Variance Reduction: Antithetic Variates

We are interested in estimating E[g(X1, Xo,...,Xn)],
where X1, Xo,..., X, are independent.

Let Y7 and Y5 be random variables with the same
distribution as g(X1, Xa,...,X,).

Then

2 2 2

Var [

Yl +Y2] o V&I’[Yl] X COV[Yl,YQ]

— Var[Y7 /2 is the variance of the Monte Carlo
method with two (independent) replications.

The variance Var| (Y1 + Y3)/2] is smaller than
Var[ Y7 ]/2 when Y7 and Y5 are negatively correlated.
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Variance Reduction: Antithetic Variates (continued)

e For each simulated sample path X, a second one is
obtained by reusing the random numbers on which the
first path is based.

e This yields a second sample path Y.

e T'wo estimates are then obtained: One based on X and
the other on Y.

e If N independent sample paths are generated, the
antithetic-variates estimator averages over 2N

estimates.
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Variance Reduction: Antithetic Variates (continued)

e Consider process dX = a; dt + b,Vdt €.

Let g be a function of n samples X, X5,...,X,, on
the sample path.

We are interested in F[g(X1, Xo,...,X,)].

Suppose one simulation run has realizations
£1,&9,...,&, for the normally distributed fluctuation

term &.
This generates samples x1,xs2,...,T,.

The estimate is then g(x), where © = (x1,22... ,x,).
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Variance Reduction: Antithetic Variates (concluded)

e The antithetic-variates method does not sample n more
numbers from ¢ for the second estimate g(x’).

Instead, generate the sample path ' = (], 25 ...,z
from _517 _527 SRR _gn

Compute g(x’).

Output (g(x) + g(x’))/2.

Repeat the above steps for as many times as required by

accuracy.
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Variance Reduction: Conditioning

We are interested in estimating FE[ X |.

Suppose here is a random variable Z such that
E| X |Z = z] can be efficiently and precisely computed.

E|X|=F[E|X|Z]] by the law of iterated conditional
expectations.

Hence the random variable F[X | Z] is also an unbiased
estimator of E[X |.
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Variance Reduction: Conditioning (concluded)

As
Var|E| X | Z]] < Var[ X |,

E| X |Z] has a smaller variance than observing X

directly.
First obtain a random observation z on Z.

Then calculate E|X | Z = z] as our estimate.
— There is no need to resort to simulation in computing

E[X|Z = z].

The procedure can be repeated a few times to reduce

the variance.
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Control Variates

e Use the analytic solution of a similar yet simpler

problem to improve the solution.

e Suppose we want to estimate E| X | and there exists a

random variable Y with a known mean pu= E|Y |.

e Then W = X 4 (Y — p) can serve as a “controlled”

estimator of | X | for any constant S.

— However [ is chosen, W remains an unbiased
estimator of F[X | as

E[W]=E[X]+BE[Y — u] = E[X].
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Control Variates (continued)

e Note that

Var[W ] = Var[ X | 4+ 8% Var[ Y ] 4+ 28 Cov[ X, Y],
(64)

e Hence W is less variable than X if and only if

3% Var[Y ] 428 Cov[ X,Y ] < 0. (65)
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Control Variates (concluded)

e The success of the scheme clearly depends on both [
and the choice of Y.

e For example, arithmetic average-rate options can be
priced by choosing Y to be the otherwise identical

geometric average-rate option’s price and (= —1.

e This approach is much more effective than the

antithetic-variates method.
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Choice of Y

In general, the choice of Y is ad hoc, and experiments
must be performed to confirm the wisdom of the choice.

Try to match calls with calls and puts with puts.?

On many occasions, Y is a discretized version of the
derivative that gives p.

— Discretely monitored geometric average-rate option
vs. the continuously monitored geometric

average-rate option given by formulas (29) on p. 332.

For some choices, the discrepancy can be significant,

such as the lookback option.P

2Contributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
bContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
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Optimal Choice of

e Equation (64) on p. 632 is minimized when
B=—Cov|X,Y |/Var|Y |,
which was called beta in the book.

e For this specific 3,

Cov[ X, Y |*

Var[W | = Var[ X | — = (1—p§(7y) Var| X |,

Var|Y |
where px y 1s the correlation between X and Y.

e The stronger X and Y are correlated, the greater the

reduction in variance.
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Optimal Choice of (3 (continued)

For example, if this correlation is nearly perfect (41),
we could control X almost exactly.

Typically, neither Var|Y | nor Cov|[X,Y | is known.

Therefore, we cannot obtain the maximum reduction in

variance.

We can guess these values and hope that the resulting
W does indeed have a smaller variance than X.

