Variance Reduction: Antithetic Variates

- We are interested in estimating $E\left[g\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]$, where $X_{1}, X_{2}, \ldots, X_{n}$ are independent.
- Let Y_{1} and Y_{2} be random variables with the same distribution as $g\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
- Then

$$
\operatorname{Var}\left[\frac{Y_{1}+Y_{2}}{2}\right]=\frac{\operatorname{Var}\left[Y_{1}\right]}{2}+\frac{\operatorname{Cov}\left[Y_{1}, Y_{2}\right]}{2}
$$

$-\operatorname{Var}\left[Y_{1}\right] / 2$ is the variance of the Monte Carlo method with two (independent) replications.

- The variance $\operatorname{Var}\left[\left(Y_{1}+Y_{2}\right) / 2\right]$ is smaller than $\operatorname{Var}\left[Y_{1}\right] / 2$ when Y_{1} and Y_{2} are negatively correlated.

Variance Reduction: Antithetic Variates (continued)

- For each simulated sample path X, a second one is obtained by reusing the random numbers on which the first path is based.
- This yields a second sample path Y.
- Two estimates are then obtained: One based on X and the other on Y.
- If N independent sample paths are generated, the antithetic-variates estimator averages over $2 N$ estimates.

Variance Reduction: Antithetic Variates (continued)

- Consider process $d X=a_{t} d t+b_{t} \sqrt{d t} \xi$.
- Let g be a function of n samples $X_{1}, X_{2}, \ldots, X_{n}$ on the sample path.
- We are interested in $E\left[g\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]$.
- Suppose one simulation run has realizations $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ for the normally distributed fluctuation term ξ.
- This generates samples $x_{1}, x_{2}, \ldots, x_{n}$.
- The estimate is then $g(\boldsymbol{x})$, where $\boldsymbol{x} \equiv\left(x_{1}, x_{2} \ldots, x_{n}\right)$.

Variance Reduction: Antithetic Variates (concluded)

- The antithetic-variates method does not sample n more numbers from ξ for the second estimate $g\left(\boldsymbol{x}^{\prime}\right)$.
- Instead, generate the sample path $\boldsymbol{x}^{\prime} \equiv\left(x_{1}^{\prime}, x_{2}^{\prime} \ldots, x_{n}^{\prime}\right)$ from $-\xi_{1},-\xi_{2}, \ldots,-\xi_{n}$.
- Compute $g\left(\boldsymbol{x}^{\prime}\right)$.
- Output $\left(g(\boldsymbol{x})+g\left(\boldsymbol{x}^{\prime}\right)\right) / 2$.
- Repeat the above steps for as many times as required by accuracy.

Variance Reduction: Conditioning

- We are interested in estimating $E[X]$.
- Suppose here is a random variable Z such that $E[X \mid Z=z]$ can be efficiently and precisely computed.
- $E[X]=E[E[X \mid Z]]$ by the law of iterated conditional expectations.
- Hence the random variable $E[X \mid Z]$ is also an unbiased estimator of $E[X]$.

Variance Reduction: Conditioning (concluded)

- As

$$
\operatorname{Var}[E[X \mid Z]] \leq \operatorname{Var}[X]
$$

$E[X \mid Z]$ has a smaller variance than observing X directly.

- First obtain a random observation z on Z.
- Then calculate $E[X \mid Z=z]$ as our estimate.
- There is no need to resort to simulation in computing

$$
E[X \mid Z=z]
$$

- The procedure can be repeated a few times to reduce the variance.

Control Variates

- Use the analytic solution of a similar yet simpler problem to improve the solution.
- Suppose we want to estimate $E[X]$ and there exists a random variable Y with a known mean $\mu \equiv E[Y]$.
- Then $W \equiv X+\beta(Y-\mu)$ can serve as a "controlled" estimator of $E[X]$ for any constant β.
- However β is chosen, W remains an unbiased estimator of $E[X]$ as

$$
E[W]=E[X]+\beta E[Y-\mu]=E[X]
$$

Control Variates (continued)

- Note that

$$
\begin{equation*}
\operatorname{Var}[W]=\operatorname{Var}[X]+\beta^{2} \operatorname{Var}[Y]+2 \beta \operatorname{Cov}[X, Y] \tag{64}
\end{equation*}
$$

- Hence W is less variable than X if and only if

$$
\begin{equation*}
\beta^{2} \operatorname{Var}[Y]+2 \beta \operatorname{Cov}[X, Y]<0 \tag{65}
\end{equation*}
$$

Control Variates (concluded)

- The success of the scheme clearly depends on both β and the choice of Y.
- For example, arithmetic average-rate options can be priced by choosing Y to be the otherwise identical geometric average-rate option's price and $\beta=-1$.
- This approach is much more effective than the antithetic-variates method.

