$\mathsf{GARCH}\ \mathsf{Option}\ \mathsf{Pricing}^{\mathrm{a}}$

- Options can be priced when the underlying asset's return follows a GARCH process.
- Let S_t denote the asset price at date t.
- Let h_t^2 be the conditional variance of the return over the period [t, t+1] given the information at date t.
 - "One day" is merely a convenient term for any elapsed time Δt .

^aA Bloomberg quant said, on Feb 29, 2008, that GARCH option pricing is seldom used in trading.

GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for the price dynamics:^a

$$\ln \frac{S_{t+1}}{S_t} = r - \frac{h_t^2}{2} + h_t \epsilon_{t+1}, \tag{66}$$

where

$$h_{t+1}^{2} = \beta_{0} + \beta_{1}h_{t}^{2} + \beta_{2}h_{t}^{2}(\epsilon_{t+1} - c)^{2}, \qquad (67)$$

$$\epsilon_{t+1} \sim N(0, 1) \text{ given information at date } t,$$

$$r = \text{ daily riskless return,}$$

$$c \geq 0.$$

^aDuan (1995).

GARCH Option Pricing (continued)

- The five unknown parameters of the model are c, h_0, β_0, β_1 , and β_2 .
- It is postulated that $\beta_0, \beta_1, \beta_2 \ge 0$ to make the conditional variance positive.
- The above process, called the nonlinear asymmetric GARCH model, generalizes the GARCH(1,1) model (see text).

GARCH Option Pricing (continued)

- It captures the volatility clustering in asset returns first noted by Mandelbrot (1963).^a
 - When c = 0, a large ϵ_{t+1} results in a large h_{t+1} , which in turns tends to yield a large h_{t+2} , and so on.
- It also captures the negative correlation between the asset return and changes in its (conditional) volatility.^b
 - For c > 0, a positive ϵ_{t+1} (good news) tends to decrease h_{t+1} , whereas a negative ϵ_{t+1} (bad news) tends to do the opposite.

^a"... large changes tend to be followed by large changes—of either sign—and small changes tend to be followed by small changes ..."

^bNoted by Black (1976): Volatility tends to rise in response to "bad news" and fall in response to "good news."

GARCH Option Pricing (concluded)

• With $y_t \equiv \ln S_t$ denoting the logarithmic price, the model becomes

$$y_{t+1} = y_t + r - \frac{h_t^2}{2} + h_t \epsilon_{t+1}.$$
 (68)

- The pair (y_t, h_t^2) completely describes the current state.
- The conditional mean and variance of y_{t+1} are clearly

$$E[y_{t+1} | y_t, h_t^2] = y_t + r - \frac{h_t^2}{2}, \qquad (69)$$

Var $[y_{t+1} | y_t, h_t^2] = h_t^2. \qquad (70)$

The Ritchken-Trevor (RT) Algorithm $^{\rm a}$

- The GARCH model is a continuous-state model.
- To approximate it, we turn to trees with *discrete* states.
- Path dependence in GARCH makes the tree for asset prices explode exponentially (why?).
- We need to mitigate this combinatorial explosion.

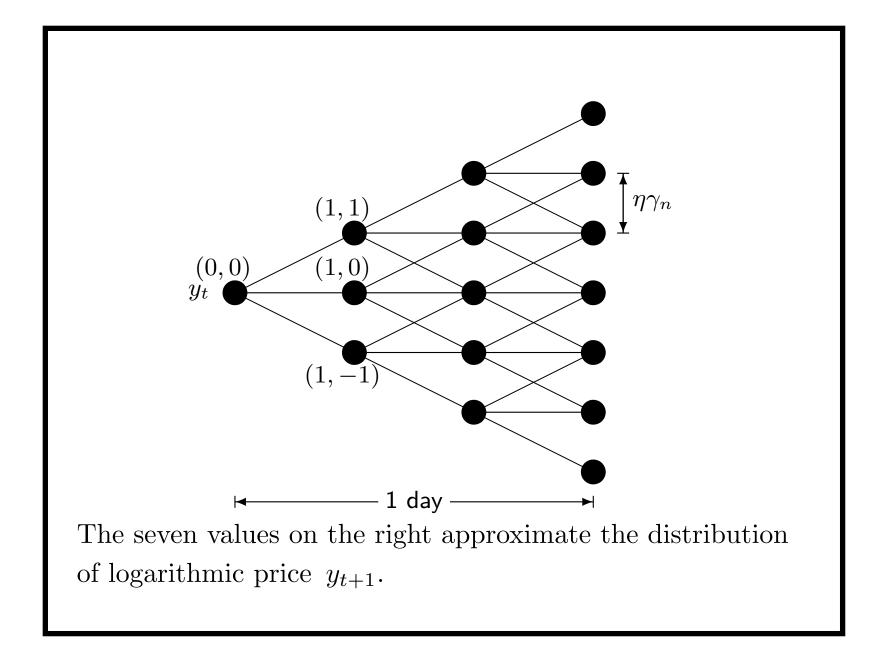
^aRitchken and Trevor (1999).