A second possibility is to use the simulated data to

estimate these quantities.
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Optimal Choice of (3 (concluded)

e Observe that —( has the same sign as the correlation
between X and Y.

e Hence, if X and Y are positively correlated, 8 < 0,
then X is adjusted downward whenever Y > u and

upward otherwise.

e The opposite is true when X and Y are negatively

correlated, in which case 5 > 0.
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Problems with the Monte Carlo Method
The error bound is only probabilistic.

The probabilistic error bound of N does not benefit
from regularity of the integrand function.

The requirement that the points be independent random

samples are wasteful because of clustering.

In reality, pseudorandom numbers generated by

completely deterministic means are used.

Monte Carlo simulation exhibits a great sensitivity on
the seed of the pseudorandom-number generator.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 638



Matriz Computation
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To set up a philosophy against physics is rash;
philosophers who have done so

have always ended in disaster.
— Bertrand Russell
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Definitions and Basic Results

Let A= [aij ]1§i§m,1§j§na or simply A€ Ran)

denote an m X n matrix.

It can also be represented as [ai,as,... ,a,]| where

a; € R™ are vectors.

— Vectors are column vectors unless stated otherwise.
A is a square matrix when m = n.

The rank of a matrix is the largest number of linearly

independent columns.
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Definitions and Basic Results (continued)
e A square matrix A is said to be symmetric if AT = A.

e A real n x n matrix

A=laijliy

is diagonally dominant if |a;; | > >, ai;| for
1 <7< n.

— Such matrices are nonsingular.

e The identity matrix is the square matrix

I =diag[1,1,...,1].
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Definitions and Basic Results (concluded)

e A matrix has full column rank if its columns are linearly

independent.

e A real symmetric matrix A is positive definite if

' Az = Z a;;jxr;x; >0

]
for any nonzero vector z.

e A matrix A is positive definite if and only if there exists
a matrix W such that A =W™W and W has full

column rank.
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Cholesky Decomposition

e Positive definite matrices can be factored as
A=LL",

called the Cholesky decomposition.

— Above, L is a lower triangular matrix.
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Generation of Multivariate Distribution

o Let ¢ =[x1,22,...,2,]" be a vector random variable

with a positive definite covariance matrix C.
e As usual, assume FE[x] = 0.

e This distribution can be generated by Puy.
— (' = PP?" is the Cholesky decomposition of C.?

— Yy=|y1,Y2,--- ,Yn|" is a vector random variable

with a covariance matrix equal to the identity matrix.

@What if C' is not positive definite? See Lai and Lyuu (2007).
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Generation of Multivariate Normal Distribution

e Suppose we want to generate the multivariate normal

distribution with a covariance matrix C' = PPT.

e We start with independent standard normal

distributions y1,vys2,... ,Yn.

e Then Plyi,y2,...,yn]|" has the desired distribution.
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Multivariate Derivatives Pricing

Generating the multivariate normal distribution is
essential for the Monte Carlo pricing of multivariate
derivatives (p. 566).

For example, the rainbow option on k assets has payoff
max(max(Sy, So,...,Sk) — X,0)

at maturity.

e The closed-form formula is a multi-dimensional integral.?

2Johnson (1987).
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Multivariate Derivatives Pricing (concluded)

Suppose dS;/S; =rdt+o;dW;, 1 < j <n, where C is
the correlation matrix for dWy,dWs,, ... ,dW,.

Let C = PP".

Let & consist of £ independent random variables from
N(0,1).

Let ¢ = PE.
Similar to Eq. (63) on p. 606,

Sz'—i—l _ Sie(r—G?/Z) At+o; VAt 53-’ 1 S] <.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 648



Least-Squares Problems

e The least-squares (LS) problem is concerned with

min || Ax — b ||,
zxER™

where A€ R™*", be R™, m > n.

e The LS problem is called regression analysis in statistics

and is equivalent to minimizing the mean-square error.

e Often written as
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Polynomial Regression

e In polynomial regression, xg + x12x + - -+ + 2" is used
to fit the data { (a1,b1), (az,b2),...,(am,bm) }

e This leads to the LS problem,

2 n
1 a a7 -+ af

2 n
1 ax a5 --- a3

2 n
1 an ai, Q,,

e Consult the text for solutions.
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American Option Pricing by Simulation

The continuation value of an American option is the
conditional expectation of the payoff from keeping the

option alive now.

The option holder must compare the immediate exercise

value and the continuation value.

In standard Monte Carlo simulation, each path is

treated independently of other paths.

But the decision to exercise the option cannot be

reached by looking at only one path alone.
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The Least-Squares Monte Carlo Approach

The continuation value can be estimated from the
cross-sectional information in the simulation by using

least squares.?

The result is a function (of the state) for estimating the

continuation values.

Use the function to estimate the continuation value for
each path to determine its cash flow.

