
Backward Induction on the RT Tree

• After the RT tree is constructed, it can be used to price
options by backward induction.

• Recall that each node keeps two variances h2
max and

h2
min.

• We now increase that number to K equally spaced
variances between h2

max and h2
min at each node.

• Besides the minimum and maximum variances, the other
K − 2 variances in between are linearly interpolated.a

aIn practice, log-linear interpolation works better (Lyuu and Wu

(2005)). Log-cubic interpolation works even better (Liu (2005)).
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Backward Induction on the RT Tree (continued)

• For example, if K = 3, then a variance of
10.5436× 10−6 will be added between the maximum
and minimum variances at node (2, 0) on p. 710.a

• In general, the kth variance at node (i, j) is

h2
min(i, j) + k

h2
max(i, j)− h2

min(i, j)
K − 1

,

k = 0, 1, . . . ,K − 1.

• Each interpolated variance’s jump parameter and
branching probabilities can be computed as before.

aRepeated on p. 730.
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Backward Induction on the RT Tree (concluded)

• During backward induction, if a variance falls between
two of the K variances, linear interpolation of the
option prices corresponding to the two bracketing
variances will be used as the approximate option price.

• The above ideas are reminiscent of the ones on p. 337,
where we dealt with arithmetic average-rate options.
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Numerical Examples

• We next use the numerical example on p. 730 to price a
European call option with a strike price of 100 and
expiring at date 3.

• Recall that the riskless interest rate is zero.

• Assume K = 2; hence there are no interpolated
variances.

• The pricing tree is shown on p. 733 with a call price of
0.66346.

– The branching probabilities needed in backward
induction can be found on p. 734.
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Numerical Examples (continued)

• Let us derive some of the numbers on p. 733.

• A gray line means the updated variance falls strictly
between h2

max and h2
min.

• The option price for a terminal node at date 3 equals
max(S3 − 100, 0), independent of the variance level.

• Now move on to nodes at date 2.

• The option price at node (2, 3) depends on those at
nodes (3, 5), (3, 3), and (3, 1).

• It therefore equals

0.1387× 5.37392 + 0.7197× 3.19054 + 0.1416× 1.05240 = 3.19054.
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Numerical Examples (continued)

• Option prices for other nodes at date 2 can be computed
similarly.

• For node (1, 1), the option price for both variances is

0.1237× 3.19054 + 0.7499× 1.05240 + 0.1264× 0.14573 = 1.20241.

• Node (1, 0) is most interesting.

• We knew that a down move from it gives a variance of
0.000105609.

• This number falls between the minimum variance
0.000105173 and the maximum variance 0.0001227 at
node (2,−1) on p. 730.
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Numerical Examples (continued)

• The option price corresponding to the minimum
variance is 0.

• The option price corresponding to the maximum
variance is 0.14573.

• The equation

x× 0.000105173 + (1− x)× 0.0001227 = 0.000105609

is satisfied by x = 0.9751.

• So the option for the down state is approximated by

x× 0 + (1− x)× 0.14573 = 0.00362.
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Numerical Examples (continued)

• The up move leads to the state with option price
1.05240.

• The middle move leads to the state with option price
0.48366.

• The option price at node (1, 0) is finally calculated as

0.4775× 1.05240 + 0.0400× 0.48366 + 0.4825× 0.00362 = 0.52360.
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Numerical Examples (continued)

• It is possible for some of the three variances following an
interpolated variance to exceed the maximum variance
or be exceeded by the minimum variance.

• When this happens, the option price corresponding to
the maximum or minimum variance will be used during
backward induction.a

• An interpolated variance may choose a branch that goes
into a node that is not reached in the forward-induction
tree-building phase.b

aCakici and Topyan (2000).
bLyuu and Wu (2005).
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Numerical Examples (concluded)

• In this case, the algorithm fails.