- Partition a day into n periods.
- Three states follow each state (y_t, h_t^2) after a period.
- As the trinomial model combines, 2n + 1 states at date t + 1 follow each state at date t (recall p. 549).
- These 2n + 1 values must approximate the distribution of (y_{t+1}, h_{t+1}^2) .
- So the conditional moments (69)-(70) at date t+1 on p. 690 must be matched by the trinomial model to guarantee convergence to the continuous-state model.

- It remains to pick the jump size and the three branching probabilities.
- The role of σ in the Black-Scholes option pricing model is played by h_t in the GARCH model.
- As a jump size proportional to σ/\sqrt{n} is picked in the BOPM, a comparable magnitude will be chosen here.
- Define $\gamma \equiv h_0$, though other multiples of h_0 are possible, and

$$\gamma_n \equiv \frac{\gamma}{\sqrt{n}}$$

- The jump size will be some integer multiple η of γ_n .
- We call η the jump parameter (p. 694).



- The middle branch does not change the underlying asset's price.
- The probabilities for the up, middle, and down branches are

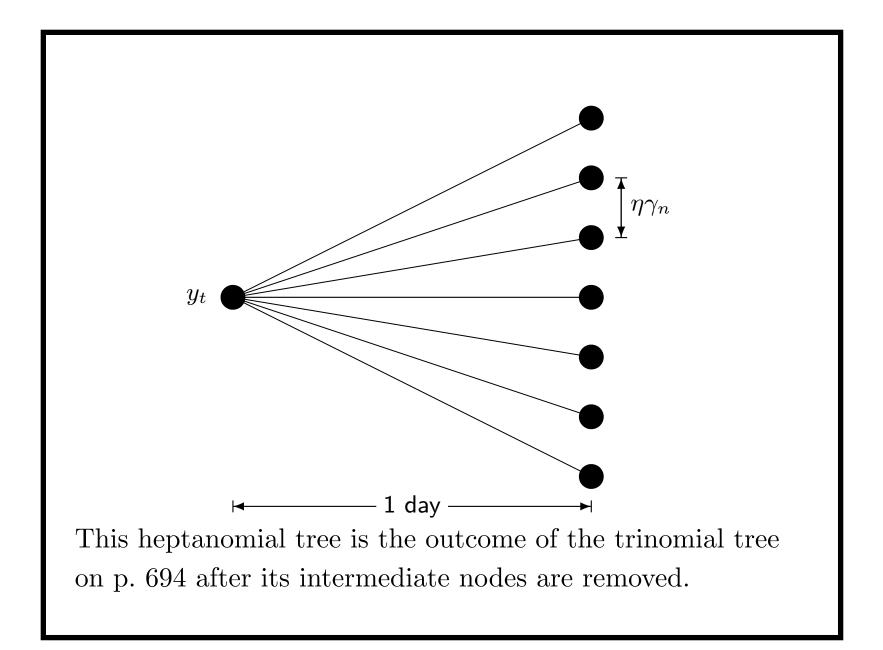
$$p_{u} = \frac{h_{t}^{2}}{2\eta^{2}\gamma^{2}} + \frac{r - (h_{t}^{2}/2)}{2\eta\gamma\sqrt{n}}, \qquad (71)$$

$$p_m = 1 - \frac{h_t^2}{\eta^2 \gamma^2}, \qquad (72)$$

$$p_d = \frac{h_t^2}{2\eta^2 \gamma^2} - \frac{r - (h_t^2/2)}{2\eta \gamma \sqrt{n}}.$$
 (73)

