- Uncomputable problems.
 - Does this program have infinite loops?
 - Is this program bug free?
- Computable problems.
 - Intractable problems.
 - Tractable problems.

Complexity

- Start with a set of basic operations which will be assumed to take one unit of time.
- The total number of these operations is the total work done by an algorithm (its computational complexity).
- The space complexity is the amount of memory space used by an algorithm.
- Concentrate on the abstract complexity of an algorithm instead of its detailed implementation.
- Complexity is a good guide to an algorithm's *actual* running time.

Asymptotics

- Consider the search algorithm on p. 16.
- The worst-case complexity is n comparisons (why?).
- There are operations besides comparison.
- We care only about the asymptotic growth rate not the exact number of operations.
 - So the complexity of maintaining the loop is subsumed by the complexity of the body of the loop.
- The complexity is hence O(n).

Algorithm for Searching an Element

1: for
$$k = 1, 2, 3, \ldots, n$$
 do

2: **if**
$$x = A_k$$
 then

- 3: return k;
- 4: **end if**
- 5: end for
- 6: return not-found;

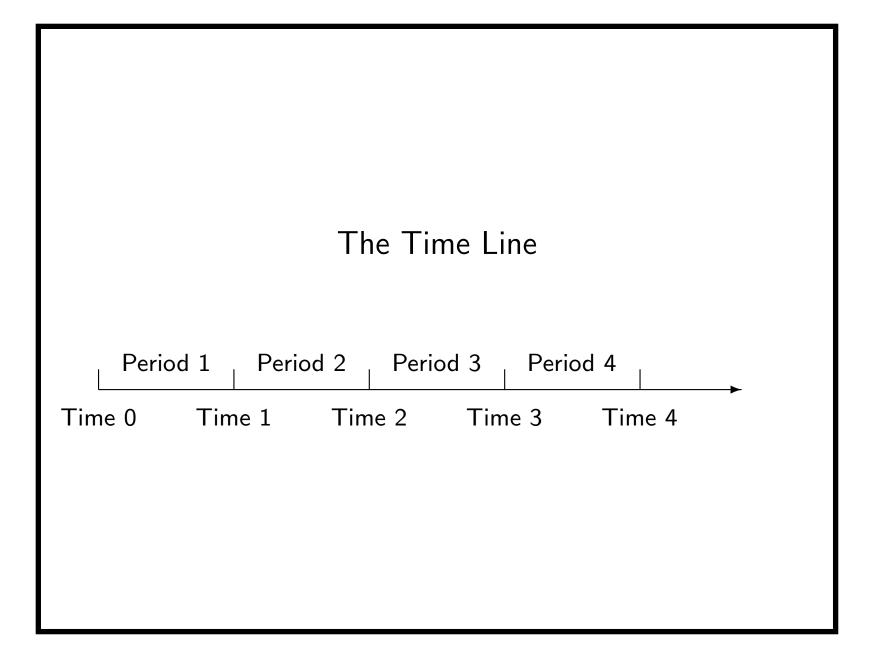
Common Complexities

- Let n stand for the "size" of the problem.
 - Number of elements, number of cash flows, etc.
- Linear time if the complexity is O(n).
- Quadratic time if the complexity is $O(n^2)$.
- Cubic time if the complexity is $O(n^3)$.
- Exponential time if the complexity is $2^{O(n)}$.
- Superpolynomial if the complexity is less than exponential but higher than polynomials, say $2^{O(\sqrt{n})}$.

Basic Financial Mathematics

In the fifteenth century mathematics was mainly concerned with questions of commercial arithmetic and the problems of the architect. — Joseph Alois Schumpeter (1883–1950)

I'm more concerned about the return of my money than the return on my money. — Will Rogers (1879–1935)



Time Value of Money $^{\rm a}$

$$FV = PV(1+r)^{n},$$

PV = FV × (1+r)⁻ⁿ.

- FV (future value).
- PV (present value).
- r: interest rate.

^aFibonacci (1170–1240) and Irving Fisher (1867–1947).

Periodic Compounding

• Suppose the interest is compounded m times per annum, then

$$1 \to \left(1 + \frac{r}{m}\right) \to \left(1 + \frac{r}{m}\right)^2 \to \left(1 + \frac{r}{m}\right)^3 \to \cdots$$

• Hence

$$FV = PV \left(1 + \frac{r}{m}\right)^{nm}.$$
 (1)

Common Compounding Methods

- Annual compounding: m = 1.
- Semiannual compounding: m = 2.
- Quarterly compounding: m = 4.
- Monthly compounding: m = 12.
- Weekly compounding: m = 52.
- Daily compounding: m = 365.

Easy Translations

- An interest rate of r compounded m times a year is "equivalent to" an interest rate of r/m per 1/m year.
- If a loan asks for a return of 1% per month, the annual interest rate will be 12% with monthly compounding.