• It may also be hard to calculate the implied β1 and β2

from option prices.a

aChang (2006).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 740



Introduction to Term Structure Modeling
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The fox often ran to the hole
by which they had come in,

to find out if his body was still thin enough
to slip through it.

— Grimm’s Fairy Tales

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 742



And the worst thing you can have
is models and spreadsheets.

— Warren Buffet, May 3, 2008

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 743



Outline

• Use the binomial interest rate tree to model stochastic
term structure.

– Illustrates the basic ideas underlying future models.

– Applications are generic in that pricing and hedging
methodologies can be easily adapted to other models.

• Although the idea is similar to the earlier one used in
option pricing, the current task is more complicated.

– The evolution of an entire term structure, not just a
single stock price, is to be modeled.

– Interest rates of various maturities cannot evolve
arbitrarily or arbitrage profits may occur.
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Issues

• A stochastic interest rate model performs two tasks.

– Provides a stochastic process that defines future term
structures without arbitrage profits.

– “Consistent” with the observed term structures.

• The unbiased expectations theory, the liquidity
preference theory, and the market segmentation theory
can all be made consistent with the model.
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History

• Methodology founded by Merton (1970).

• Modern interest rate modeling is often traced to 1977
when Vasicek and Cox, Ingersoll, and Ross developed
simultaneously their influential models.

• Early models have fitting problems because they may
not price today’s benchmark bonds correctly.

• An alternative approach pioneered by Ho and Lee (1986)
makes fitting the market yield curve mandatory.

• Models based on such a paradigm are called (somewhat
misleadingly) arbitrage-free or no-arbitrage models.
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Binomial Interest Rate Tree

• Goal is to construct a no-arbitrage interest rate tree
consistent with the yields and/or yield volatilities of
zero-coupon bonds of all maturities.

– This procedure is called calibration.a

• Pick a binomial tree model in which the logarithm of the
future short rate obeys the binomial distribution.

– Exactly like the CRR tree.

• The limiting distribution of the short rate at any future
time is hence lognormal.

aDerman (2004), “complexity without calibration is pointless.”
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Binomial Interest Rate Tree (continued)

• A binomial tree of future short rates is constructed.

• Every short rate is followed by two short rates in the
following period (see p. 749).

• In the figure on p. 749 node A coincides with the start of
period j during which the short rate r is in effect.
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Binomial Interest Rate Tree (continued)

• At the conclusion of period j, a new short rate goes into
effect for period j + 1.

• This may take one of two possible values:

– r`: the “low” short-rate outcome at node B.

– rh: the “high” short-rate outcome at node C.

• Each branch has a fifty percent chance of occurring in a
risk-neutral economy.
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Binomial Interest Rate Tree (continued)

• We shall require that the paths combine as the binomial
process unfolds.

• The short rate r can go to rh and r` with equal
risk-neutral probability 1/2 in a period of length ∆t.

• Hence the volatility of ln r after ∆t time is

σ =
1
2

1√
∆t

ln
(

rh

r`

)

(see Exercise 23.2.3 in text).

• Above, σ is annualized, whereas r` and rh are period
based.
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Binomial Interest Rate Tree (continued)

• Note that
rh

r`
= e2σ

√
∆t.

• Thus greater volatility, hence uncertainty, leads to larger
rh/r` and wider ranges of possible short rates.

• The ratio rh/r` may depend on time if the volatility is a
function of time.

• Note that rh/r` has nothing to do with the current
short rate r if σ is independent of r.
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Binomial Interest Rate Tree (continued)

• In general there are j possible rates in period j,

rj , rjvj , rjv
2
j , . . . , rjv

j−1
j ,

where

vj ≡ e2σj

√
∆t (77)

is the multiplicative ratio for the rates in period j (see
figure on next page).

• We shall call rj the baseline rates.

• The subscript j in σj is meant to emphasize that the
short rate volatility may be time dependent.
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Binomial Interest Rate Tree (concluded)

• In the limit, the short rate follows the following process,

r(t) = µ(t) eσ(t) W (t), (78)

in which the (percent) short rate volatility σ(t) is a
deterministic function of time.