Choice of Y

- In general, the choice of Y is ad hoc, and experiments must be performed to confirm the wisdom of the choice.
- Try to match calls with calls and puts with puts. ${ }^{\text {a }}$
- On many occasions, Y is a discretized version of the derivative that gives μ.
- Discretely monitored geometric average-rate option vs. the continuously monitored geometric average-rate option given by formulas (29) on p. 332.
- For some choices, the discrepancy can be significant, such as the lookback option. ${ }^{\text {b }}$

[^0]
Optimal Choice of β

- Equation (64) on p. 632 is minimized when

$$
\beta=-\operatorname{Cov}[X, Y] / \operatorname{Var}[Y],
$$

which was called beta in the book.

- For this specific β,
$\operatorname{Var}[W]=\operatorname{Var}[X]-\frac{\operatorname{Cov}[X, Y]^{2}}{\operatorname{Var}[Y]}=\left(1-\rho_{X, Y}^{2}\right) \operatorname{Var}[X]$, where $\rho_{X, Y}$ is the correlation between X and Y.
- The stronger X and Y are correlated, the greater the reduction in variance.

Optimal Choice of β (continued)

- For example, if this correlation is nearly perfect (± 1), we could control X almost exactly.
- Typically, neither $\operatorname{Var}[Y]$ nor $\operatorname{Cov}[X, Y]$ is known.
- Therefore, we cannot obtain the maximum reduction in variance.
- We can guess these values and hope that the resulting W does indeed have a smaller variance than X.
- A second possibility is to use the simulated data to estimate these quantities.

Optimal Choice of β (concluded)

- Observe that $-\beta$ has the same sign as the correlation between X and Y.
- Hence, if X and Y are positively correlated, $\beta<0$, then X is adjusted downward whenever $Y>\mu$ and upward otherwise.
- The opposite is true when X and Y are negatively correlated, in which case $\beta>0$.

Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of \sqrt{N} does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.

Matrix Computation

To set up a philosophy against physics is rash; philosophers who have done so have always ended in disaster.

- Bertrand Russell

Definitions and Basic Results

- Let $A \equiv\left[a_{i j}\right]_{1 \leq i \leq m, 1 \leq j \leq n}$, or simply $A \in \boldsymbol{R}^{m \times n}$, denote an $m \times n$ matrix.
- It can also be represented as $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ where $a_{i} \in \boldsymbol{R}^{m}$ are vectors.
- Vectors are column vectors unless stated otherwise.
- A is a square matrix when $m=n$.
- The rank of a matrix is the largest number of linearly independent columns.

Definitions and Basic Results (continued)

- A square matrix A is said to be symmetric if $A^{\mathrm{T}}=A$.
- A real $n \times n$ matrix

$$
A \equiv\left[a_{i j}\right]_{i, j}
$$

is diagonally dominant if $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$ for $1 \leq i \leq n$.

- Such matrices are nonsingular.
- The identity matrix is the square matrix

$$
I \equiv \operatorname{diag}[1,1, \ldots, 1] .
$$

Definitions and Basic Results (concluded)

- A matrix has full column rank if its columns are linearly independent.
- A real symmetric matrix A is positive definite if

$$
x^{\mathrm{T}} A x=\sum_{i, j} a_{i j} x_{i} x_{j}>0
$$

for any nonzero vector x.

- A matrix A is positive definite if and only if there exists a matrix W such that $A=W^{\mathrm{T}} W$ and W has full column rank.

Cholesky Decomposition

- Positive definite matrices can be factored as

$$
A=L L^{\mathrm{T}},
$$

called the Cholesky decomposition.

- Above, L is a lower triangular matrix.

