The Black-Karasinski Model®

The BK model stipulates that the short rate follows

dinr = k(t)(0(t) — Inr) dt + o(t) dW.

This explicitly mean-reverting model depends on time

through x(-), 6(-), and o(-).

The BK model hence has one more degree of freedom
than the BDT model.

The speed of mean reversion k(t) and the short rate

volatility o(t) are independent.

2Black and Karasinski (1991).
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The Black-Karasinski Model: Discrete Time

e The discrete-time version of the BK model has the same

representation as the BDT model.

e To maintain a combining binomial tree, however,

requires some manipulations.

e The next plot illustrates the ideas in which

t2 = tl + Atla
ts = to+ Ats.
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In r4q4 (tg) = Inruq (t3>
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The Black-Karasinski Model: Discrete Time
(continued)

e Note that

Inrq(te) = Inr(t)+rsE)OE) —Inr(t)) Aty — o(ti)/ Aty ,
Inru(tz) = Inr(t)+ k(t1)(0(t) — Inr(t)) Aty + o(t1)V/ Aty .
e To ensure that an up move followed by a down move
coincides with a down move followed by an up move,
impose
Inrq(t2) + K(t2)(0(t2) — InTa(t2)) Atz + o(t2)y/ Ata,
= Inra(t) + k(2)(0(t2) — Inry(t2)) Aty — o(t2)y/Ats .
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The Black-Karasinski Model: Discrete Time
(concluded)

e They imply

1 — (O‘(tg)/O'(tl))\/AtQ/Atl .

Hj(tg) = Atz

(105)

e So from Aty, we can calculate the Aty that satisfies the
combining condition and then iterate.
—tg— Atg —=t1 = Aty —to 5 Aty — -+~ — T
(roughly).
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Problems with Lognormal Models in General

Lognormal models such as BDT and BK share the
problem that E™[M(t)] = oo for any finite t if they
the continuously compounded rate.

Hence periodic compounding should be used.
Another issue is computational.

Lognormal models usually do not give analytical

solutions to even basic fixed-income securities.

As a result, to price short-dated derivatives on long-term
bonds, the tree has to be built over the life of the
underlying asset instead of the life of the derivative.
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Problems with Lognormal Models in General
(concluded)

e This problem can be somewhat mitigated by adopting
different time steps: Use a fine time step up to the
maturity of the short-dated derivative and a coarse time

step beyond the maturity.?

e A down side of this procedure is that it has to be carried

out for each derivative.

e Finally, empirically, interest rates do not follow the

lognormal distribution.

aHull and White (1993).
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The Extended Vasicek Model?

Hull and White proposed models that extend the
Vasicek model and the CIR model.

They are called the extended Vasicek model and the
extended CIR model.

The extended Vasicek model adds time dependence to
the original Vasicek model,

dr = (0(t) —a(t)r)dt + o(t) dW.

Like the Ho-Lee model, this is a normal model, and the

inclusion of 0(t) allows for an exact fit to the current

spot rate curve.

aHull and White (1990).
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The Extended Vasicek Model (concluded)

e Function o(t) defines the short rate volatility, and a(t)
determines the shape of the volatility structure.

e Under this model, many European-style securities can be
evaluated analytically, and efficient numerical procedures
can be developed for American-style securities.
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The Hull-White Model

e The Hull-White model is the following special case,

dr = (0(t) — ar)dt + o dW.

e When the current term structure is matched,?

2
0(t) = 8f(a(z, 2 +af(0,t) + ;—a (1—e 2.

aHull and White (1993).
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The Extended CIR Model

e In the extended CIR model the short rate follows

dr = (0(t) — a(t) r)dt + o(t)/r dW.

e The functions 60(t), a(t), and o(t) are implied from

market observables.

e With constant parameters, there exist analytical
solutions to a small set of interest-rate-sensitive

securities.
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The Hull-White Model: Calibration®

We describe a trinomial forward induction scheme to
calibrate the Hull-White model given a and o.

As with the Ho-Lee model, the set of achievable short
rates is evenly spaced.

Let rg be the annualized, continuously compounded
short rate at time zero.

Every short rate on the tree takes on a value rg+ jAr

for some integer j.

aHull and White (1993).
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The Hull-White Model: Calibration (continued)

Time increments on the tree are also equally spaced at
At apart.

— Binomial trees should not be used to model

mean-reverting interest rates when At is a constant.?
Hence nodes are located at times At for ¢ =0,1,2,....

We shall refer to the node on the tree with ¢; = 1At and
r; = 1o+ jAr as the (i,7) node.