• As the expected value of r(t) equals µ(t) eσ(t)2(t/2), a
declining short rate volatility is usually imposed to
preclude the short rate from assuming implausibly high
values.

• Incidentally, this is how the binomial interest rate tree
achieves mean reversion.
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Memory Issues

• Path independency: The term structure at any node is
independent of the path taken to reach it.

• So only the baseline rates ri and the multiplicative
ratios vi need to be stored in computer memory.

• This takes up only O(n) space.a

• Storing the whole tree would have taken up O(n2)
space.

– Daily interest rate movements for 30 years require
roughly (30× 365)2/2 ≈ 6× 107 double-precision
floating-point numbers (half a gigabyte!).

aThroughout this chapter, n denotes the depth of the tree.

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 756



Set Things in Motion

• The abstract process is now in place.

• Now need the annualized rates of return associated with
the various riskless bonds that make up the benchmark
yield curve and their volatilities.

• In the U.S., for example, the on-the-run yield curve
obtained by the most recently issued Treasury securities
may be used as the benchmark curve.
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Set Things in Motion (concluded)

• The term structure of (yield) volatilitiesa can be
estimated from either the historical data (historical
volatility) or interest rate option prices such as cap
prices (implied volatility).

• The binomial tree should be consistent with both term
structures.

• Here we focus on the term structure of interest rates.
aOr simply the volatility (term) structure.
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Model Term Structures

• The model price is computed by backward induction.

• Refer back to the figure on p. 749.

• Given that the values at nodes B and C are PB and PC,
respectively, the value at node A is then

PB + PC

2(1 + r)
+ cash flow at node A.

• We compute the values column by column without
explicitly expanding the binomial interest rate tree (see
figure next page).

• This takes quadratic time and linear space.
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Term Structure Dynamics

• An n-period zero-coupon bond’s price can be computed
by assigning $1 to every node at period n and then
applying backward induction.

• Repeating this step for n = 1, 2, . . . , one obtains the
market discount function implied by the tree.

• The tree therefore determines a term structure.

• It also contains a term structure dynamics.

– Taking any node in the tree as the current state
induces a binomial interest rate tree and, again, a
term structure.
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Sample Term Structure

• We shall construct interest rate trees consistent with the
sample term structure in the following table.

• Assume the short rate volatility is such that
v ≡ rh/r` = 1.5, independent of time.

Period 1 2 3

Spot rate (%) 4 4.2 4.3

One-period forward rate (%) 4 4.4 4.5

Discount factor 0.96154 0.92101 0.88135
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An Approximate Calibration Scheme

• Start with the implied one-period forward rates and
then equate the expected short rate with the forward
rate (see Exercise 5.6.6 in text).

• For the first period, the forward rate is today’s
one-period spot rate.

• In general, let fj denote the forward rate in period j.

• This forward rate can be derived from the market
discount function via fj = (d(j)/d(j + 1))− 1 (see
Exercise 5.6.3 in text).
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An Approximate Calibration Scheme (continued)

• Since the ith short rate rjv
i−1
j , 1 ≤ i ≤ j, occurs with

probability 2−(j−1)
(
j−1
i−1

)
, this means

j∑

i=1

2−(j−1)

(
j − 1
i− 1

)
rjv

i−1
j = fj .

• Thus

rj =
(

2
1 + vj

)j−1

fj . (79)

• The binomial interest rate tree is trivial to set up.
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An Approximate Calibration Scheme (concluded)

• The ensuing tree for the sample term structure appears
in figure next page.

• For example, the price of the zero-coupon bond paying
$1 at the end of the third period is

1

4
×

1

1.04
×

( 1

1.0352
×

( 1

1.0288
+

1

1.0432

)
+

1

1.0528
×

( 1

1.0432
+

1

1.0648

))

or 0.88155, which exceeds discount factor 0.88135.