This is called the least-squares Monte Carlo (LSM)
approach and is provably convergent.®

2Longstaff and Schwartz (2001).
PClément, Lamberton, and Protter (2002).

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 652



A Numerical Example

Consider a 3-year American put on a

non-dividend-paying stock.

The put is exercisable at years 0, 1, 2, and 3.
The strike price X = 105.

The annualized riskless rate is r = 5%.

The spot stock price is 101.

— The annual discount factor hence equals 0.951229.

We use only 8 price paths to illustrate the algorithm.
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A Numerical Example (continued)

Stock price paths

Path  Year O Year 1 Year 2 Year 3
1 101 97.6424  92.5815 107.5178
101 101.2103 105.1763 102.4524

101 105.7802 103.6010 124.5115

101 96.4411 98.7120 108.3600

101 124.2345 101.0564 104.5315

101 95.8375 93.7270  99.3788

101 108.9554 102.4177 100.9225

101  104.1475 113.2516 115.0994
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A Numerical Example (continued)

We use the basis functions 1, z, z2.

— Other basis functions are possible.?

The plot next page shows the final estimated optimal
exercise strategy given by LSM.

We now proceed to tackle our problem.

Our concrete problem is to calculate the cash flow along
each path, using information from all paths.

@Laguerre polynomials, Hermite polynomials, Legendre polynomials,
Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomi-
als.
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A Numerical Example (continued)

Cash flows at year 3
Path  Year 0 Year 1] Year2 Year 3
1 — — — 0
— — — 2.5476
— — — 0
0
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A Numerical Example (continued)

The cash flows at year 3 are the exercise value if the put

is in the money.
Only 4 paths are in the money: 2, 5, 6, 7.

Some of the cash flows may not occur if the put is

exercised earlier, which we will find out step by step.

Incidentally, the European counterpart has a value of

2.5476 1 0.4685 & 5.6212 & 4.0775
0.9512293 x * g * — 1.3680.
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A Numerical Example (continued)

We move on to year 2.

For each state that is in the money at year 2, we must
decide whether to exercise it.

There are 6 paths for which the put is in the money: 1,
3,4,5,6,7.

Only in-the-money paths will be used in the regression

because they are where early exercise is relevant.

— If there were none, we would move on to year 1.
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A Numerical Example (continued)

e Let x denote the stock prices at year 2 for those 6 paths.

e Let y denote the corresponding discounted future cash

flows (at year 3) if the put is not exercised at year 2.
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A Numerical Example (continued)

Regression at year 2

X Yy
92.5815 0 x 0.951229

103.6010 0 x 0.951229
98.7120 0 x 0.951229
101.0564  0.4685 x 0.951229
93.7270 5.6212 x 0.951229
102.4177 4.0775 x 0.951229
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A Numerical Example (continued)

We regress y on 1, x, and z2.

The result is

f(x) =22.08 — 0.313114 x 2 + 0.00106918 x z2.

f estimates the continuation value conditional on the

stock price at year 2.

We next compare the immediate exercise value and the

continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 2

Path Exercise Continuation

1 12.4185  f(92.5815) = 2.2558

1.3990 f(103.6010) = 1.1168
6.2880  f(98.7120) = 1.5901

11.2730  £(93.7270) = 2.1253

) =
) =
3.9436  f(101.0564) = 1.3568
) =
2.5823  £(102.4177) = 0.3326
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A Numerical Example (continued)

e Amazingly, the put should be exercised in all 6 paths: 1,
3,4,9,6, 7.

e Now, any positive cash flow at year 3 should be set to
zero for these paths as the put is exercised before year 3.

— They are paths 5, 6, 7.

e Hence the cash flows on p. 658 become the next ones.
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A Numerical Example (continued)

Cash flows at years 2 & 3
Path Year 0 Year 1 Year 2 Year 3
1 — — 12.4185 0
— — 0 2.5476

— — 1.3990

6.2880

3.9436

11.2730

2.5823

0
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A Numerical Example (continued)

We move on to year 1.

For each state that is in the money at year 1, we must
decide whether to exercise it.

There are 5 paths for which the put is in the money: 1,
2,4, 6, 8.

Only in-the-money paths will be used in the regression

because they are where early exercise is relevant.

— If there were none, we would move on to year 0.
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A Numerical Example (continued)

e Let x denote the stock prices at year 1 for those 5 paths.

e Let y denote the corresponding discounted future cash
flows if the put is not exercised at year 1.

e From p. 666, we have the following table.
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A Numerical Example (continued)

Regression at year 1
x Yy
97.6424 12.4185 x 0.951229
101.2103  2.5476 x 0.9512292

96.4411 6.2880 x 0.951229

95.8375 11.2730 x 0.951229

104.1475 0

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 669



A Numerical Example (continued)

We regress y on 1, x, and z2.