- It can be shown that:
 - The trinomial model takes on 2n + 1 values at date t + 1 for y_{t+1} .
 - These values have a matching mean for y_{t+1} .
 - These values have an asymptotically matching variance for y_{t+1} .
- The central limit theorem thus guarantees the desired convergence as *n* increases.

- We can dispense with the intermediate nodes *between* dates to create a (2n + 1)-nomial tree (p. 698).
- The resulting model is multinomial with 2n + 1branches from any state (y_t, h_t^2) .
- There are two reasons behind this manipulation.
 - Interdate nodes are created merely to approximate the continuous-state model after one day.
 - Keeping the interdate nodes results in a tree that can be as much as n times larger.



- A node with logarithmic price $y_t + \ell \eta \gamma_n$ at date t + 1follows the current node at date t with price y_t for some $-n \leq \ell \leq n$.
- To reach that price in n periods, the number of up moves must exceed that of down moves by exactly ℓ .
- The probability that this happens is

$$P(\ell) \equiv \sum_{j_u, j_m, j_d} \frac{n!}{j_u! j_m! j_d!} p_u^{j_u} p_m^{j_m} p_d^{j_d},$$

with
$$j_u, j_m, j_d \ge 0, \ n = j_u + j_m + j_d$$
, and $\ell = j_u - j_d$.

• A particularly simple way to calculate the $P(\ell)$ s starts by noting that

$$(p_u x + p_m + p_d x^{-1})^n = \sum_{\ell=-n}^n P(\ell) x^{\ell}.$$
 (74)

- So we expand $(p_u x + p_m + p_d x^{-1})^n$ and retrieve the probabilities by reading off the coefficients.
- It can be computed in $O(n^2)$ time.

- The updating rule (67) on p. 687 must be modified to account for the adoption of the discrete-state model.
- The logarithmic price $y_t + \ell \eta \gamma_n$ at date t + 1 following state (y_t, h_t^2) at date t has a variance equal to

$$h_{t+1}^2 = \beta_0 + \beta_1 h_t^2 + \beta_2 h_t^2 (\epsilon_{t+1}' - c)^2, \qquad (75)$$

– Above,

$$\epsilon'_{t+1} = \frac{\ell \eta \gamma_n - (r - h_t^2/2)}{h_t}, \quad \ell = 0, \pm 1, \pm 2, \dots, \pm n,$$

is a discrete random variable with 2n + 1 values.

- Different conditional variances h_t^2 may require different η so that the probabilities calculated by Eqs. (71)–(73) on p. 695 lie between 0 and 1.
- This implies varying jump sizes.
- The necessary requirement $p_m \ge 0$ implies $\eta \ge h_t/\gamma$.
- Hence we try

$$\eta = \lceil h_t / \gamma \rceil, \lceil h_t / \gamma \rceil + 1, \lceil h_t / \gamma \rceil + 2, \dots$$

