The Black-Karasinski Model^a

• The BK model stipulates that the short rate follows

$$d\ln r = \kappa(t)(\theta(t) - \ln r) dt + \sigma(t) dW.$$

- This explicitly mean-reverting model depends on time through $\kappa(\cdot)$, $\theta(\cdot)$, and $\sigma(\cdot)$.
- The BK model hence has one more degree of freedom than the BDT model.
- The speed of mean reversion $\kappa(t)$ and the short rate volatility $\sigma(t)$ are independent.

^aBlack and Karasinski (1991).

The Black-Karasinski Model: Discrete Time

- The discrete-time version of the BK model has the same representation as the BDT model.
- To maintain a combining binomial tree, however, requires some manipulations.
- The next plot illustrates the ideas in which

 $t_2 \equiv t_1 + \Delta t_1,$ $t_3 \equiv t_2 + \Delta t_2.$

The Black-Karasinski Model: Discrete Time (continued)

• Note that

 $\ln r_{\rm d}(t_2) = \ln r(t_1) + \kappa(t_1)(\theta(t_1) - \ln r(t_1)) \Delta t_1 - \sigma(t_1) \sqrt{\Delta t_1}, \\ \ln r_{\rm u}(t_2) = \ln r(t_1) + \kappa(t_1)(\theta(t_1) - \ln r(t_1)) \Delta t_1 + \sigma(t_1) \sqrt{\Delta t_1}.$

• To ensure that an up move followed by a down move coincides with a down move followed by an up move, impose

$$\ln r_{\rm d}(t_2) + \kappa(t_2)(\theta(t_2) - \ln r_{\rm d}(t_2)) \Delta t_2 + \sigma(t_2) \sqrt{\Delta t_2},$$

= $\ln r_{\rm u}(t_2) + \kappa(t_2)(\theta(t_2) - \ln r_{\rm u}(t_2)) \Delta t_2 - \sigma(t_2) \sqrt{\Delta t_2}.$

The Black-Karasinski Model: Discrete Time (concluded)

• They imply

$$\kappa(t_2) = \frac{1 - (\sigma(t_2)/\sigma(t_1))\sqrt{\Delta t_2/\Delta t_1}}{\Delta t_2}.$$
(105)

• So from Δt_1 , we can calculate the Δt_2 that satisfies the combining condition and then iterate.

$$-t_0 \to \Delta t_0 \to t_1 \to \Delta t_1 \to t_2 \to \Delta t_2 \to \cdots \to T$$

(roughly).

Problems with Lognormal Models in General

- Lognormal models such as BDT and BK share the problem that $E^{\pi}[M(t)] = \infty$ for any finite t if they the continuously compounded rate.
- Hence periodic compounding should be used.
- Another issue is computational.
- Lognormal models usually do not give analytical solutions to even basic fixed-income securities.
- As a result, to price short-dated derivatives on long-term bonds, the tree has to be built over the life of the underlying asset instead of the life of the derivative.

Problems with Lognormal Models in General (concluded)

- This problem can be somewhat mitigated by adopting different time steps: Use a fine time step up to the maturity of the short-dated derivative and a coarse time step beyond the maturity.^a
- A down side of this procedure is that it has to be carried out for each derivative.
- Finally, empirically, interest rates do not follow the lognormal distribution.

^aHull and White (1993).

The Extended Vasicek Model $^{\rm a}$

- Hull and White proposed models that extend the Vasicek model and the CIR model.
- They are called the extended Vasicek model and the extended CIR model.
- The extended Vasicek model adds time dependence to the original Vasicek model,

$$dr = (\theta(t) - a(t) r) dt + \sigma(t) dW.$$

Like the Ho-Lee model, this is a normal model, and the inclusion of θ(t) allows for an exact fit to the current spot rate curve.

^aHull and White (1990).

The Extended Vasicek Model (concluded)

- Function $\sigma(t)$ defines the short rate volatility, and a(t) determines the shape of the volatility structure.
- Under this model, many European-style securities can be evaluated analytically, and efficient numerical procedures can be developed for American-style securities.

The Hull-White Model

• The Hull-White model is the following special case,

$$dr = (\theta(t) - ar) dt + \sigma dW.$$

• When the current term structure is matched,^a

$$\theta(t) = \frac{\partial f(0,t)}{\partial t} + af(0,t) + \frac{\sigma^2}{2a} \left(1 - e^{-2at}\right).$$

^aHull and White (1993).

