
GARCH Option Pricinga

• Options can be priced when the underlying asset’s
return follows a GARCH process.

• Let St denote the asset price at date t.

• Let h2
t be the conditional variance of the return over

the period [ t, t + 1 ] given the information at date t.

– “One day” is merely a convenient term for any
elapsed time ∆t.

aA Bloomberg quant said, on Feb 29, 2008, that GARCH option

pricing is seldom used in trading.
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GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for the price
dynamics:a

ln
St+1

St
= r − h2

t

2
+ htεt+1, (66)

where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (εt+1 − c)2, (67)

εt+1 ∼ N(0, 1) given information at date t,

r = daily riskless return,

c ≥ 0.

aDuan (1995).
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GARCH Option Pricing (continued)

• The five unknown parameters of the model are c, h0, β0,
β1, and β2.

• It is postulated that β0, β1, β2 ≥ 0 to make the
conditional variance positive.

• The above process, called the nonlinear asymmetric
GARCH model, generalizes the GARCH(1, 1) model (see
text).
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GARCH Option Pricing (continued)

• It captures the volatility clustering in asset returns first
noted by Mandelbrot (1963).a

– When c = 0, a large εt+1 results in a large ht+1,
which in turns tends to yield a large ht+2, and so on.

• It also captures the negative correlation between the
asset return and changes in its (conditional) volatility.b

– For c > 0, a positive εt+1 (good news) tends to
decrease ht+1, whereas a negative εt+1 (bad news)
tends to do the opposite.

a“. . . large changes tend to be followed by large changes—of either

sign—and small changes tend to be followed by small changes . . . ”
bNoted by Black (1976): Volatility tends to rise in response to “bad

news” and fall in response to “good news.”
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GARCH Option Pricing (concluded)

• With yt ≡ ln St denoting the logarithmic price, the
model becomes

yt+1 = yt + r − h2
t

2
+ htεt+1. (68)

• The pair (yt, h
2
t ) completely describes the current state.

• The conditional mean and variance of yt+1 are clearly

E[ yt+1 | yt, h
2
t ] = yt + r − h2

t

2
, (69)

Var[ yt+1 | yt, h
2
t ] = h2

t . (70)

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 690



The Ritchken-Trevor (RT) Algorithma

• The GARCH model is a continuous-state model.

• To approximate it, we turn to trees with discrete states.

• Path dependence in GARCH makes the tree for asset
prices explode exponentially (why?).

• We need to mitigate this combinatorial explosion.
aRitchken and Trevor (1999).
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The Ritchken-Trevor Algorithm (continued)

• Partition a day into n periods.

• Three states follow each state (yt, h
2
t ) after a period.

• As the trinomial model combines, 2n + 1 states at date
t + 1 follow each state at date t (recall p. 549).

• These 2n + 1 values must approximate the distribution
of (yt+1, h

2
t+1).

• So the conditional moments (69)–(70) at date t + 1 on
p. 690 must be matched by the trinomial model to
guarantee convergence to the continuous-state model.
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The Ritchken-Trevor Algorithm (continued)

• It remains to pick the jump size and the three branching
probabilities.

• The role of σ in the Black-Scholes option pricing model
is played by ht in the GARCH model.

• As a jump size proportional to σ/
√

n is picked in the
BOPM, a comparable magnitude will be chosen here.

• Define γ ≡ h0, though other multiples of h0 are
possible, and

γn ≡ γ√
n

.

• The jump size will be some integer multiple η of γn.

• We call η the jump parameter (p. 694).
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(0, 0)
yt

(1, 1)

(1, 0)

(1,−1)

6
?
ηγn

-¾ 1 day

The seven values on the right approximate the distribution
of logarithmic price yt+1.
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The Ritchken-Trevor Algorithm (continued)

• The middle branch does not change the underlying
asset’s price.