Generation of Multivariate Distribution

- Let $\boldsymbol{x} \equiv\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{\mathrm{T}}$ be a vector random variable with a positive definite covariance matrix C.
- As usual, assume $E[\boldsymbol{x}]=\mathbf{0}$.
- This distribution can be generated by $P \boldsymbol{y}$.
$-C=P P^{\mathrm{T}}$ is the Cholesky decomposition of $C .{ }^{\text {a }}$
$-\boldsymbol{y} \equiv\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{\mathrm{T}}$ is a vector random variable with a covariance matrix equal to the identity matrix.

[^1]
Generation of Multivariate Normal Distribution

- Suppose we want to generate the multivariate normal distribution with a covariance matrix $C=P P^{\mathrm{T}}$.
- We start with independent standard normal distributions $y_{1}, y_{2}, \ldots, y_{n}$.
- Then $P\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{\mathrm{T}}$ has the desired distribution.

Multivariate Derivatives Pricing

- Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives (p. 566).
- For example, the rainbow option on k assets has payoff

$$
\max \left(\max \left(S_{1}, S_{2}, \ldots, S_{k}\right)-X, 0\right)
$$

at maturity.

- The closed-form formula is a multi-dimensional integral. ${ }^{\text {a }}$

[^2]
Multivariate Derivatives Pricing (concluded)

- Suppose $d S_{j} / S_{j}=r d t+\sigma_{j} d W_{j}, 1 \leq j \leq n$, where C is the correlation matrix for $d W_{1}, d W_{2}, \ldots, d W_{k}$.
- Let $C=P P^{\mathrm{T}}$.
- Let ξ consist of k independent random variables from $N(0,1)$.
- Let $\xi^{\prime}=P \xi$.
- Similar to Eq. (63) on p. 606,

$$
S_{i+1}=S_{i} e^{\left(r-\sigma_{j}^{2} / 2\right) \Delta t+\sigma_{j} \sqrt{\Delta t} \xi_{j}^{\prime}}, \quad 1 \leq j \leq n .
$$

Least-Squares Problems

- The least-squares (LS) problem is concerned with

$$
\min _{x \in R^{n}}\|A x-b\|,
$$

where $A \in \boldsymbol{R}^{m \times n}, b \in \boldsymbol{R}^{m}, m \geq n$.

- The LS problem is called regression analysis in statistics and is equivalent to minimizing the mean-square error.
- Often written as

$$
A x=b .
$$

Polynomial Regression

- In polynomial regression, $x_{0}+x_{1} x+\cdots+x_{n} x^{n}$ is used to fit the data $\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{m}, b_{m}\right)\right\}$.
- This leads to the LS problem,

$$
\left[\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n} \\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{m} & a_{m}^{2} & \cdots & a_{m}^{n}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right] .
$$

- Consult the text for solutions.

American Option Pricing by Simulation

- The continuation value of an American option is the conditional expectation of the payoff from keeping the option alive now.
- The option holder must compare the immediate exercise value and the continuation value.
- In standard Monte Carlo simulation, each path is treated independently of other paths.
- But the decision to exercise the option cannot be reached by looking at only one path alone.

The Least-Squares Monte Carlo Approach

- The continuation value can be estimated from the cross-sectional information in the simulation by using least squares. ${ }^{\text {a }}$
- The result is a function (of the state) for estimating the continuation values.
- Use the function to estimate the continuation value for each path to determine its cash flow.
- This is called the least-squares Monte Carlo (LSM) approach and is provably convergent. ${ }^{\text {b }}$

[^3]
A Numerical Example

- Consider a 3-year American put on a non-dividend-paying stock.
- The put is exercisable at years $0,1,2$, and 3 .
- The strike price $X=105$.
- The annualized riskless rate is $r=5 \%$.
- The spot stock price is 101 .
- The annual discount factor hence equals 0.951229.
- We use only 8 price paths to illustrate the algorithm.