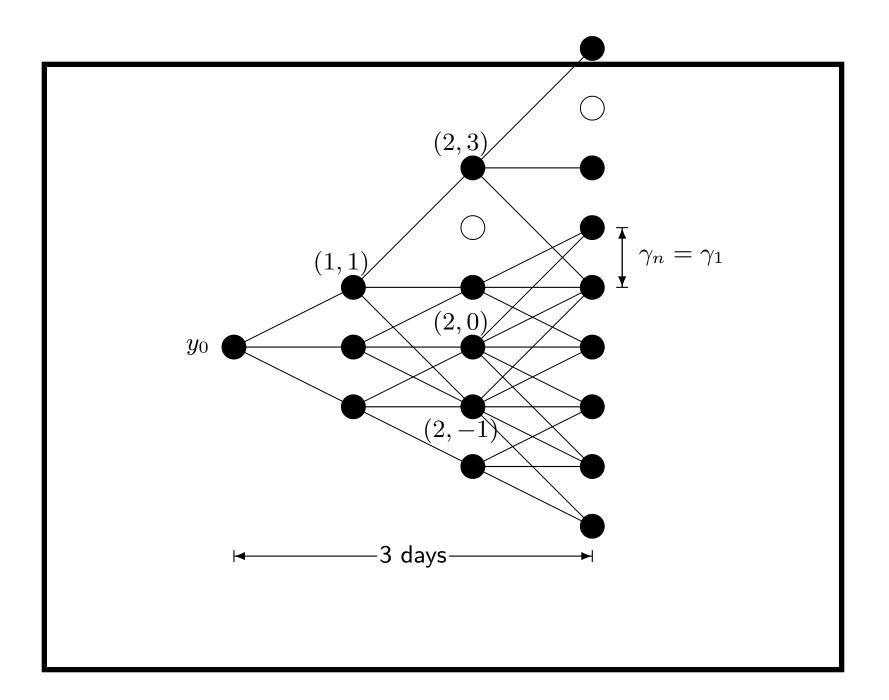
until valid probabilities are obtained or until their nonexistence is confirmed.

• The sufficient and necessary condition for valid probabilities to exist is^a

$$\frac{|r - (h_t^2/2)|}{2\eta\gamma\sqrt{n}} \le \frac{h_t^2}{2\eta^2\gamma^2} \le \min\left(1 - \frac{|r - (h_t^2/2)|}{2\eta\gamma\sqrt{n}}, \frac{1}{2}\right)$$

- Obviously, the magnitude of η tends to grow with h_t .
- The plot on p. 704 uses n = 1 to illustrate our points for a 3-day model.
- For example, node (1,1) of date 1 and node (2,3) of date 2 pick $\eta = 2$.

^aLyuu and Wu (2003).



- The topology of the tree is not a standard combining multinomial tree.
- For example, a few nodes on p. 704 such as nodes (2,0) and (2,-1) have multiple jump sizes.
- The reason is the path dependence of the model.
 - Two paths can reach node (2,0) from the root node, each with a different variance for the node.
 - One of the variances results in $\eta = 1$, whereas the other results in $\eta = 2$.

- The number of possible values of h_t^2 at a node can be exponential.
 - Each path brings with it a different variance h_t^2 .
- To address this problem, we record only the maximum and minimum h_t^2 at each node.^a
- Therefore, each node on the tree contains only two states (y_t, h_{max}^2) and (y_t, h_{min}^2) .
- Each of (y_t, h_{\max}^2) and (y_t, h_{\min}^2) carries its own η and set of 2n + 1 branching probabilities.

^aCakici and Topyan (2000). But see p. 738 for a potential problem.

Negative Aspects of the Ritchken-Trevor Algorithm^a

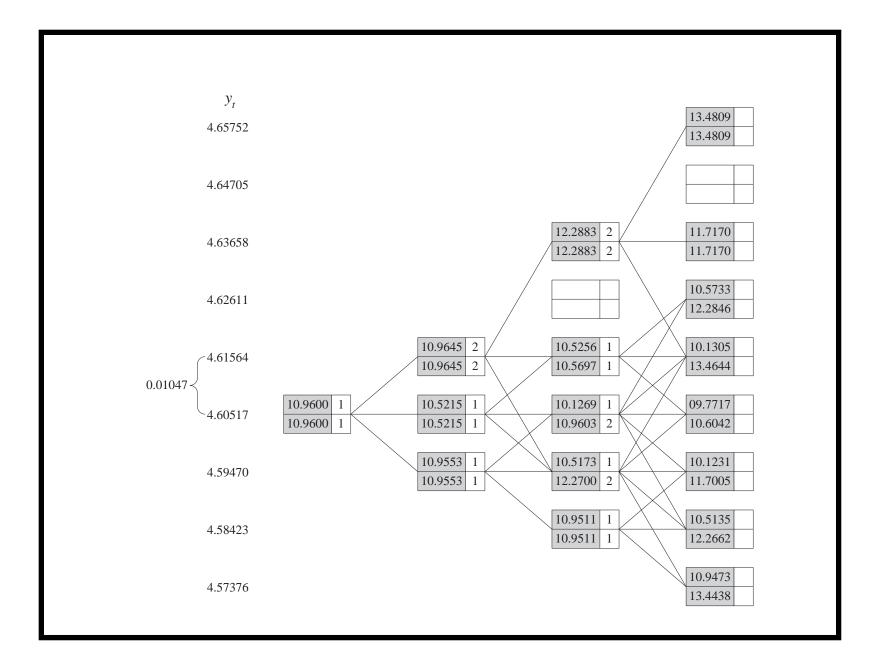
- A small n may yield inaccurate option prices.
- But the tree will grow exponentially if n is large enough. - Specifically, $n > (1 - \beta_1)/\beta_2$ when r = c = 0.
- A large *n* has another serious problem: The tree cannot grow beyond a certain date.
- Thus the choice of n may be limited in practice.
- The RT algorithm can be modified to be free of shortened maturity and exponential complexity.^b