• The probabilities for the up, middle, and down branches
are

pu =
h2

t

2η2γ2
+

r − (h2
t /2)

2ηγ
√

n
, (71)

pm = 1− h2
t

η2γ2
, (72)

pd =
h2

t

2η2γ2
− r − (h2

t /2)
2ηγ

√
n

. (73)

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 695



The Ritchken-Trevor Algorithm (continued)

• It can be shown that:

– The trinomial model takes on 2n + 1 values at date
t + 1 for yt+1 .

– These values have a matching mean for yt+1 .

– These values have an asymptotically matching
variance for yt+1 .

• The central limit theorem thus guarantees the desired
convergence as n increases.
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The Ritchken-Trevor Algorithm (continued)

• We can dispense with the intermediate nodes between
dates to create a (2n + 1)-nomial tree (p. 698).

• The resulting model is multinomial with 2n + 1
branches from any state (yt, h

2
t ).

• There are two reasons behind this manipulation.

– Interdate nodes are created merely to approximate
the continuous-state model after one day.

– Keeping the interdate nodes results in a tree that can
be as much as n times larger.
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yt

6
?
ηγn

-¾ 1 day

This heptanomial tree is the outcome of the trinomial tree
on p. 694 after its intermediate nodes are removed.
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The Ritchken-Trevor Algorithm (continued)

• A node with logarithmic price yt + `ηγn at date t + 1
follows the current node at date t with price yt for
some −n ≤ ` ≤ n.

• To reach that price in n periods, the number of up
moves must exceed that of down moves by exactly `.

• The probability that this happens is

P (`) ≡
∑

ju,jm,jd

n!
ju! jm! jd!

pju
u pjm

m pjd

d ,

with ju, jm, jd ≥ 0, n = ju + jm + jd, and ` = ju − jd.
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The Ritchken-Trevor Algorithm (continued)

• A particularly simple way to calculate the P (`)s starts
by noting that

(pux + pm + pdx
−1)n =

n∑

`=−n

P (`) x`. (74)

• So we expand (pux + pm + pdx
−1)n and retrieve the

probabilities by reading off the coefficients.

• It can be computed in O(n2) time.
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The Ritchken-Trevor Algorithm (continued)

• The updating rule (67) on p. 687 must be modified to
account for the adoption of the discrete-state model.

• The logarithmic price yt + `ηγn at date t + 1 following
state (yt, h

2
t ) at date t has a variance equal to

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε

′
t+1 − c)2, (75)

– Above,

ε′t+1 =
`ηγn − (r − h2

t /2)
ht

, ` = 0,±1,±2, . . . ,±n,

is a discrete random variable with 2n + 1 values.
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The Ritchken-Trevor Algorithm (continued)

• Different conditional variances h2
t may require different

η so that the probabilities calculated by Eqs. (71)–(73)
on p. 695 lie between 0 and 1.

• This implies varying jump sizes.

• The necessary requirement pm ≥ 0 implies η ≥ ht/γ.

• Hence we try

η = dht/γ e, dht/γ e+ 1, dht/γ e+ 2, . . .

until valid probabilities are obtained or until their
nonexistence is confirmed.
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The Ritchken-Trevor Algorithm (continued)

• The sufficient and necessary condition for valid
probabilities to exist isa

| r − (h2
t /2) |

2ηγ
√

n
≤ h2

t

2η2γ2
≤ min

(
1− | r − (h2

t /2) |
2ηγ

√
n

,
1
2

)
.

• Obviously, the magnitude of η tends to grow with ht.

• The plot on p. 704 uses n = 1 to illustrate our points
for a 3-day model.

• For example, node (1, 1) of date 1 and node (2, 3) of
date 2 pick η = 2.

aLyuu and Wu (2003).
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y0

(1, 1)

(2, 3)

(2, 0)

(2,−1)

6
?

γn = γ1

-¾ 3 days
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The Ritchken-Trevor Algorithm (continued)

• The topology of the tree is not a standard combining
multinomial tree.

• For example, a few nodes on p. 704 such as nodes (2, 0)
and (2,−1) have multiple jump sizes.