A Numerical Example (continued)

Stock price paths

Path	Year 0	Year 1	Year 2	Year 3
1	$\mathbf{1 0 1}$	$\mathbf{9 7 . 6 4 2 4}$	$\mathbf{9 2 . 5 8 1 5}$	107.5178
2	$\mathbf{1 0 1}$	$\mathbf{1 0 1 . 2 1 0 3}$	105.1763	$\mathbf{1 0 2 . 4 5 2 4}$
3	$\mathbf{1 0 1}$	105.7802	$\mathbf{1 0 3 . 6 0 1 0}$	124.5115
4	$\mathbf{1 0 1}$	$\mathbf{9 6 . 4 4 1 1}$	$\mathbf{9 8 . 7 1 2 0}$	108.3600
5	$\mathbf{1 0 1}$	124.2345	$\mathbf{1 0 1 . 0 5 6 4}$	$\mathbf{1 0 4 . 5 3 1 5}$
6	$\mathbf{1 0 1}$	$\mathbf{9 5 . 8 3 7 5}$	$\mathbf{9 3 . 7 2 7 0}$	$\mathbf{9 9 . 3 7 8 8}$
7	$\mathbf{1 0 1}$	108.9554	$\mathbf{1 0 2 . 4 1 7 7}$	$\mathbf{1 0 0 . 9 2 2 5}$
8	$\mathbf{1 0 1}$	$\mathbf{1 0 4 . 1 4 7 5}$	113.2516	115.0994

A Numerical Example (continued)

- We use the basis functions $1, x, x^{2}$.
- Other basis functions are possible. ${ }^{\text {a }}$
- The plot next page shows the final estimated optimal exercise strategy given by LSM.
- We now proceed to tackle our problem.
- Our concrete problem is to calculate the cash flow along each path, using information from all paths.
${ }^{\text {a }}$ Laguerre polynomials, Hermite polynomials, Legendre polynomials, Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomials.

A Numerical Example (continued)

Cash flows at year 3				
Path	Year 0	Year 1	Year 2	Year 3
1	-	-	-	0
2	-	-	-	2.5476
3	-	-	-	0
4	-	-	-	0
5	-	-	-	0.4685
6	-	-	-	5.6212
7	-	-	-	4.0775
8	-	-	-	0

A Numerical Example (continued)

- The cash flows at year 3 are the exercise value if the put is in the money.
- Only 4 paths are in the money: $2,5,6,7$.
- Some of the cash flows may not occur if the put is exercised earlier, which we will find out step by step.
- Incidentally, the European counterpart has a value of

$$
0.951229^{3} \times \frac{2.5476+0.4685+5.6212+4.0775}{8}=1.3680
$$

A Numerical Example (continued)

- We move on to year 2 .
- For each state that is in the money at year 2, we must decide whether to exercise it.
- There are 6 paths for which the put is in the money: 1 , $3,4,5,6,7$.
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
- If there were none, we would move on to year 1.

A Numerical Example (continued)

- Let x denote the stock prices at year 2 for those 6 paths.
- Let y denote the corresponding discounted future cash flows (at year 3) if the put is not exercised at year 2 .

A Numerical Example (continued)

Regression at year 2

Path	x	y
1	92.5815	0×0.951229
2	-	-
3	103.6010	0×0.951229
4	98.7120	0×0.951229
5	101.0564	0.4685×0.951229
6	93.7270	5.6212×0.951229
7	102.4177	4.0775×0.951229
8	-	-

A Numerical Example (continued)

- We regress y on $1, x$, and x^{2}.
- The result is

$$
f(x)=22.08-0.313114 \times x+0.00106918 \times x^{2} .
$$

- f estimates the continuation value conditional on the stock price at year 2 .
- We next compare the immediate exercise value and the continuation value.

A Numerical Example (continued)

Optimal early exercise decision at year 2

Path	Exercise	Continuation
1	12.4185	$f(92.5815)=2.2558$
2	-	-
3	1.3990	$f(103.6010)=1.1168$
4	6.2880	$f(98.7120)=1.5901$
5	3.9436	$f(101.0564)=1.3568$
6	11.2730	$f(93.7270)=2.1253$
7	2.5823	$f(102.4177)=0.3326$
8	-	-

A Numerical Example (continued)

- Amazingly, the put should be exercised in all 6 paths: 1 , $3,4,5,6,7$.
- Now, any positive cash flow at year 3 should be set to zero for these paths as the put is exercised before year 3 . - They are paths 5, 6, 7 .
- Hence the cash flows on p. 658 become the next ones.