The short rate at node (i, j), which equals r;, is
effective for the time period [t;,¢;11).

aHull and White (1992).
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The Hull-White Model: Calibration (continued)

e Use
pi g =0(t;) —ar; (106)

to denote the drift rate, or the expected change, of the
short rate as seen from node (i, 7).

e The three distinct possibilities for node (7,j) with three
branches incident from it are displayed on p. 934.

e The interest rate movement described by the middle
branch may be an increase of Ar, no change, or a
decrease of Ar.
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The Hull-White Model: Calibration (continued)

(i+1,5+2)
+1,5+1)
(i+1,5) (4
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The Hull-White Model: Calibration (continued)

e The upper and the lower branches bracket the middle

branch.

e Define

p1(%,7) = the probability of following the upper branch from node (%, j)
po(i,J) the probability of following the middle branch from node (%, j)

p3 (i, 7) the probability of following the lower branch from node (%, j)

e The root of the tree is set to the current short rate rq.

e Inductively, the drift p, ; at node (7,7) is a function of

a(t;).
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The Hull-White Model: Calibration (continued)

e Once 6(¢;) is available, p; ; can be derived via
Eq. (106) on p. 933.

e This in turn determines the branching scheme at every

node (i,7) for each j, as we will see shortly.

e The value of 6(t;) must thus be made consistent with

the spot rate 7(0,t;42).
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The Hull-White Model: Calibration (continued)

The branches emanating from node (¢,7) with their
accompanying probabilities® must be chosen to be

consistent with p; ; and o.

This is accomplished by letting the middle node be as
close as possible to the current value of the short rate
plus the drift.

Let k be the number among {j —1,7,5 + 1} that
makes the short rate reached by the middle branch, 7,
closest to r; + p; jAL.

apl(iuj)? pQ(Z‘aj% and pS(Z7])
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The Hull-White Model: Calibration (continued)

e Then the three nodes following node (i, j) are nodes
(t+1,k+1),i+1,k),and (i +1,k—1).

e The resulting tree may have the geometry depicted on
p. 939.

e The resulting tree combines because of the constant

jump sizes to reach k.
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The Hull-White Model: Calibration (continued)

e The probabilities for moving along these branches are

functions of u; ;, o, j, and k:
. o? At + n? n
pi(i;J) = 2(Ar)? * 2Ar
o2 At + n?

(107)

p2(7’7]) =1- (AT)Q (107/)

(i) = c?At+n° 1
Pa\hJ) = 2(Ar)? 2Ar

(107")

where n = u,; ;At + (j — k) Ar.
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The Hull-White Model: Calibration (continued)

As trinomial tree algorithms are but explicit methods in

disguise, certain relations must hold for Ar and At to
guarantee stability.

It can be shown that their values must satisfy

< Ar <20V At

oV 3AL
2

for the probabilities to lie between zero and one.

— For example, Ar can be set to ov3At .2

2Hull and White (1988).
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The Hull-White Model: Calibration (continued)

Now it only remains to determine 6(¢;).

At this point at time t;, r(0,%¢1), r(0,t2), ..., 7(0,t;11)

have already been matched.

Let Q(7,7) denote the value of the state contingent
claim that pays one dollar at node (7,j) and zero

otherwise.

By construction, the state prices Q(7,j) for all j are

known by now.

We begin with state price Q(0,0) = 1.
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The Hull-White Model: Calibration (continued)

e Let 7(i) refer to the short rate value at time ¢;.

e The value at time zero of a zero-coupon bond maturing

at time ¢, is then

—’I“(O,t7;+2)(’i—|—2) At

ZQ i ] eIt p [ —7(i+1) At ?/;() _ ’I“]} (108)

J

e The right-hand side represents the value of $1 obtained
by holding a zero-coupon bond until time ;.1 and then
reinvesting the proceeds at that time at the prevailing

short rate 7(¢ 4+ 1), which is stochastic.
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The Hull-White Model: Calibration (continued)

e The expectation (108) can be approximated by

ET [e—f(i—l—l) At ’f‘(’[,) _ T]i|

2 A 3
~ e_rjAt (1 — Mz’,j(At)z + ? (2 t> ) . (109)

e Substitute Eq. (109) into Eq. (108) and replace p;
with 6(¢;) —ar; to obtain

—2r; At (1 +ar; (At)2 4 aQ(At)?’/Q) _ e—r(O,ti+2)(i—|—2) At

(A2 Qi 4) e 2R

S5 QG4 e
e(tz) ~
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The Hull-White Model: Calibration (continued)

e For the Hull-White model, the expectation in Eq. (109)
on p. 944 is actually known analytically by Eq. (17) on
p. 147:

Jou {e—f(i—kl)At 7(i) = rj} _ o TiAH(=0(t) Far;+o? At/2)(At)?