• The reason is the path dependence of the model.

– Two paths can reach node (2, 0) from the root node,
each with a different variance for the node.

– One of the variances results in η = 1, whereas the
other results in η = 2.
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The Ritchken-Trevor Algorithm (concluded)

• The number of possible values of h2
t at a node can be

exponential.

– Each path brings with it a different variance h2
t .

• To address this problem, we record only the maximum
and minimum h2

t at each node.a

• Therefore, each node on the tree contains only two
states (yt, h

2
max) and (yt, h

2
min).

• Each of (yt, h
2
max) and (yt, h

2
min) carries its own η and

set of 2n + 1 branching probabilities.
aCakici and Topyan (2000). But see p. 738 for a potential problem.
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Negative Aspects of the Ritchken-Trevor Algorithma

• A small n may yield inaccurate option prices.

• But the tree will grow exponentially if n is large enough.

– Specifically, n > (1− β1)/β2 when r = c = 0.

• A large n has another serious problem: The tree cannot
grow beyond a certain date.

• Thus the choice of n may be limited in practice.

• The RT algorithm can be modified to be free of
shortened maturity and exponential complexity.b

aLyuu and Wu (2003, 2005).
bIt is only O(n2) if n ≤ (

√
(1− β1)/β2 − c)2!
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Numerical Examples

• Assume S0 = 100, y0 = ln S0 = 4.60517, r = 0,
h2

0 = 0.0001096, γ = h0 = 0.010469, n = 1,
γn = γ/

√
n = 0.010469, β0 = 0.000006575, β1 = 0.9,

β2 = 0.04, and c = 0.

• A daily variance of 0.0001096 corresponds to an annual
volatility of

√
365× 0.0001096 ≈ 20%.

• Let h2(i, j) denote the variance at node (i, j).

• Initially, h2(0, 0) = h2
0 = 0.0001096.
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Numerical Examples (continued)

• Let h2
max(i, j) denote the maximum variance at node

(i, j).

• Let h2
min(i, j) denote the minimum variance at node

(i, j).

• Initially, h2
max(0, 0) = h2

min(0, 0) = h2
0.

• The resulting three-day tree is depicted on p. 710.
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A top (bottom) number inside a gray box refers to the
minimum (maximum, respectively) variance h2

min (h2
max,

respectively) for the node. Variances are multiplied by
100,000 for readability. A top (bottom) number inside a
white box refers to η corresponding to h2

min (h2
max,

respectively).
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Numerical Examples (continued)

• Let us see how the numbers are calculated.

• Start with the root node, node (0, 0).

• Try η = 1 in Eqs. (71)–(73) on p. 695 first to obtain

pu = 0.4974,

pm = 0,

pd = 0.5026.

• As they are valid probabilities, the three branches from
the root node use single jumps.
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Numerical Examples (continued)

• Move on to node (1, 1).

• It has one predecessor node—node (0, 0)—and it takes
an up move to reach the current node.

• So apply updating rule (75) on p. 701 with ` = 1 and
h2

t = h2(0, 0).

• The result is h2(1, 1) = 0.000109645.
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Numerical Examples (continued)

• Because dh(1, 1)/γ e = 2, we try η = 2 in
Eqs. (71)–(73) on p. 695 first to obtain

pu = 0.1237,

pm = 0.7499,

pd = 0.1264.

• As they are valid probabilities, the three branches from
node (1, 1) use double jumps.
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Numerical Examples (continued)

• Carry out similar calculations for node (1, 0) with
` = 0 in updating rule (75) on p. 701.

• Carry out similar calculations for node (1,−1) with
` = −1 in updating rule (75).

• Single jump η = 1 works in both nodes.

• The resulting variances are

h2(1, 0) = 0.000105215,

h2(1,−1) = 0.000109553.
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Numerical Examples (continued)

• Node (2, 0) has 2 predecessor nodes, (1, 0) and (1,−1).