The Extended CIR Model

• In the extended CIR model the short rate follows

$$dr = (\theta(t) - a(t) r) dt + \sigma(t) \sqrt{r} dW.$$

- The functions $\theta(t)$, a(t), and $\sigma(t)$ are implied from market observables.
- With constant parameters, there exist analytical solutions to a small set of interest-rate-sensitive securities.

The Hull-White Model: Calibration^a

- We describe a trinomial forward induction scheme to calibrate the Hull-White model given a and σ .
- As with the Ho-Lee model, the set of achievable short rates is evenly spaced.
- Let r_0 be the annualized, continuously compounded short rate at time zero.
- Every short rate on the tree takes on a value $r_0 + j\Delta r$ for some integer j.

^aHull and White (1993).

- Time increments on the tree are also equally spaced at Δt apart.
 - Binomial trees should not be used to model mean-reverting interest rates when Δt is a constant.^a
- Hence nodes are located at times $i\Delta t$ for $i = 0, 1, 2, \ldots$
- We shall refer to the node on the tree with $t_i \equiv i\Delta t$ and $r_j \equiv r_0 + j\Delta r$ as the (i, j) node.
- The short rate at node (i, j), which equals r_j , is effective for the time period $[t_i, t_{i+1})$.

^aHull and White (1992).

$$\mu_{i,j} \equiv \theta(t_i) - ar_j \tag{106}$$

to denote the drift rate, or the expected change, of the short rate as seen from node (i, j).

- The three distinct possibilities for node (i, j) with three branches incident from it are displayed on p. 934.
- The interest rate movement described by the middle branch may be an increase of Δr , no change, or a decrease of Δr .

- The upper and the lower branches bracket the middle branch.
- Define

 $p_1(i,j) \equiv$ the probability of following the upper branch from node (i,j) $p_2(i,j) \equiv$ the probability of following the middle branch from node (i,j)

- $p_3(i,j) \equiv$ the probability of following the lower branch from node (i,j)
- The root of the tree is set to the current short rate r_0 .
- Inductively, the drift $\mu_{i,j}$ at node (i,j) is a function of $\theta(t_i)$.

- Once $\theta(t_i)$ is available, $\mu_{i,j}$ can be derived via Eq. (106) on p. 933.
- This in turn determines the branching scheme at every node (i, j) for each j, as we will see shortly.
- The value of $\theta(t_i)$ must thus be made consistent with the spot rate $r(0, t_{i+2})$.

- The branches emanating from node (i, j) with their accompanying probabilities^a must be chosen to be consistent with $\mu_{i,j}$ and σ .
- This is accomplished by letting the middle node be as close as possible to the current value of the short rate plus the drift.
- Let k be the number among $\{j-1, j, j+1\}$ that makes the short rate reached by the middle branch, r_k , closest to $r_j + \mu_{i,j}\Delta t$.

 $^{\mathbf{a}}p_1(i,j), p_2(i,j), \text{ and } p_3(i,j).$

- Then the three nodes following node (i, j) are nodes (i+1, k+1), (i+1, k), and (i+1, k-1).
- The resulting tree may have the geometry depicted on p. 939.
- The resulting tree combines because of the constant jump sizes to reach k.

 The probabilities for moving along these branches are functions of μ_{i,j}, σ, j, and k:

$$p_1(i,j) = \frac{\sigma^2 \Delta t + \eta^2}{2(\Delta r)^2} + \frac{\eta}{2\Delta r}$$
(107)

$$p_2(i,j) = 1 - \frac{\sigma^2 \Delta t + \eta^2}{(\Delta r)^2}$$
(107')

$$p_3(i,j) = \frac{\sigma^2 \Delta t + \eta^2}{2(\Delta r)^2} - \frac{\eta}{2\Delta r}$$
(107")

where
$$\eta \equiv \mu_{i,j} \Delta t + (j-k) \Delta r$$
.

- As trinomial tree algorithms are but explicit methods in disguise, certain relations must hold for Δr and Δt to guarantee stability.
- It can be shown that their values must satisfy

$$\frac{\sigma\sqrt{3\Delta t}}{2} \le \Delta r \le 2\sigma\sqrt{\Delta t}$$

for the probabilities to lie between zero and one.

– For example, Δr can be set to $\sigma \sqrt{3\Delta t}$.^a

^aHull and White (1988).

