Variance Reduction: Antithetic Variates

- We are interested in estimating $E[g(X_1, X_2, ..., X_n)]$, where $X_1, X_2, ..., X_n$ are independent.
- Let Y_1 and Y_2 be random variables with the same distribution as $g(X_1, X_2, \ldots, X_n)$.
- Then

$$\operatorname{Var}\left[\frac{Y_1 + Y_2}{2}\right] = \frac{\operatorname{Var}[Y_1]}{2} + \frac{\operatorname{Cov}[Y_1, Y_2]}{2}$$

- $\operatorname{Var}[Y_1]/2$ is the variance of the Monte Carlo method with two (independent) replications.

• The variance $\operatorname{Var}[(Y_1 + Y_2)/2]$ is smaller than $\operatorname{Var}[Y_1]/2$ when Y_1 and Y_2 are negatively correlated.

Variance Reduction: Antithetic Variates (continued)

- For each simulated sample path X, a second one is obtained by reusing the random numbers on which the first path is based.
- This yields a second sample path Y.
- Two estimates are then obtained: One based on X and the other on Y.
- If N independent sample paths are generated, the antithetic-variates estimator averages over 2Nestimates.

Variance Reduction: Antithetic Variates (continued)

- Consider process $dX = a_t dt + b_t \sqrt{dt} \xi$.
- Let g be a function of n samples X_1, X_2, \ldots, X_n on the sample path.
- We are interested in $E[g(X_1, X_2, \ldots, X_n)].$
- Suppose one simulation run has realizations
 ξ₁, ξ₂,..., ξ_n for the normally distributed fluctuation term ξ.
- This generates samples x_1, x_2, \ldots, x_n .
- The estimate is then $g(\boldsymbol{x})$, where $\boldsymbol{x} \equiv (x_1, x_2 \dots, x_n)$.

Variance Reduction: Antithetic Variates (concluded)

- The antithetic-variates method does not sample n more numbers from ξ for the second estimate $g(\mathbf{x}')$.
- Instead, generate the sample path $\mathbf{x}' \equiv (x'_1, x'_2 \dots, x'_n)$ from $-\xi_1, -\xi_2, \dots, -\xi_n$.
- Compute $g(\boldsymbol{x}')$.
- Output (g(x) + g(x'))/2.
- Repeat the above steps for as many times as required by accuracy.

Variance Reduction: Conditioning

- We are interested in estimating E[X].
- Suppose here is a random variable Z such that E[X | Z = z] can be efficiently and precisely computed.
- E[X] = E[E[X | Z]] by the law of iterated conditional expectations.
- Hence the random variable E[X | Z] is also an unbiased estimator of E[X].

Variance Reduction: Conditioning (concluded)

• As

```
\operatorname{Var}[E[X | Z]] \leq \operatorname{Var}[X],
```

 $E[X \mid Z]$ has a smaller variance than observing X directly.

- First obtain a random observation z on Z.
- Then calculate E[X | Z = z] as our estimate.
 - There is no need to resort to simulation in computing E[X | Z = z].
- The procedure can be repeated a few times to reduce the variance.

Control Variates

- Use the analytic solution of a similar yet simpler problem to improve the solution.
- Suppose we want to estimate E[X] and there exists a random variable Y with a known mean $\mu \equiv E[Y]$.
- Then $W \equiv X + \beta(Y \mu)$ can serve as a "controlled" estimator of E[X] for any constant β .
 - However β is chosen, W remains an unbiased estimator of E[X] as

$$E[W] = E[X] + \beta E[Y - \mu] = E[X].$$

Control Variates (continued)

• Note that

$$\operatorname{Var}[W] = \operatorname{Var}[X] + \beta^{2} \operatorname{Var}[Y] + 2\beta \operatorname{Cov}[X, Y],$$
(64)

• Hence W is less variable than X if and only if $\beta^2 \operatorname{Var}[Y] + 2\beta \operatorname{Cov}[X, Y] < 0. \tag{65}$

Control Variates (concluded)

- The success of the scheme clearly depends on both β and the choice of Y.
- For example, arithmetic average-rate options can be priced by choosing Y to be the otherwise identical geometric average-rate option's price and $\beta = -1$.
- This approach is much more effective than the antithetic-variates method.