Example

- Annual interest rate is 10% compounded twice per annum.
- Each dollar will grow to be

$$[1 + (0.1/2)]^2 = 1.1025$$

one year from now.

• The rate is equivalent to an interest rate of 10.25% compounded once *per annum*.

Continuous Compounding $^{\rm a}$

• Let $m \to \infty$ so that

$$\left(1+\frac{r}{m}\right)^m \to e^r$$

in Eq. (1) on p. 22.

• Then

$$FV = PV \times e^{rn},$$

where e = 2.71828...

^aJacob Bernoulli (1654–1705) in 1685.

Continuous Compounding (concluded)

- Continuous compounding is easier to work with.
- Suppose the annual interest rate is r_1 for n_1 years and r_2 for the following n_2 years.
- Then the FV of one dollar will be

 $e^{r_1n_1+r_2n_2}.$

Efficient Algorithms for PV and FV

• The PV of the cash flow C_1, C_2, \ldots, C_n at times $1, 2, \ldots, n$ is

$$\frac{C_1}{1+y} + \frac{C_2}{(1+y)^2} + \dots + \frac{C_n}{(1+y)^n}$$

• This formula and its variations are the engine behind most of financial calculations.^a

- What is y?

- What are C_i ?

- What is n?

^a "Asset pricing theory all stems from one simple concept [...]: price equals expected discounted payoff" (see Cochrane (2005)).

Algorithm for Evaluating PV

1:
$$x := 0;$$

2:
$$d := 1 + y;$$

3: for
$$i = n, n - 1, ..., 1$$
 do

$$4: \quad x := (x + C_i)/d;$$

$$5:$$
 end for

6: return x;

Horner's Rule: The Idea Behind p. 29

• This idea is

$$\left(\cdots\left(\left(\frac{C_n}{1+y}+C_{n-1}\right)\frac{1}{1+y}+C_{n-2}\right)\frac{1}{1+y}+\cdots\right)\frac{1}{1+y}$$

- Due to Horner (1786–1837) in 1819.

- The algorithm takes O(n) time.
- It is the most efficient possible in terms of the absolute number of arithmetic operations.^a

^aBorodin and Munro (1975).

Conversion between Compounding Methods

- Suppose r_1 is the annual rate with continuous compounding.
- Suppose r_2 is the equivalent rate compounded m times per annum.
- How are they related?

Conversion between Compounding Methods (concluded)

- Both interest rates must produce the same amount of money after one year.
- That is,

$$\left(1+\frac{r_2}{m}\right)^m = e^{r_1}.$$

• Therefore,

$$r_1 = m \ln \left(1 + \frac{r_2}{m}\right),$$

$$r_2 = m \left(e^{r_1/m} - 1\right).$$

${\sf Annuities}^{\rm a}$

- An annuity pays out the same C dollars at the end of each year for n years.
- With a rate of r, the FV at the end of the nth year is

$$\sum_{i=0}^{n-1} C(1+r)^i = C \, \frac{(1+r)^n - 1}{r}.$$
 (2)

 $^{\rm a}$ Jan de Witt (1625–1672) in 1671 and Nicholas Bernoulli (1687–1759) in 1709.

General Annuities

• If m payments of C dollars each are received per year (the general annuity), then Eq. (2) becomes

$$C \, \frac{\left(1 + \frac{r}{m}\right)^{nm} - 1}{\frac{r}{m}}.$$

• The PV of a general annuity is

$$\sum_{i=1}^{nm} C\left(1+\frac{r}{m}\right)^{-i} = C \, \frac{1-\left(1+\frac{r}{m}\right)^{-nm}}{\frac{r}{m}}.$$
 (3)

Amortization

- It is a method of repaying a loan through regular payments of interest *and* principal.
- The size of the loan (the original balance) is reduced by the principal part of each payment.
- The interest part of each payment pays the interest incurred on the remaining principal balance.
- As the principal gets paid down over the term of the loan, the interest part of the payment diminishes.

Example: Home Mortgage

- By paying down the principal consistently, the risk to the lender is lowered.
- When the borrower sells the house, the remaining principal is due the lender.
- Consider the equal-payment case, i.e., fixed-rate, level-payment, fully amortized mortgages.
 - They are called traditional mortgages in the U.S.

A Numerical Example

- Consider a 15-year, \$250,000 loan at 8.0% interest rate.
- Solving Eq. (3) on p. 34 with PV = 250000, n = 15, m = 12, and r = 0.08 gives a monthly payment of C = 2389.13.
- The amortization schedule is shown on p. 38.
- In every month (1) the principal and interest parts add up to \$2,389.13, (2) the remaining principal is reduced by the amount indicated under the Principal heading, and (3) the interest is computed by multiplying the remaining balance of the previous month by 0.08/12.