• Both have to be considered in deriving the variances.

• Let us start with node (1, 0).

• Because it takes a middle move to reach the current
node, we apply updating rule (75) on p. 701 with ` = 0
and h2

t = h2(1, 0).

• The result is h2
t+1 = 0.000101269.
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Numerical Examples (continued)

• Now move on to the other predecessor node (1,−1).

• Because it takes an up move to reach the current node,
apply updating rule (75) on p. 701 with ` = 1 and
h2

t = h2(1,−1).

• The result is h2
t+1 = 0.000109603.

• We hence record

h2
min(2, 0) = 0.000101269,

h2
max(2, 0) = 0.000109603.
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Numerical Examples (continued)

• Consider state h2
max(2, 0) first.

• Because dhmax(2, 0)/γ e = 2, we first try η = 2 in
Eqs. (71)–(73) on p. 695 to obtain

pu = 0.1237,

pm = 0.7500,

pd = 0.1263.

• As they are valid probabilities, the three branches from
node (2, 0) with the maximum variance use double
jumps.
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Numerical Examples (continued)

• Now consider state h2
min(2, 0).

• Because dhmin(2, 0)/γ e = 1, we first try η = 1 in
Eqs. (71)–(73) on p. 695 to obtain

pu = 0.4596,

pm = 0.0760,

pd = 0.4644.

• As they are valid probabilities, the three branches from
node (2, 0) with the minimum variance use single jumps.
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Numerical Examples (continued)

• Node (2,−1) has 3 predecessor nodes.

• Start with node (1, 1).

• Because it takes a down move to reach the current node,
we apply updating rule (75) on p. 701 with ` = −1 and
h2

t = h2(1, 1).

• The result is h2
t+1 = 0.0001227.
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Numerical Examples (continued)

• Now move on to predecessor node (1, 0).

• Because it also takes a down move to reach the current
node, we apply updating rule (75) on p. 701 with
` = −1 and h2

t = h2(1, 0).

• The result is h2
t+1 = 0.000105609.
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Numerical Examples (continued)

• Finally, consider predecessor node (1,−1).

• Because it takes a middle move to reach the current
node, we apply updating rule (75) on p. 701 with ` = 0
and h2

t = h2(1,−1).

• The result is h2
t+1 = 0.000105173.

• We hence record

h2
min(2,−1) = 0.000105173,

h2
max(2,−1) = 0.0001227.
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Numerical Examples (continued)

• Consider state h2
max(2,−1).

• Because dhmax(2,−1)/γ e = 2, we first try η = 2 in
Eqs. (71)–(73) on p. 695 to obtain

pu = 0.1385,

pm = 0.7201,

pd = 0.1414.

• As they are valid probabilities, the three branches from
node (2,−1) with the maximum variance use double
jumps.
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Numerical Examples (continued)

• Next, consider state h2
min(2,−1).

• Because dhmin(2,−1)/γ e = 1, we first try η = 1 in
Eqs. (71)–(73) on p. 695 to obtain

pu = 0.4773,

pm = 0.0404,

pd = 0.4823.

• As they are valid probabilities, the three branches from
node (2,−1) with the minimum variance use single
jumps.
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Numerical Examples (concluded)

• Other nodes at dates 2 and 3 can be handled similarly.

• In general, if a node has k predecessor nodes, then 2k

variances will be calculated using the updating rule.

– This is because each predecessor node keeps two
variance numbers.

• But only the maximum and minimum variances will be
kept.
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Negative Aspects of the RT Algorithm Revisiteda

• Recall the problems mentioned on p. 707.

• In our case, combinatorial explosion occurs when

n >
1− β1

β2
=

1− 0.9
0.04

= 2.5.

• Suppose we are willing to accept the exponential
running time and pick n = 100 to seek accuracy.

• But the problem of shortened maturity forces the tree to
stop at date 9!

aLyuu and Wu (2003).
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Dotted line: n = 3; dashed line: n = 4; solid line: n = 5.
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