A Numerical Example (continued)

Cash flows at years $2 \& 3$

Path	Year 0	Year 1	Year 2	Year 3
1	-	-	12.4185	0
2	-	-	0	2.5476
3	-	-	1.3990	0
4	-	-	6.2880	0
5	-	-	3.9436	0
6	-	-	11.2730	0
7	-	-	2.5823	0
8	-	-	0	0

A Numerical Example (continued)

- We move on to year 1 .
- For each state that is in the money at year 1, we must decide whether to exercise it.
- There are 5 paths for which the put is in the money: 1 , $2,4,6,8$.
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
- If there were none, we would move on to year 0 .

A Numerical Example (continued)

- Let x denote the stock prices at year 1 for those 5 paths.
- Let y denote the corresponding discounted future cash flows if the put is not exercised at year 1 .
- From p. 666, we have the following table.

A Numerical Example (continued)

Regression at year 1

Path	x	y
1	97.6424	12.4185×0.951229
2	101.2103	$2.5476 \times 0.951229^{2}$
3	-	-
4	96.4411	6.2880×0.951229
5	-	-
6	95.8375	11.2730×0.951229
7	-	-
8	104.1475	0

A Numerical Example (continued)

- We regress y on $1, x$, and x^{2}.
- The result is

$$
f(x)=-420.964+9.78113 \times x-0.0551567 \times x^{2} .
$$

- f estimates the continuation value conditional on the stock price at year 1 .
- We next compare the immediate exercise value and the continuation value.

A Numerical Example (continued)

Optimal early exercise decision at year 1

Path	Exercise	Continuation
1	7.3576	$f(97.6424)=8.2230$
2	3.7897	$f(101.2103)=3.9882$
3	-	-
4	8.5589	$f(96.4411)=9.3329$
5	-	
6	9.1625	$f(95.8375)=9.83042$
7	-	
8	0.8525	$f(104.1475)=-0.551885$

A Numerical Example (continued)

- The put should be exercised for 1 path only: 8 .
- Now, any positive future cash flow should be set to zero for this path as the put is exercised before years 2 and 3 .
- But there is none.
- Hence the cash flows on p. 666 become the next ones.
- They also confirm the plot on p. 657.

A Numerical Example (continued)

Cash flows at years 1, 2, \& 3				
Path	Year 0	Year 1	Year 2	Year 3
1	-	0	12.4185	0
2	-	0	0	2.5476
3	-	0	1.3990	0
4	-	0	6.2880	0
5	-	0	3.9436	0
6	-	0	11.2730	0
7	-	0	2.5823	0
8	-	0.8525	0	0

A Numerical Example (continued)

- We move on to year 0 .
- The continuation value is, from p 673,

$$
\begin{aligned}
& \left(12.4185 \times 0.951229^{2}+2.5476 \times 0.951229^{3}\right. \\
& +1.3990 \times 0.951229^{2}+6.2880 \times 0.951229^{2} \\
& +3.9436 \times 0.951229^{2}+11.2730 \times 0.951229^{2} \\
& \left.+2.5823 \times 0.951229^{2}+0.8525 \times 0.951229\right) / 8 \\
= & 4.66263
\end{aligned}
$$

A Numerical Example (concluded)

- As this is larger than the immediate exercise value of $105-101=4$, the put should not be exercised at year 0 .
- Hence the put's value is estimated to be 4.66263 .
- Compare this to the European put's value of 1.3680 (p. 659).

Time Series Analysis

The historian is a prophet in reverse.

- Friedrich von Schlegel (1772-1829)

Conditional Variance Models for Price Volatility

- Although a stationary model (see text for definition) has constant variance, its conditional variance may vary.
- Take for example an $\mathrm{AR}(1)$ process $X_{t}=a X_{t-1}+\epsilon_{t}$ with $|a|<1$.
- Here, ϵ_{t} is a stationary, uncorrelated process with zero mean and constant variance σ^{2}.
- The conditional variance,

$$
\operatorname{Var}\left[X_{t} \mid X_{t-1}, X_{t-2}, \ldots\right]
$$

equals σ^{2}, which is smaller than the unconditional variance $\operatorname{Var}\left[X_{t}\right]=\sigma^{2} /\left(1-a^{2}\right)$.