Remaining principal	Principal	Interest	Payment	Month
250,000.000				
249,277.536	722.464	$1,\!666.667$	$2,\!389.13$	1
$248,\!550.256$	727.280	$1,\!661.850$	$2,\!389.13$	2
247,818.128	732.129	$1,\!657.002$	$2,\!389.13$	3
		•••		
4,730.899	$2,\!341.980$	47.153	$2,\!389.13$	178
$2,\!373.308$	$2,\!357.591$	31.539	$2,\!389.13$	179
0.000	$2,\!373.308$	15.822	$2,\!389.13$	180
	250,000.000	$180,\!043.438$	$430,\!043.438$	Total

Method 1 of Calculating the Remaining Principal

- Go down the amortization schedule until you reach the particular month you are interested in.
 - A month's principal payment equals the monthly payment subtracted by the previous month's remaining principal times the monthly interest rate.
 - A month's remaining principal equals the previous month's remaining principal subtracted by the principal payment calculated above.

Method 1 of Calculating the Remaining Principal (concluded)

- This method is relatively slow but is universal in its applicability.
- It can, for example, accommodate prepayment and variable interest rates.

Method 2 of Calculating the Remaining Principal

• Right after the kth payment, the remaining principal is the PV of the future nm - k cash flows,

$$\sum_{i=1}^{nm-k} C\left(1+\frac{r}{m}\right)^{-i} = C \, \frac{1-\left(1+\frac{r}{m}\right)^{-nm+k}}{\frac{r}{m}}.$$
 (4)

• This method is faster but more limited in applications.

Yields

- The term yield denotes the return of investment.
- Two widely used yields are the bond equivalent yield (BEY) and the mortgage equivalent yield (MEY).
- Recall Eq. (1) on p. 22: $FV = PV \left(1 + \frac{r}{m}\right)^{nm}$.
- BEY corresponds to the r above that equates PV with FV when m = 2.
- MEY corresponds to the r above that equates PV with FV when m = 12.

Internal Rate of Return (IRR)

• It is the interest rate which equates an investment's PV with its price P,

$$P = \frac{C_1}{(1+y)} + \frac{C_2}{(1+y)^2} + \frac{C_3}{(1+y)^3} + \dots + \frac{C_n}{(1+y)^n}.$$

• The above formula is the foundation upon which pricing methodologies are built.

Numerical Methods for Yields

• Solve f(y) = 0 for $y \ge -1$, where

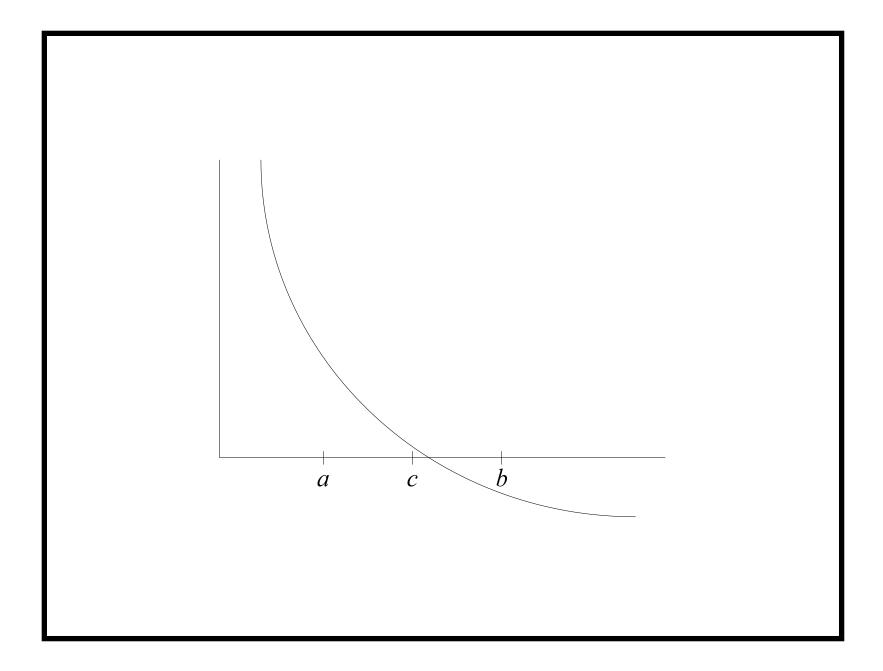
$$f(y) \equiv \sum_{t=1}^{n} \frac{C_t}{(1+y)^t} - P.$$

-P is the market price.

- The function f(y) is monotonic in y if $C_t > 0$ for all t.
- A unique solution exists for a monotonic f(y).