Choice of Y

- In general, the choice of Y is ad hoc, and experiments must be performed to confirm the wisdom of the choice.
- Try to match calls with calls and puts with puts.^a
- On many occasions, Y is a discretized version of the derivative that gives μ.
 - Discretely monitored geometric average-rate option vs. the continuously monitored geometric average-rate option given by formulas (29) on p. 332.
- For some choices, the discrepancy can be significant, such as the lookback option.^b

^aContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004. ^bContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.

Optimal Choice of β

• Equation (64) on p. 632 is minimized when

$$\beta = -\operatorname{Cov}[X, Y] / \operatorname{Var}[Y],$$

which was called beta in the book.

• For this specific β ,

$$\operatorname{Var}[W] = \operatorname{Var}[X] - \frac{\operatorname{Cov}[X,Y]^2}{\operatorname{Var}[Y]} = \left(1 - \rho_{X,Y}^2\right) \operatorname{Var}[X],$$

where $\rho_{X,Y}$ is the correlation between X and Y.

• The stronger X and Y are correlated, the greater the reduction in variance.

Optimal Choice of β (continued)

- For example, if this correlation is nearly perfect (± 1) , we could control X almost exactly.
- Typically, neither $\operatorname{Var}[Y]$ nor $\operatorname{Cov}[X, Y]$ is known.
- Therefore, we cannot obtain the maximum reduction in variance.
- We can guess these values and hope that the resulting W does indeed have a smaller variance than X.
- A second possibility is to use the simulated data to estimate these quantities.

Optimal Choice of β (concluded)

- Observe that $-\beta$ has the same sign as the correlation between X and Y.
- Hence, if X and Y are positively correlated, $\beta < 0$, then X is adjusted downward whenever $Y > \mu$ and upward otherwise.
- The opposite is true when X and Y are negatively correlated, in which case $\beta > 0$.

Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of \sqrt{N} does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.

Matrix Computation

To set up a philosophy against physics is rash; philosophers who have done so have always ended in disaster. — Bertrand Russell

Definitions and Basic Results

- Let $A \equiv [a_{ij}]_{1 \le i \le m, 1 \le j \le n}$, or simply $A \in \mathbb{R}^{m \times n}$, denote an $m \times n$ matrix.
- It can also be represented as $[a_1, a_2, \ldots, a_n]$ where $a_i \in \mathbb{R}^m$ are vectors.
 - Vectors are column vectors unless stated otherwise.
- A is a square matrix when m = n.
- The rank of a matrix is the largest number of linearly independent columns.

Definitions and Basic Results (continued)

- A square matrix A is said to be symmetric if $A^{T} = A$.
- A real $n \times n$ matrix

$$A \equiv [a_{ij}]_{i,j}$$

is diagonally dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for $1 \le i \le n$.

– Such matrices are nonsingular.

• The identity matrix is the square matrix

 $I \equiv \operatorname{diag}[1, 1, \dots, 1].$

Definitions and Basic Results (concluded)

- A matrix has full column rank if its columns are linearly independent.
- A real symmetric matrix A is positive definite if

$$x^{\mathrm{T}}Ax = \sum_{i,j} a_{ij} x_i x_j > 0$$

for any nonzero vector x.

 A matrix A is positive definite if and only if there exists a matrix W such that A = W^TW and W has full column rank.

Cholesky Decomposition

• Positive definite matrices can be factored as

$$A = LL^{\mathrm{T}},$$

called the Cholesky decomposition.

- Above, L is a lower triangular matrix.

Generation of Multivariate Distribution

• Let $\boldsymbol{x} \equiv [x_1, x_2, \dots, x_n]^{\mathrm{T}}$ be a vector random variable with a positive definite covariance matrix C.

• As usual, assume $E[\boldsymbol{x}] = \boldsymbol{0}$.

- This distribution can be generated by Py.
 - $-C = PP^{T}$ is the Cholesky decomposition of $C.^{a}$
 - $\mathbf{y} \equiv [y_1, y_2, \dots, y_n]^{\mathrm{T}}$ is a vector random variable with a covariance matrix equal to the identity matrix.

^aWhat if C is not positive definite? See Lai and Lyuu (2007).

Generation of Multivariate Normal Distribution

- Suppose we want to generate the multivariate normal distribution with a covariance matrix $C = PP^{T}$.
- We start with independent standard normal distributions y_1, y_2, \ldots, y_n .
- Then $P[y_1, y_2, \ldots, y_n]^{T}$ has the desired distribution.