Conditional Variance Models for Price Volatility (concluded)

- In the lognormal model, the conditional variance evolves independently of past returns.
- Suppose we assume that conditional variances are deterministic functions of past returns:

$$
V_{t}=f\left(X_{t-1}, X_{t-2}, \ldots\right)
$$

for some function f.

- Then V_{t} can be computed given the information set of past returns:

$$
I_{t-1} \equiv\left\{X_{t-1}, X_{t-2}, \ldots\right\}
$$

ARCH Models ${ }^{\text {a }}$

- An influential model in this direction is the autoregressive conditional heteroskedastic (ARCH) model.
- Assume that $\left\{U_{t}\right\}$ is a Gaussian stationary, uncorrelated process.

[^4]
ARCH Models (continued)

- The $\operatorname{ARCH}(p)$ process is defined by

$$
X_{t}-\mu=\left(a_{0}+\sum_{i=1}^{p} a_{i}\left(X_{t-i}-\mu\right)^{2}\right)^{1 / 2} U_{t}
$$

where $a_{1}, \ldots, a_{p} \geq 0$ and $a_{0}>0$.

- Thus $X_{t} \mid I_{t-1} \sim N\left(\mu, V_{t}^{2}\right)$.
- The variance V_{t}^{2} satisfies

$$
V_{t}^{2}=a_{0}+\sum_{i=1}^{p} a_{i}\left(X_{t-i}-\mu\right)^{2} .
$$

- The volatility at time t as estimated at time $t-1$ depends on the p most recent observations on squared returns.

ARCH Models (concluded)

- The $\operatorname{ARCH}(1)$ process

$$
X_{t}-\mu=\left(a_{0}+a_{1}\left(X_{t-1}-\mu\right)^{2}\right)^{1 / 2} U_{t}
$$

is the simplest.

- For it,

$$
\operatorname{Var}\left[X_{t} \mid X_{t-1}=x_{t-1}\right]=a_{0}+a_{1}\left(x_{t-1}-\mu\right)^{2} .
$$

- The process $\left\{X_{t}\right\}$ is stationary with finite variance if and only if $a_{1}<1$, in which case $\operatorname{Var}\left[X_{t}\right]=a_{0} /\left(1-a_{1}\right)$.

GARCH Models ${ }^{\text {a }}$

- A very popular extension of the ARCH model is the generalized autoregressive conditional heteroskedastic (GARCH) process.
- The simplest $\operatorname{GARCH}(1,1)$ process adds $a_{2} V_{t-1}^{2}$ to the $\mathrm{ARCH}(1)$ process, resulting in

$$
V_{t}^{2}=a_{0}+a_{1}\left(X_{t-1}-\mu\right)^{2}+a_{2} V_{t-1}^{2}
$$

- The volatility at time t as estimated at time $t-1$ depends on the squared return and the estimated volatility at time $t-1$.

[^5]
GARCH Models (concluded)

- The estimate of volatility averages past squared returns by giving heavier weights to recent squared returns (see text).
- It is usually assumed that $a_{1}+a_{2}<1$ and $a_{0}>0$, in which case the unconditional, long-run variance is given by $a_{0} /\left(1-a_{1}-a_{2}\right)$.
- A popular special case of $\operatorname{GARCH}(1,1)$ is the exponentially weighted moving average process, which sets a_{0} to zero and a_{2} to $1-a_{1}$.
- This model is used in J.P. Morgan's RiskMetrics ${ }^{\text {TM }}$.

[^0]: ${ }^{\text {a }}$ Contributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
 ${ }^{\mathrm{b}}$ Contributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.

[^1]: ${ }^{\text {a }}$ What if C is not positive definite? See Lai and Lyuu (2007).

[^2]: ${ }^{\text {a }}$ Johnson (1987).

[^3]: ${ }^{\text {a }}$ Longstaff and Schwartz (2001).
 ${ }^{\mathrm{b}}$ Clément, Lamberton, and Protter (2002).

[^4]: ${ }^{\text {a }}$ Engle (1982), co-winner of the 2003 Nobel Prize in Economic Sciences.

[^5]: ${ }^{\text {a }}$ Bollerslev (1986); Taylor (1986).