- Now it only remains to determine $\theta(t_i)$.
- At this point at time t_i , $r(0, t_1)$, $r(0, t_2)$, ..., $r(0, t_{i+1})$ have already been matched.
- Let Q(i, j) denote the value of the state contingent claim that pays one dollar at node (i, j) and zero otherwise.
- By construction, the state prices Q(i, j) for all j are known by now.
- We begin with state price Q(0,0) = 1.

- Let $\hat{r}(i)$ refer to the short rate value at time t_i .
- The value at time zero of a zero-coupon bond maturing at time t_{i+2} is then

$$e^{-r(0,t_{i+2})(i+2)\Delta t} = \sum_{j} Q(i,j) e^{-r_{j}\Delta t} E^{\pi} \left[e^{-\hat{r}(i+1)\Delta t} \middle| \hat{r}(i) = r_{j} \right] .(108)$$

• The right-hand side represents the value of \$1 obtained by holding a zero-coupon bond until time t_{i+1} and then reinvesting the proceeds at that time at the prevailing short rate $\hat{r}(i+1)$, which is stochastic.

• The expectation (108) can be approximated by

$$E^{\pi} \left[e^{-\hat{r}(i+1)\Delta t} \middle| \hat{r}(i) = r_j \right]$$

$$\approx e^{-r_j\Delta t} \left(1 - \mu_{i,j} (\Delta t)^2 + \frac{\sigma^2 (\Delta t)^3}{2} \right). \quad (109)$$

• Substitute Eq. (109) into Eq. (108) and replace $\mu_{i,j}$ with $\theta(t_i) - ar_j$ to obtain

$$\theta(t_i) \approx \frac{\sum_j Q(i,j) e^{-2r_j \Delta t} \left(1 + ar_j (\Delta t)^2 + \sigma^2 (\Delta t)^3 / 2\right) - e^{-r(0,t_i+2)(i+2)\Delta t}}{(\Delta t)^2 \sum_j Q(i,j) e^{-2r_j \Delta t}}$$

• For the Hull-White model, the expectation in Eq. (109) on p. 944 is actually known analytically by Eq. (17) on p. 147:

$$E^{\pi} \left[e^{-\hat{r}(i+1)\,\Delta t} \middle| \hat{r}(i) = r_j \right] = e^{-r_j \Delta t + (-\theta(t_i) + ar_j + \sigma^2 \Delta t/2)(\Delta t)^2}.$$

• Therefore, alternatively,

$$\theta(t_i) = \frac{r(0, t_{i+2})(i+2)}{\Delta t} + \frac{\sigma^2 \Delta t}{2} + \frac{\ln \sum_j Q(i, j) e^{-2r_j \Delta t + ar_j (\Delta t)^2}}{(\Delta t)^2}.$$

• With $\theta(t_i)$ in hand, we can compute $\mu_{i,j}$, the probabilities, and finally the state prices at time t_{i+1} :

Q(i+1,j)

$= \sum_{(i, j^*) \text{ is connected to } (i+1, j) \text{ with probability } p_{j^*}} p_{j^*} e^{-r_{j^*} \Delta t} Q(i, j^*)$

- There are at most 5 choices for j^* .
- The total running time is $O(n^2)$.
- The space requirement is O(n) (why?).

Comments on the Hull-White Model

- One can try different values of a and σ for each option or have an a value common to all options but use a different σ value for each option.
- Either approach can match all the option prices exactly.
- If the demand is for a single set of parameters that replicate all option prices, the Hull-White model can be calibrated to all the observed option prices by choosing a and σ that minimize the mean-squared pricing error.^a

^aHull and White (1995).

The Hull-White Model: Calibration with Irregular Trinomial Trees

- The previous calibration algorithm is quite general.
- For example, it can be modified to apply to cases where the diffusion term has the form σr^b .
- But it has at least two shortcomings.
- First, the resulting trinomial tree is irregular (p. 939).
 So higher complexity in programming.
- The second shortcoming is again a consequence of the tree's irregular shape.

The Hull-White Model: Calibration with Irregular Trinomial Trees (concluded)

- Recall that the algorithm figured out $\theta(t_i)$ that matches the spot rate $r(0, t_{i+2})$ in order to determine the branching schemes for the nodes at time t_i .
- But without those branches, the tree was not specified, and backward induction on the tree was not possible.
- To avoid this dilemma, the algorithm turned to the continuous-time model to evaluate Eq. (108) on p. 943 that helps derive $\theta(t_i)$ later.
- The resulting $\theta(t_i)$ hence might not yield a tree that matches the spot rates exactly.