^aLyuu and Wu (2003, 2005). ^bIt is only $O(n^2)$ if $n \le (\sqrt{(1-\beta_1)/\beta_2} - c)^2!$

Numerical Examples

- Assume $S_0 = 100, y_0 = \ln S_0 = 4.60517, r = 0,$ $h_0^2 = 0.0001096, \gamma = h_0 = 0.010469, n = 1,$ $\gamma_n = \gamma/\sqrt{n} = 0.010469, \beta_0 = 0.000006575, \beta_1 = 0.9,$ $\beta_2 = 0.04, \text{ and } c = 0.$
- A daily variance of 0.0001096 corresponds to an annual volatility of $\sqrt{365 \times 0.0001096} \approx 20\%$.
- Let $h^2(i,j)$ denote the variance at node (i,j).
- Initially, $h^2(0,0) = h_0^2 = 0.0001096$.

- Let $h_{\max}^2(i,j)$ denote the maximum variance at node (i,j).
- Let $h_{\min}^2(i, j)$ denote the minimum variance at node (i, j).
- Initially, $h_{\max}^2(0,0) = h_{\min}^2(0,0) = h_0^2$.
- The resulting three-day tree is depicted on p. 710.



A top (bottom) number inside a gray box refers to the minimum (maximum, respectively) variance h_{\min}^2 (h_{\max}^2 , respectively) for the node. Variances are multiplied by 100,000 for readability. A top (bottom) number inside a white box refers to η corresponding to h_{\min}^2 (h_{\max}^2 , respectively).

- Let us see how the numbers are calculated.
- Start with the root node, node (0,0).
- Try $\eta = 1$ in Eqs. (71)–(73) on p. 695 first to obtain

 $p_u = 0.4974,$ $p_m = 0,$ $p_d = 0.5026.$

• As they are valid probabilities, the three branches from the root node use single jumps.

- Move on to node (1,1).
- It has one predecessor node—node (0,0)—and it takes an up move to reach the current node.
- So apply updating rule (75) on p. 701 with $\ell = 1$ and $h_t^2 = h^2(0,0)$.
- The result is $h^2(1,1) = 0.000109645$.

• Because $\lceil h(1,1)/\gamma \rceil = 2$, we try $\eta = 2$ in Eqs. (71)–(73) on p. 695 first to obtain

$$p_u = 0.1237,$$

 $p_m = 0.7499,$
 $p_d = 0.1264.$

• As they are valid probabilities, the three branches from node (1,1) use double jumps.

- Carry out similar calculations for node (1,0) with $\ell = 0$ in updating rule (75) on p. 701.
- Carry out similar calculations for node (1, -1) with $\ell = -1$ in updating rule (75).
- Single jump $\eta = 1$ works in both nodes.
- The resulting variances are

 $h^2(1,0) = 0.000105215,$ $h^2(1,-1) = 0.000109553.$

- Node (2,0) has 2 predecessor nodes, (1,0) and (1,-1).
- Both have to be considered in deriving the variances.
- Let us start with node (1,0).
- Because it takes a middle move to reach the current node, we apply updating rule (75) on p. 701 with $\ell = 0$ and $h_t^2 = h^2(1,0)$.
- The result is $h_{t+1}^2 = 0.000101269$.