The Bisection Method

- Start with a and b where a < b and f(a) f(b) < 0.
- Then $f(\xi)$ must be zero for some $\xi \in [a, b]$.
- If we evaluate f at the midpoint $c \equiv (a+b)/2$, either (1) f(c) = 0, (2) f(a) f(c) < 0, or (3) f(c) f(b) < 0.
- In the first case we are done, in the second case we continue the process with the new bracket [a, c], and in the third case we continue with [c, b].
- The bracket is halved in the latter two cases.
- After n steps, we will have confined ξ within a bracket of length $(b-a)/2^n$.



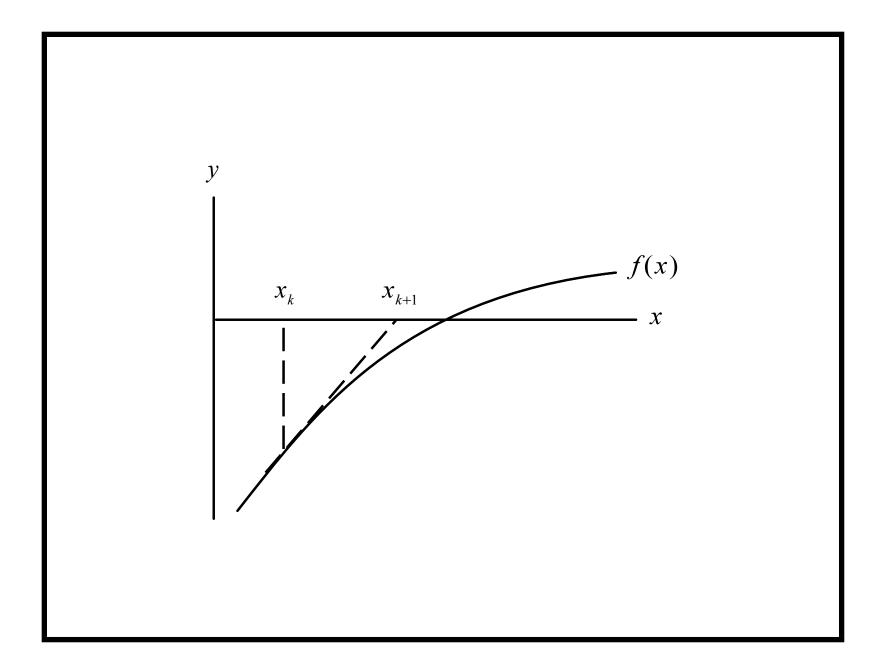
The Newton-Raphson Method

- Converges faster than the bisection method.
- Start with a first approximation x_0 to a root of f(x) = 0.
- Then

$$x_{k+1} \equiv x_k - \frac{f(x_k)}{f'(x_k)}.$$

• When computing yields,

$$f'(x) = -\sum_{t=1}^{n} \frac{tC_t}{(1+x)^{t+1}}.$$



The Secant Method

- A variant of the Newton-Raphson method.
- Replace differentiation with difference.
- Start with two approximations x_0 and x_1 .
- Then compute the (k+1)st approximation with

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}.$$

The Secant Method (concluded)

- Its convergence rate, 1.618.
- This is slightly worse than the Newton-Raphson method's 2.
- But the secant method does not need to evaluate $f'(x_k)$ needed by the Newton-Raphson method.
- This saves about 50% in computation efforts per iteration.
- The convergence rate of the bisection method is 1.

Solving Systems of Nonlinear Equations

- It is not easy to extend the bisection method to higher dimensions.
- But the Newton-Raphson method can be extended to higher dimensions.
- Let (x_k, y_k) be the *k*th approximation to the solution of the two simultaneous equations,

f(x,y) = 0,g(x,y) = 0.

Solving Systems of Nonlinear Equations (concluded)

• The (k+1)st approximation (x_{k+1}, y_{k+1}) satisfies the following linear equations,

$$\begin{bmatrix} \frac{\partial f(x_k, y_k)}{\partial x} & \frac{\partial f(x_k, y_k)}{\partial y} \\ \frac{\partial g(x_k, y_k)}{\partial x} & \frac{\partial g(x_k, y_k)}{\partial y} \end{bmatrix} \begin{bmatrix} \Delta x_{k+1} \\ \Delta y_{k+1} \end{bmatrix} = -\begin{bmatrix} f(x_k, y_k) \\ g(x_k, y_k) \end{bmatrix},$$

where unknowns $\Delta x_{k+1} \equiv x_{k+1} - x_k$ and $\Delta y_{k+1} \equiv y_{k+1} - y_k$.

• The above has a unique solution for $(\Delta x_{k+1}, \Delta y_{k+1})$ when the 2 × 2 matrix is invertible.

• Set
$$(x_{k+1}, y_{k+1}) = (x_k + \Delta x_{k+1}, y_k + \Delta y_{k+1}).$$