The Hull-White Model: Calibration with Regular Trinomial Trees^a

- We will simplify the previous algorithm to exploit the fact that the Hull-White model has a constant diffusion term σ .
- The resulting trinomial tree will be regular.
- All the $\theta(t_i)$ terms can be chosen by backward induction to match the spot rates exactly.
- The tree is constructed in two phases.

^aHull and White (1994).

The Hull-White Model: Calibration with Regular Trinomial Trees (continued)

• In the first phase, a tree is built for the $\theta(t) = 0$ case, which is an Ornstein-Uhlenbeck process:

$$dr = -ar \, dt + \sigma \, dW, \quad r(0) = 0.$$

- The tree is dagger-shaped (p. 953).
- The number of nodes above the r_0 -line, j_{max} , and that below the line, j_{min} , will be picked so that the probabilities (107) on p. 940 are positive for all nodes.
- The tree's branches and probabilities are in place.

The Hull-White Model: Calibration with Regular Trinomial Trees (concluded)

- Phase two fits the term structure.
 - Backward induction is applied to calculate the β_i to add to the short rates on the tree at time t_i so that the spot rate $r(0, t_{i+1})$ is matched.

The Hull-White Model: Calibration

- Set $\Delta r = \sigma \sqrt{3\Delta t}$ and assume that a > 0.
- Node (i, j) is a top node if $j = j_{\text{max}}$ and a bottom node if $j = -j_{\text{min}}$.
- Because the root of the tree has a short rate of $r_0 = 0$, phase one adopts $r_j = j\Delta r$.
- Hence the probabilities in Eqs. (107) on p. 940 use

$$\eta \equiv -aj\Delta r\Delta t + (j-k)\Delta r.$$

• The probabilities become

$$p_1(i,j) = \frac{1}{6} + \frac{a^2 j^2 (\Delta t)^2 - 2aj \Delta t (j-k) + (j-k)^2 - aj \Delta t + (j-k)}{2}, (110)$$

$$p_{2}(i,j) = \frac{2}{3} - \left[a^{2} j^{2} (\Delta t)^{2} - 2a j \Delta t (j-k) + (j-k)^{2} \right], \qquad (111)$$

$$p_{3}(i,j) = \frac{1}{6} + \frac{a^{2}j^{2}(\Delta t)^{2} - 2aj\Delta t(j-k) + (j-k)^{2} + aj\Delta t - (j-k)}{2}.$$
 (112)

- The dagger shape dictates this:
 - Let k = j 1 if node (i, j) is a top node.
 - Let k = j + 1 if node (i, j) is a bottom node.
 - Let k = j for the rest of the nodes.
- Note that the probabilities are identical for nodes (i, j) with the same j.
- Furthermore, $p_1(i,j) = p_3(i,-j)$.

• The inequalities

$$\frac{3-\sqrt{6}}{3} < ja\Delta t < \sqrt{\frac{2}{3}} \tag{113}$$

ensure that all the branching probabilities are positive in the upper half of the tree, that is, j > 0 (verify this).

• Similarly, the inequalities

$$-\sqrt{\frac{2}{3}} < ja\Delta t < -\frac{3-\sqrt{6}}{3}$$

ensure that the probabilities are positive in the lower half of the tree, that is, j < 0.

• To further make the tree symmetric across the r_0 -line, we let $j_{\min} = j_{\max}$.

• As
$$\frac{3-\sqrt{6}}{3} \approx 0.184$$
, a good choice is

 $j_{\max} = \lceil 0.184/(a\Delta t) \rceil.$

- Phase two computes the β_i s to fit the spot rates.
- We begin with state price Q(0,0) = 1.
- Inductively, suppose that spot rates $r(0, t_1)$, $r(0, t_2)$, ..., $r(0, t_i)$ have already been matched at time t_i .

- By construction, the state prices Q(i, j) for all j are known by now.
- The value of a zero-coupon bond maturing at time t_{i+1} equals

$$e^{-r(0,t_{i+1})(i+1)\Delta t} = \sum_{j} Q(i,j) e^{-(\beta_i + r_j)\Delta t}$$

by risk-neutral valuation.

• Hence

$$\beta_i = \frac{r(0, t_{i+1})(i+1)\Delta t + \ln \sum_j Q(i, j) e^{-r_j \Delta t}}{\Delta t},$$

and the short rate at node (i, j) equals $\beta_i + r_j$.