- Now move on to the other predecessor node (1, -1).
- Because it takes an up move to reach the current node, apply updating rule (75) on p. 701 with $\ell = 1$ and $h_t^2 = h^2(1, -1)$.
- The result is $h_{t+1}^2 = 0.000109603$.
- We hence record

$$h_{\min}^2(2,0) = 0.000101269,$$

 $h_{\max}^2(2,0) = 0.000109603.$

- Consider state $h_{\max}^2(2,0)$ first.
- Because $\lceil h_{\max}(2,0)/\gamma \rceil = 2$, we first try $\eta = 2$ in Eqs. (71)–(73) on p. 695 to obtain

 $p_u = 0.1237,$ $p_m = 0.7500,$ $p_d = 0.1263.$

• As they are valid probabilities, the three branches from node (2,0) with the maximum variance use double jumps.

- Now consider state $h_{\min}^2(2,0)$.
- Because $\lceil h_{\min}(2,0)/\gamma \rceil = 1$, we first try $\eta = 1$ in Eqs. (71)–(73) on p. 695 to obtain

 $p_u = 0.4596,$ $p_m = 0.0760,$ $p_d = 0.4644.$

• As they are valid probabilities, the three branches from node (2,0) with the minimum variance use single jumps.

- Node (2, -1) has 3 predecessor nodes.
- Start with node (1,1).
- Because it takes a down move to reach the current node, we apply updating rule (75) on p. 701 with $\ell = -1$ and $h_t^2 = h^2(1, 1)$.
- The result is $h_{t+1}^2 = 0.0001227$.

- Now move on to predecessor node (1,0).
- Because it also takes a down move to reach the current node, we apply updating rule (75) on p. 701 with $\ell = -1$ and $h_t^2 = h^2(1, 0)$.
- The result is $h_{t+1}^2 = 0.000105609$.

- Finally, consider predecessor node (1, -1).
- Because it takes a middle move to reach the current node, we apply updating rule (75) on p. 701 with $\ell = 0$ and $h_t^2 = h^2(1, -1)$.
- The result is $h_{t+1}^2 = 0.000105173$.
- We hence record

$$h_{\min}^2(2,-1) = 0.000105173,$$

 $h_{\max}^2(2,-1) = 0.0001227.$

- Consider state $h_{\max}^2(2,-1)$.
- Because $\lceil h_{\max}(2,-1)/\gamma \rceil = 2$, we first try $\eta = 2$ in Eqs. (71)–(73) on p. 695 to obtain

 $p_u = 0.1385,$ $p_m = 0.7201,$ $p_d = 0.1414.$

 As they are valid probabilities, the three branches from node (2,-1) with the maximum variance use double jumps.

- Next, consider state $h_{\min}^2(2,-1)$.
- Because $\lceil h_{\min}(2,-1)/\gamma \rceil = 1$, we first try $\eta = 1$ in Eqs. (71)–(73) on p. 695 to obtain

 $p_u = 0.4773,$ $p_m = 0.0404,$ $p_d = 0.4823.$

 As they are valid probabilities, the three branches from node (2,-1) with the minimum variance use single jumps.

Numerical Examples (concluded)

- Other nodes at dates 2 and 3 can be handled similarly.
- In general, if a node has k predecessor nodes, then 2k variances will be calculated using the updating rule.
 - This is because each predecessor node keeps two variance numbers.
- But only the maximum and minimum variances will be kept.

Negative Aspects of the RT Algorithm Revisited $^{\rm a}$

- Recall the problems mentioned on p. 707.
- In our case, combinatorial explosion occurs when

$$n > \frac{1 - \beta_1}{\beta_2} = \frac{1 - 0.9}{0.04} = 2.5.$$

- Suppose we are willing to accept the exponential running time and pick n = 100 to seek accuracy.
- But the problem of shortened maturity forces the tree to stop at date 9!

^aLyuu and Wu (2003).