Multivariate Derivatives Pricing

- Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives (p. 566).
- For example, the rainbow option on k assets has payoff

$$\max(\max(S_1, S_2, \ldots, S_k) - X, 0)$$

at maturity.

• The closed-form formula is a multi-dimensional integral.^a

^aJohnson (1987).

Multivariate Derivatives Pricing (concluded)

- Suppose $dS_j/S_j = r dt + \sigma_j dW_j$, $1 \le j \le n$, where C is the correlation matrix for dW_1, dW_2, \ldots, dW_k .
- Let $C = PP^{\mathrm{T}}$.
- Let ξ consist of k independent random variables from N(0, 1).
- Let $\xi' = P\xi$.
- Similar to Eq. (63) on p. 606,

$$S_{i+1} = S_i e^{(r - \sigma_j^2/2) \Delta t + \sigma_j \sqrt{\Delta t} \xi'_j}, \quad 1 \le j \le n.$$

Least-Squares Problems

• The least-squares (LS) problem is concerned with

 $\min_{x \in R^n} \parallel Ax - b \parallel,$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m \ge n$.

- The LS problem is called regression analysis in statistics and is equivalent to minimizing the mean-square error.
- Often written as

$$Ax = b.$$

Polynomial Regression

- In polynomial regression, $x_0 + x_1x + \cdots + x_nx^n$ is used to fit the data $\{(a_1, b_1), (a_2, b_2), \dots, (a_m, b_m)\}.$
- This leads to the LS problem,

$$\begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_m & a_m^2 & \cdots & a_m^n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

• Consult the text for solutions.

American Option Pricing by Simulation

- The continuation value of an American option is the conditional expectation of the payoff from keeping the option alive now.
- The option holder must compare the immediate exercise value and the continuation value.
- In standard Monte Carlo simulation, each path is treated independently of other paths.
- But the decision to exercise the option cannot be reached by looking at only one path alone.

The Least-Squares Monte Carlo Approach

- The continuation value can be estimated from the cross-sectional information in the simulation by using least squares.^a
- The result is a function (of the state) for estimating the continuation values.
- Use the function to estimate the continuation value for each path to determine its cash flow.
- This is called the least-squares Monte Carlo (LSM) approach and is provably convergent.^b

^aLongstaff and Schwartz (2001). ^bClément, Lamberton, and Protter (2002).

A Numerical Example

- Consider a 3-year American put on a non-dividend-paying stock.
- The put is exercisable at years 0, 1, 2, and 3.
- The strike price X = 105.
- The annualized riskless rate is r = 5%.
- The spot stock price is 101.
 - The annual discount factor hence equals 0.951229.
- We use only 8 price paths to illustrate the algorithm.

		Stock price	e paths	
Path	Year 0	Year 1	Year 2	Year 3
1	101	97.6424	92.5815	107.5178
2	101	101.2103	105.1763	102.4524
3	101	105.7802	103.6010	124.5115
4	101	96.4411	98.7120	108.3600
5	101	124.2345	101.0564	104.5315
6	101	95.8375	93.7270	99.3788
7	101	108.9554	102.4177	100.9225
8	101	104.1475	113.2516	115.0994

- We use the basis functions $1, x, x^2$.
 - Other basis functions are possible.^a
- The plot next page shows the final estimated optimal exercise strategy given by LSM.
- We now proceed to tackle our problem.
- Our concrete problem is to calculate the cash flow along each path, using information from all paths.

^aLaguerre polynomials, Hermite polynomials, Legendre polynomials, Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomials.

	Casł	n flows at	year 3	
Path	Year 0	Year 1	Year 2	Year 3
1				0
2				2.5476
3				0
4				0
5				0.4685
6				5.6212
7				4.0775
8				0

- The cash flows at year 3 are the exercise value if the put is in the money.
- Only 4 paths are in the money: 2, 5, 6, 7.
- Some of the cash flows may not occur if the put is exercised earlier, which we will find out step by step.
- Incidentally, the European counterpart has a value of

$$0.951229^3 \times \frac{2.5476 + 0.4685 + 5.6212 + 4.0775}{8} = 1.3680.$$

- We move on to year 2.
- For each state that is in the money at year 2, we must decide whether to exercise it.
- There are 6 paths for which the put is in the money: 1, 3, 4, 5, 6, 7.
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 1.