e Therefore, alternatively,

- 7(0,tiq2) (i + 2) +02At+ln >, Q(i, 7) o—2rjAttar;(At)?

o) = At 2 (At)2
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The Hull-White Model: Calibration (concluded)

e With 6(¢;) in hand, we can compute u; ;, the
probabilities, and finally the state prices at time ¢;,1:

Qi +1,5)

) pire " AQ, §7)

(¢,7%) is connected to (¢ + 1, 7) with probability P

e There are at most 5 choices for j*.
e The total running time is O(n?).

e The space requirement is O(n) (why?).
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Comments on the Hull-White Model

e One can try different values of ¢ and o for each option

or have an a value common to all options but use a

different o value for each option.
e Either approach can match all the option prices exactly.

e If the demand is for a single set of parameters that
replicate all option prices, the Hull-White model can be
calibrated to all the observed option prices by choosing

a and o that minimize the mean-squared pricing error.?

aHull and White (1995).
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The Hull-White Model: Calibration with Irregular
Trinomial Trees

The previous calibration algorithm is quite general.

For example, it can be modified to apply to cases where

the diffusion term has the form or?.

But it has at least two shortcomings.

First, the resulting trinomial tree is irregular (p. 939).

— So higher complexity in programming.

The second shortcoming is again a consequence of the

tree’s irregular shape.
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The Hull-White Model: Calibration with Irregular
Trinomial Trees (concluded)

Recall that the algorithm figured out 6(¢;) that matches
the spot rate r(0,t;12) in order to determine the
branching schemes for the nodes at time ¢;.

But without those branches, the tree was not specified,
and backward induction on the tree was not possible.

To avoid this dilemma, the algorithm turned to the
continuous-time model to evaluate Eq. (108) on p. 943
that helps derive 0(t;) later.

The resulting 6(¢;) hence might not yield a tree that
matches the spot rates exactly.
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The Hull-White Model: Calibration with Regular
Trinomial Trees®

We will simplify the previous algorithm to exploit the
fact that the Hull-White model has a constant diffusion

term o.

The resulting trinomial tree will be regular.

All the 6(t;) terms can be chosen by backward

induction to match the spot rates exactly.

e The tree is constructed in two phases.

2Hull and White (1994).
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The Hull-White Model: Calibration with Regular
Trinomial Trees (continued)

e In the first phase, a tree is built for the 6(¢) = 0 case,

which is an Ornstein-Uhlenbeck process:
dr = —ardt+odW, r(0)=0.

— The tree is dagger-shaped (p. 953).

— The number of nodes above the ry-line, 7.5, and
that below the line, j,in, Will be picked so that the
probabilities (107) on p. 940 are positive for all nodes.

— The tree’s branches and probabilities are in place.
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The Hull-White Model: Calibration with Regular
Trinomial Trees (concluded)

e Phase two fits the term structure.

— Backward induction is applied to calculate the (; to
add to the short rates on the tree at time ¢; so that
the spot rate r(0,¢;41) is matched.
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(1,1)
(0,00 —1,0) ‘

I S D

e

At
The short rate at node (0,0) equals rg = 0; here jpax = 3
and Jmin = 2.




The Hull-White Model: Calibration
Set Ar = ov3At and assume that a > 0.

Node (i, 7) is a top node if j = jhax and a bottom node
if 7 = —Jmin.

Because the root of the tree has a short rate of ro = 0,

phase one adopts r; = jAr.

Hence the probabilities in Eqs. (107) on p. 940 use

n=—ajArAt+ (j — k) Ar.
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The Hull-White Model: Calibration (continued)

e The probabilities become

a2j2(At)2 — 2ajAt(G — k) + (5 — k)2 — ajAt+ (5 — k)
2

p1 (%, ) ,(110)

P2 (i, 5) — [a®i?(a0)? = 2ajAtG — k) + (G - )], (111)

a2j2(At)2 — 2ajAt( — k) + (5 — k)2 + ajAt — (5 — k)
2

1
6
2
3
1
6

p3 (i, 7) - (112)
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The Hull-White Model: Calibration (continued)

e The dagger shape dictates this:
— Let k=4 —1 if node (7,7) is a top node.
— Let k=454 1 if node (i,7) is a bottom node.
— Let £ = j for the rest of the nodes.
e Note that the probabilities are identical for nodes (¢, )

with the same j.

e Furthermore, p1(¢,5) = p3(i, —J).
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The Hull-White Model: Calibration (continued)

e The inequalities

— 2
) Sﬁ < jaAt < \/; (113)

ensure that all the branching probabilities are positive in
the upper half of the tree, that is, j > 0 (verify this).

e Similarly, the inequalities

2 3—\@
/2 < jaAt < —
\/;<=7a < 3

ensure that the probabilities are positive in the lower
half of the tree, that is, 7 < 0.
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The Hull-White Model: Calibration (continued)

To further make the tree symmetric across the ry-line,
we let jmin — jmax-

As 3_3\/_ ~ (0.184, a good choice is

Jmax = |0.184/(aAt)].
Phase two computes the ;s to fit the spot rates.
We begin with state price Q(0,0) = 1.