• The state prices at time t_{i+1} ,

$$Q(i+1,j), \quad -j_{\max} \le j \le j_{\max},$$

can now be calculated as before.

- The total running time is $O(nj_{\max})$.
- The space requirement is O(n).

A Numerical Example

- Assume a = 0.1, $\sigma = 0.01$, and $\Delta t = 1$ (year).
- Immediately, $\Delta r = 0.0173205$ and $j_{\text{max}} = 2$.
- The plot on p. 962 illustrates the 3-period trinomial tree after phase one.
- For example, the branching probabilities for node E are calculated by Eqs. (110)–(112) on p. 955 with j = 2 and k = 1.

		A	C D	G	
Node A	4, C, G	B, F	Е	D, H	I
r (%) 0).00000	1.73205	3.46410	-1.73205	-3.46410
$p_1 = 0$).16667	0.12167	0.88667	0.22167	0.08667
$p_2 = 0$).66667	0.65667	0.02667	0.65667	0.02667
p_{3} 0).16667	0.22167	0.08667	0.12167	0.88667

- Suppose that phase two is to fit the spot rate curve $0.08 0.05 \times e^{-0.18 \times t}$.
- The annualized continuously compounded spot rates are r(0,1) = 3.82365%, r(0,2) = 4.51162%, r(0,3) = 5.08626%.
- Start with state price Q(0,0) = 1 at node A.

• Now,

$$\beta_0 = r(0,1) + \ln Q(0,0) e^{-r_0} = r(0,1) = 3.82365\%.$$

• Hence the short rate at node A equals

$$\beta_0 + r_0 = 3.82365\%.$$

• The state prices at year one are calculated as

$$Q(1,1) = p_1(0,0) e^{-(\beta_0 + r_0)} = 0.160414,$$

$$Q(1,0) = p_2(0,0) e^{-(\beta_0 + r_0)} = 0.641657,$$

$$Q(1,-1) = p_3(0,0) e^{-(\beta_0 + r_0)} = 0.160414.$$

• The 2-year rate spot rate r(0,2) is matched by picking

$$\beta_1 = r(0,2) \times 2 + \ln \left[Q(1,1) e^{-\Delta r} + Q(1,0) + Q(1,-1) e^{\Delta r} \right] = 5.20459\%.$$

• Hence the short rates at nodes B, C, and D equal

$$\beta_1 + r_j,$$

where j = 1, 0, -1, respectively.

• They are found to be 6.93664%, 5.20459%, and 3.47254%.

• The state prices at year two are calculated as

$$\begin{array}{lll} Q(2,2) &=& p_1(1,1) \, e^{-(\beta_1+r_1)} Q(1,1) = 0.018209, \\ Q(2,1) &=& p_2(1,1) \, e^{-(\beta_1+r_1)} Q(1,1) + p_1(1,0) \, e^{-(\beta_1+r_0)} Q(1,0) \\ &=& 0.199799, \\ Q(2,0) &=& p_3(1,1) \, e^{-(\beta_1+r_1)} Q(1,1) + p_2(1,0) \, e^{-(\beta_1+r_0)} Q(1,0) \\ &\quad + p_1(1,-1) \, e^{-(\beta_1+r_{-1})} Q(1,-1) = 0.473597, \\ Q(2,-1) &=& p_3(1,0) \, e^{-(\beta_1+r_0)} Q(1,0) + p_2(1,-1) \, e^{-(\beta_1+r_{-1})} Q(1,-1) \\ &=& 0.203263, \\ Q(2,-2) &=& p_3(1,-1) \, e^{-(\beta_1+r_{-1})} Q(1,-1) = 0.018851. \end{array}$$

• The 3-year rate spot rate r(0,3) is matched by picking

$$\beta_2 = r(0,3) \times 3 + \ln \left[Q(2,2) e^{-2 \times \Delta r} + Q(2,1) e^{-\Delta r} + Q(2,0) + Q(2,-1) e^{\Delta r} + Q(2,-2) e^{2 \times \Delta r} \right] = 6.25359\%.$$

- Hence the short rates at nodes E, F, G, H, and I equal $\beta_2 + r_j$, where j = 2, 1, 0, -1, -2, respectively.
- They are found to be 9.71769%, 7.98564%, 6.25359%, 4.52154%, and 2.78949%.
- The figure on p. 968 plots β_i for $i = 0, 1, \ldots, 29$.