- Let x denote the stock prices at year 2 for those 6 paths.
- Let y denote the corresponding discounted future cash flows (at year 3) if the put is not exercised at year 2.

A	Numerical	Example	(continued)
---	-----------	---------	-------------

Regression at year 2

y	x	Path
0×0.951229	92.5815	1
		2
0×0.951229	103.6010	3
0×0.951229	98.7120	4
0.4685×0.951229	101.0564	5
5.6212×0.951229	93.7270	6
4.0775×0.951229	102.4177	7
		8

- We regress y on 1, x, and x^2 .
- The result is

 $f(x) = 22.08 - 0.313114 \times x + 0.00106918 \times x^2.$

- f estimates the continuation value conditional on the stock price at year 2.
- We next compare the immediate exercise value and the continuation value.

ercise decision at year 2	al early exe	Optim
Continuation	Exercise	Path
f(92.5815) = 2.2558	12.4185	1
		2
f(103.6010) = 1.1168	1.3990	3
f(98.7120) = 1.5901	6.2880	4
f(101.0564) = 1.3568	3.9436	5
f(93.7270) = 2.1253	11.2730	6
f(102.4177) = 0.3326	2.5823	7
		8

- Amazingly, the put should be exercised in all 6 paths: 1, 3, 4, 5, 6, 7.
- Now, any positive cash flow at year 3 should be set to zero for these paths as the put is exercised before year 3.

- They are paths 5, 6, 7.

• Hence the cash flows on p. 658 become the next ones.

A Numerical Example (continued)					
	Cash f	lows at ye	ears 2 & 3		
Path	Year 0	Year 1	Year 2	Year 3	
1			12.4185	0	
2			0	2.5476	
3			1.3990	0	
4			6.2880	0	
5			3.9436	0	
6			11.2730	0	
7			2.5823	0	
8			0	0	

- We move on to year 1.
- For each state that is in the money at year 1, we must decide whether to exercise it.
- There are 5 paths for which the put is in the money: 1, 2, 4, 6, 8.
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 0.

- Let x denote the stock prices at year 1 for those 5 paths.
- Let y denote the corresponding discounted future cash flows if the put is not exercised at year 1.
- From p. 666, we have the following table.

A Nu	merical Ex	ample (continued)
	Regressi	on at year 1
Path	x	y
1	97.6424	12.4185×0.951229
2	101.2103	$2.5476 imes 0.951229^2$

g	ð	i atri
12.4185×0.951229	97.6424	1
2.5476×0.951229^2	101.2103	2
		3
6.2880 imes 0.951229	96.4411	4
		5
11.2730×0.951229	95.8375	6
		7
0	104.1475	8

- We regress y on 1, x, and x^2 .
- The result is

 $f(x) = -420.964 + 9.78113 \times x - 0.0551567 \times x^2.$

- f estimates the continuation value conditional on the stock price at year 1.
- We next compare the immediate exercise value and the continuation value.

J	5	
Continuation	Exercise	Path
f(97.6424) = 8.2230	7.3576	1
f(101.2103) = 3.9882	3.7897	2
		3
f(96.4411) = 9.3329	8.5589	4
		5
f(95.8375) = 9.83042	9.1625	6
		7
f(104.1475) = -0.551885	0.8525	8

Optimal early exercise decision at year 1

- The put should be exercised for 1 path only: 8.
- Now, any positive future cash flow should be set to zero for this path as the put is exercised before years 2 and 3.
 But there is none.
- Hence the cash flows on p. 666 become the next ones.
- They also confirm the plot on p. 657.

A Numerical Example (continued)						
	Cash flo	ws at yea	rs 1, 2, & 3	3		
Path	Year 0	Year 1	Year 2	Year 3		
1		0	12.4185	0		
2		0	0	2.5476		
3		0	1.3990	0		
4		0	6.2880	0		
5		0	3.9436	0		
6		0	11.2730	0		
7		0	2.5823	0		
8		0.8525	0	0		

- We move on to year 0.
- The continuation value is, from p 673,

 $(12.4185 \times 0.951229^{2} + 2.5476 \times 0.951229^{3} + 1.3990 \times 0.951229^{2} + 6.2880 \times 0.951229^{2} + 3.9436 \times 0.951229^{2} + 11.2730 \times 0.951229^{2} + 2.5823 \times 0.951229^{2} + 0.8525 \times 0.951229)/8$

= 4.66263.