Inductively, suppose that spot rates r(0,t1), 7(0,t2),
..., r(0,t;) have already been matched at time ¢;.
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The Hull-White Model: Calibration (continued)

By construction, the state prices Q(7,j) for all j are

known by now.

The value of a zero-coupon bond maturing at time t;,4
equals

e—T(O,ti+1)(i—|—1) At — Z Q(ll/yj) 6_(5i+7°j)At
J

by risk-neutral valuation.

Hence
r(0,ti41) (i + 1) At +1Ind . Q(4, 7) o~ At
At ’
and the short rate at node (i,7) equals (§; + ;.
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The Hull-White Model: Calibration (concluded)

e The state prices at time ¢;41,
Q('L"—l,]), _jmax S] Sjmax;
can now be calculated as before.

e The total running time is O(njmax)-

e The space requirement is O(n).
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A Numerical Example

Assume a = 0.1, 0 = 0.01, and At =1 (year).
Immediately, Ar = 0.0173205 and jma.x = 2.

The plot on p. 962 illustrates the 3-period trinomial tree

after phase one.

For example, the branching probabilities for node E are
calculated by Eqgs. (110)—(112) on p. 955 with j =2 and
kE=1.
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A, C G B, F E D, H I
0.00000 1.73205 3.46410 —1.73205 —3.46410

0.16667 0.12167 0.88667 0.22167 0.08667
0.66667 0.65667 0.02667 0.65667 0.02667
0.16667 0.22167 0.08667 0.12167 0.88667
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A Numerical Example (continued)

e Suppose that phase two is to fit the spot rate curve
0.08 — 0.05 x e~ V-18x¢,

e The annualized continuously compounded spot rates are
r(0,1) = 3.82365%, r(0,2) = 4.51162%, (0, 3) = 5.08626%.

e Start with state price @(0,0) =1 at node A.
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A Numerical Example (continued)

e Now,
Bo=7(0,1) +InQ(0,0) e~ "™ = r(0,1) = 3.82365%.
e Hence the short rate at node A equals

Bo + 1o = 3.82365%.

e The state prices at year one are calculated as

p1(0,0) e~ Fotro) — (.160414,
p2(0,0) e~ PoFT0) = 0.641657,
p3(0,0) e~ Fotro) — (160414
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A Numerical Example (continued)

e The 2-year rate spot rate r(0,2) is matched by picking

B1 =1r(0,2)x2+In [Q(l, 1) e 2" +Q(1,0) + Q(1,—1) em] = 5.20459%.

e Hence the short rates at nodes B, C, and D equal

61 =+ T,
where 57 = 1,0, —1, respectively.

e They are found to be 6.93664%, 5.20459%, and
3.47254%.
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A Numerical Example (continued)

e The state prices at year two are calculated as

Q(2,2) p1(1,1)e~B1+m1)Q(1,1) = 0.018209,
Q(2,1) p2(1,1) e P14 )Q(1,1) + p1(1,0) e~ (P10 Q(1, 0)
0.199799,
Q(2,0) p3(1,1) e B Q(1,1) + pa(1,0) e~ F170)Q(1,0)
+p1(1,—1) e~ Brtm—1)Q(1, —1) = 0.473597,
Q(2,—1) p3(1,0) e F1H70)Q(1,0) + pa(l, —1) e~ P1T7-1)Q(1, —1)
0.203263,
Q(2,—2) p3(1,—1) e~ B1+t7-1)Q(1, —1) = 0.018851.
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A Numerical Example (concluded)

e The 3-year rate spot rate r(0,3) is matched by picking

= 7(0,3) x 34| Q(2,2) e A +Q(2,1) e +Q(2,0)

‘|‘Q(27 _1) eAT + Q(27 _2) €2XAT} = 6.25359%.

e Hence the short rates at nodes E, F, G, H, and I equal
B + 1, where j = 2,1,0, —1, —2, respectively.

e They are found to be 9.71769%, 7.98564%, 6.25359%,
4.52154%, and 2.78949%.

e The figure on p. 968 plots 3, for + =0,1,...,29.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 967



Year (1)
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