The result is

f(x) = —420.964 + 9.78113 x x — 0.0551567 x z°.

f estimates the continuation value conditional on the

stock price at year 1.

We next compare the immediate exercise value and the

continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 1
Path  Exercise Continuation
1 7.3576 £(97.6424) = 8.2230
3.7897 £(101.2103) = 3.9882

8.9089 £(96.4411) = 9.3329

9.1625 £(95.8375) = 9.83042

0.8525  f(104.1475) = —0.551885
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A Numerical Example (continued)

The put should be exercised for 1 path only: 8.

Now, any positive future cash flow should be set to zero
for this path as the put is exercised before years 2 and 3.

— But there is none.
Hence the cash flows on p. 666 become the next ones.

They also confirm the plot on p. 657.
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A Numerical Example (continued)

Cash flows at years 1, 2, & 3

Path  Year 0 Yearl Year 2 Year 3
1 — 12.4185 0
— 0 2.5476

— 1.3990

6.2880

3.9436

11.2730

2.5823

0

0
0
0
0
0
0
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A Numerical Example (continued)

e We move on to year 0.

e The continuation value is, from p 673,

(12.4185 x 0.9512292 + 2.5476 x 0.951229°

4+1.3990 x 0.951229% + 6.2880 x 0.9512297

+3.9436 x 0.951229% 4 11.2730 x 0.951229°

1+2.5823 x 0.951229% 4 0.8525 x 0.951229)/8
=  4.66263.

©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 674



A Numerical Example (concluded)

e As this is larger than the immediate exercise value of
105 — 101 = 4, the put should not be exercised at year 0.

e Hence the put’s value is estimated to be 4.66263.

e Compare this to the European put’s value of 1.3680
(p. 659).
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Time Series Analysis
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The historian is a prophet in reverse.

— Friedrich von Schlegel (1772-1829)
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Conditional Variance Models for Price Volatility

e Although a stationary model (see text for definition) has

constant variance, its conditional variance may vary.

e Take for example an AR(1) process X; = aX;_1 + €
with |a| < 1.

— Here, ¢, is a stationary, uncorrelated process with

zero mean and constant variance o2.

e The conditional variance,
V&I’[Xt | Xt—l: Xt_Q, ce ],

equals o2, which is smaller than the unconditional

variance Var[ X;| = 02/(1 — a?).
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Conditional Variance Models for Price Volatility
(concluded)

In the lognormal model, the conditional variance evolves

independently of past returns.

Suppose we assume that conditional variances are

deterministic functions of past returns:
Vi=f(Xi—1, Xi2, ...
for some function f.

Then V; can be computed given the information set of

past returns:

I = {Xt—laXt—27 “e
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ARCH Models?

e An influential model in this direction is the
autoregressive conditional heteroskedastic (ARCH)

model.

e Assume that {U; } is a Gaussian stationary,

uncorrelated process.

2Engle (1982), co-winner of the 2003 Nobel Prize in Economic Sci-

ences.
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ARCH Models (continued)
e The ARCH(p) process is defined by

D 1/2
Xe— = (Clo + Z ai(Xe—q — M)2> Us,

i=1
where ay,...,ap, > 0 and ag > 0.

— Thus X;|I;_1 ~ N(u, V;2).

e The variance V;? satisfies

p
Vt2 = ap + Zai(Xt—i — M)2-
i=1

e The volatility at time ¢ as estimated at time ¢ — 1
depends on the p most recent observations on squared

returns.
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ARCH Models (concluded)
e The ARCH(1) process

Xt —p=(ao+ a1 (X1 — M)2)1/2Ut

is the simplest.

e Lor it,
Var[ X, | Xi—1 = x4—1] = ao + a1 (x—1 — p).

e The process { X; } is stationary with finite variance if

and only if a; < 1, in which case Var| X;| = ag/(1—a1).
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GARCH Models®

e A very popular extension of the ARCH model is the
generalized autoregressive conditional heteroskedastic

(GARCH) process.

e The simplest GARCH(1,1) process adds asV;? | to the
ARCH(1) process, resulting in

‘/752 =ag + a1 (Xi—1 — N)Z + CL2Vt2—1-

The volatility at time ¢ as estimated at time ¢ — 1
depends on the squared return and the estimated
volatility at time ¢ — 1.

2Bollerslev (1986); Taylor (1986).
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GARCH Models (concluded)

The estimate of volatility averages past squared returns
by giving heavier weights to recent squared returns (see
text).

It is usually assumed that a; + a2 <1 and ag > 0, in

which case the unconditional, long-run variance is given
by ao/(l — a1 — CLQ).

A popular special case of GARCH(1,1) is the
exponentially weighted moving average process, which
sets ag to zero and ag to 1 — aj.

This model is used in J.P. Morgan’s RiskMetrics™.
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