- As this is larger than the immediate exercise value of 105 101 = 4, the put should not be exercised at year 0.
- Hence the put's value is estimated to be 4.66263.
- Compare this to the European put's value of 1.3680 (p. 659).

Time Series Analysis

The historian is a prophet in reverse. — Friedrich von Schlegel (1772–1829)

Conditional Variance Models for Price Volatility

- Although a stationary model (see text for definition) has constant variance, its *conditional* variance may vary.
- Take for example an AR(1) process $X_t = aX_{t-1} + \epsilon_t$ with |a| < 1.
 - Here, ϵ_t is a stationary, uncorrelated process with zero mean and constant variance σ^2 .
- The conditional variance,

$$\operatorname{Var}[X_t | X_{t-1}, X_{t-2}, \dots],$$

equals σ^2 , which is smaller than the unconditional variance $\operatorname{Var}[X_t] = \sigma^2/(1-a^2)$.

Conditional Variance Models for Price Volatility (concluded)

- In the lognormal model, the conditional variance evolves independently of past returns.
- Suppose we assume that conditional variances are deterministic functions of past returns:

$$V_t = f(X_{t-1}, X_{t-2}, \dots)$$

for some function f.

• Then V_t can be computed given the information set of past returns:

$$I_{t-1} \equiv \{ X_{t-1}, X_{t-2}, \dots \}.$$

$\mathsf{ARCH}\ \mathsf{Models}^{\mathrm{a}}$

- An influential model in this direction is the autoregressive conditional heteroskedastic (ARCH) model.
- Assume that $\{U_t\}$ is a Gaussian stationary, uncorrelated process.

 $^{\mathrm{a}}\mathrm{Engle}$ (1982), co-winner of the 2003 Nobel Prize in Economic Sciences.

ARCH Models (continued)

• The ARCH(p) process is defined by

$$X_t - \mu = \left(a_0 + \sum_{i=1}^p a_i (X_{t-i} - \mu)^2\right)^{1/2} U_t,$$

where $a_1, \ldots, a_p \ge 0$ and $a_0 > 0$.

- Thus $X_t | I_{t-1} \sim N(\mu, V_t^2).$
- The variance V_t^2 satisfies

$$V_t^2 = a_0 + \sum_{i=1}^p a_i (X_{t-i} - \mu)^2.$$

• The volatility at time t as estimated at time t-1 depends on the p most recent observations on squared returns.

ARCH Models (concluded)

• The ARCH(1) process

$$X_t - \mu = (a_0 + a_1(X_{t-1} - \mu)^2)^{1/2} U_t$$

is the simplest.

• For it,

Var[
$$X_t | X_{t-1} = x_{t-1}$$
] = $a_0 + a_1 (x_{t-1} - \mu)^2$.

• The process $\{X_t\}$ is stationary with finite variance if and only if $a_1 < 1$, in which case $\operatorname{Var}[X_t] = a_0/(1-a_1)$.

$\mathsf{GARCH}\ \mathsf{Models}^{\mathrm{a}}$

- A very popular extension of the ARCH model is the generalized autoregressive conditional heteroskedastic (GARCH) process.
- The simplest GARCH(1,1) process adds $a_2V_{t-1}^2$ to the ARCH(1) process, resulting in

$$V_t^2 = a_0 + a_1 (X_{t-1} - \mu)^2 + a_2 V_{t-1}^2.$$

• The volatility at time t as estimated at time t-1 depends on the squared return and the estimated volatility at time t-1.

^aBollerslev (1986); Taylor (1986).

GARCH Models (concluded)

- The estimate of volatility averages past squared returns by giving heavier weights to recent squared returns (see text).
- It is usually assumed that $a_1 + a_2 < 1$ and $a_0 > 0$, in which case the unconditional, long-run variance is given by $a_0/(1 a_1 a_2)$.
- A popular special case of GARCH(1, 1) is the exponentially weighted moving average process, which sets a_0 to zero and a_2 to $1 - a_1$.
- This model is used in J.P. Morgan's RiskMetricsTM.