• The tree is thus not calibrated.

• Indeed, this bias is inherent (see text).
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Issues in Calibration

• The model prices generated by the binomial interest rate
tree should match the observed market prices.

• Perhaps the most crucial aspect of model building.

• Treat the backward induction for the model price of the
m-period zero-coupon bond as computing some function
of the unknown baseline rate rm called f(rm).

• A root-finding method is applied to solve f(rm) = P for
rm given the zero’s price P and r1, r2, . . . , rm−1.

• This procedure is carried out for m = 1, 2, . . . , n.

• It runs in cubic time, hopelessly slow.
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Binomial Interest Rate Tree Calibration

• Calibration can be accomplished in quadratic time by
the use of forward induction.a

• The scheme records how much $1 at a node contributes
to the model price.

• This number is called the state price.

– It is the price of a state contingent claim that pays
$1 at that particular node (state) and 0 elsewhere.

• The column of state prices will be established by moving
forward from time 1 to time n.

aJamshidian (1991).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 768



Binomial Interest Rate Tree Calibration (continued)

• Suppose we are at time j and there are j + 1 nodes.

– The baseline rate for period j is r ≡ rj .

– The multiplicative ratio be v ≡ vj .

– P1, P2, . . . , Pj are the state prices at time j − 1,
corresponding to rates r, rv, . . . , rvj−1.

• By definition,
∑j

i=1 Pi is the price of the (j − 1)-period
zero-coupon bond.

• We want to find r based on P1, P2, . . . , Pj and the price
of the j-period zero-coupon bond.
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Binomial Interest Rate Tree Calibration (continued)

• One dollar at time j has a known market value of
1/[ 1 + S(j) ]j , where S(j) is the j-period spot rate.

• Alternatively, this dollar has a present value of

g(r) ≡ P1

(1 + r)
+

P2

(1 + rv)
+

P3

(1 + rv2)
+ · · ·+ Pj

(1 + rvj−1)
.

• So we solve

g(r) =
1

[ 1 + S(j) ]j
(80)

for r.
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Binomial Interest Rate Tree Calibration (continued)

• Given a decreasing market discount function, a unique
positive solution for r is guaranteed.

• The state prices at time j can now be calculated (see
figure (a) next page).

• We call a tree with these state prices a binomial state
price tree (see figure (b) next page).

• The calibrated tree is depicted on p. 773.
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Binomial Interest Rate Tree Calibration (concluded)

• The Newton-Raphson method can be used to solve for
the r in Eq. (80) on p. 770 as g′(r) is easy to evaluate.

• The monotonicity and the convexity of g(r) also
facilitate root finding.

• The total running time is O(Cn2), where C is the
maximum number of times the root-finding routine
iterates, each consuming O(n) work.

• With a good initial guess, the Newton-Raphson method
converges in only a few stepsa

aLyuu (1999).
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A Numerical Example

• One dollar at the end of the second period should have a
present value of 0.92101 by the sample term structure.

• The baseline rate for the second period, r2, satisfies

0.480769
1 + r2

+
0.480769

1 + 1.5× r2
= 0.92101.

• The result is r2 = 3.526%.

• This is used to derive the next column of state prices
shown in figure (b) on p. 772 as 0.232197, 0.460505, and
0.228308.

• Their sum gives the correct market discount factor
0.92101.
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A Numerical Example (concluded)

• The baseline rate for the third period, r3, satisfies

0.232197
1 + r3

+
0.460505

1 + 1.5× r3
+

0.228308
1 + (1.5)2 × r3

= 0.88135.

• The result is r3 = 2.895%.
• Now, redo the calculation on p. 765 using the new rates:

1

4
×

1

1.04
× [

1

1.03526
× (

1

1.02895
+

1

1.04343
) +

1

1.05289
× (

1

1.04343
+

1

1.06514
)],

which equals 0.88135, an exact match.

• The tree on p. 773 prices without bias the benchmark
securities.
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