
Variance Reduction: Antithetic Variates

• We are interested in estimating E[ g(X1, X2, . . . , Xn) ],
where X1, X2, . . . , Xn are independent.

• Let Y1 and Y2 be random variables with the same
distribution as g(X1, X2, . . . , Xn).

• Then

Var
[

Y1 + Y2

2

]
=

Var[ Y1 ]
2

+
Cov[Y1, Y2 ]

2
.

– Var[ Y1 ]/2 is the variance of the Monte Carlo
method with two (independent) replications.

• The variance Var[ (Y1 + Y2)/2 ] is smaller than
Var[Y1 ]/2 when Y1 and Y2 are negatively correlated.
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Variance Reduction: Antithetic Variates (continued)

• For each simulated sample path X, a second one is
obtained by reusing the random numbers on which the
first path is based.

• This yields a second sample path Y .

• Two estimates are then obtained: One based on X and
the other on Y .

• If N independent sample paths are generated, the
antithetic-variates estimator averages over 2N

estimates.
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Variance Reduction: Antithetic Variates (continued)

• Consider process dX = at dt + bt

√
dt ξ.

• Let g be a function of n samples X1, X2, . . . , Xn on
the sample path.

• We are interested in E[ g(X1, X2, . . . , Xn) ].

• Suppose one simulation run has realizations
ξ1, ξ2, . . . , ξn for the normally distributed fluctuation
term ξ.

• This generates samples x1, x2, . . . , xn.

• The estimate is then g(x), where x ≡ (x1, x2 . . . , xn).
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Variance Reduction: Antithetic Variates (concluded)

• The antithetic-variates method does not sample n more
numbers from ξ for the second estimate g(x′).

• Instead, generate the sample path x′ ≡ (x′1, x
′
2 . . . , x′n)

from −ξ1,−ξ2, . . . ,−ξn.

• Compute g(x′).

• Output (g(x) + g(x′))/2.

• Repeat the above steps for as many times as required by
accuracy.
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Variance Reduction: Conditioning

• We are interested in estimating E[ X ].

• Suppose here is a random variable Z such that
E[ X |Z = z ] can be efficiently and precisely computed.

• E[ X ] = E[ E[X |Z ] ] by the law of iterated conditional
expectations.

• Hence the random variable E[X |Z ] is also an unbiased
estimator of E[ X ].
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Variance Reduction: Conditioning (concluded)

• As
Var[E[ X |Z ] ] ≤ Var[ X ],

E[ X |Z ] has a smaller variance than observing X

directly.

• First obtain a random observation z on Z.

• Then calculate E[X |Z = z ] as our estimate.

– There is no need to resort to simulation in computing
E[ X |Z = z ].

• The procedure can be repeated a few times to reduce
the variance.
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Control Variates

• Use the analytic solution of a similar yet simpler
problem to improve the solution.

• Suppose we want to estimate E[ X ] and there exists a
random variable Y with a known mean µ ≡ E[Y ].

• Then W ≡ X + β(Y − µ) can serve as a “controlled”
estimator of E[ X ] for any constant β.

– However β is chosen, W remains an unbiased
estimator of E[X ] as

E[ W ] = E[ X ] + βE[Y − µ ] = E[X ].
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Control Variates (continued)

• Note that

Var[ W ] = Var[ X ] + β2 Var[ Y ] + 2β Cov[ X, Y ],

(64)

• Hence W is less variable than X if and only if

β2 Var[ Y ] + 2β Cov[X,Y ] < 0. (65)
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Control Variates (concluded)

• The success of the scheme clearly depends on both β

and the choice of Y .

• For example, arithmetic average-rate options can be
priced by choosing Y to be the otherwise identical
geometric average-rate option’s price and β = −1.

• This approach is much more effective than the
antithetic-variates method.
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Choice of Y

• In general, the choice of Y is ad hoc, and experiments
must be performed to confirm the wisdom of the choice.

• Try to match calls with calls and puts with puts.a

• On many occasions, Y is a discretized version of the
derivative that gives µ.

– Discretely monitored geometric average-rate option
vs. the continuously monitored geometric
average-rate option given by formulas (29) on p. 332.

• For some choices, the discrepancy can be significant,
such as the lookback option.b

aContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
bContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
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Optimal Choice of β

• Equation (64) on p. 632 is minimized when

β = −Cov[ X, Y ]/Var[Y ],

which was called beta in the book.

• For this specific β,

Var[W ] = Var[X ]− Cov[X,Y ]2

Var[ Y ]
=

(
1− ρ2

X,Y

)
Var[X ],

where ρX,Y is the correlation between X and Y .

• The stronger X and Y are correlated, the greater the
reduction in variance.
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Optimal Choice of β (continued)

• For example, if this correlation is nearly perfect (±1),
we could control X almost exactly.

• Typically, neither Var[Y ] nor Cov[X,Y ] is known.

• Therefore, we cannot obtain the maximum reduction in
variance.

• We can guess these values and hope that the resulting
W does indeed have a smaller variance than X.

• A second possibility is to use the simulated data to
estimate these quantities.
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Optimal Choice of β (concluded)

• Observe that −β has the same sign as the correlation
between X and Y .

• Hence, if X and Y are positively correlated, β < 0,
then X is adjusted downward whenever Y > µ and
upward otherwise.

• The opposite is true when X and Y are negatively
correlated, in which case β > 0.
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Problems with the Monte Carlo Method

• The error bound is only probabilistic.

• The probabilistic error bound of
√

N does not benefit
from regularity of the integrand function.

• The requirement that the points be independent random
samples are wasteful because of clustering.

• In reality, pseudorandom numbers generated by
completely deterministic means are used.

• Monte Carlo simulation exhibits a great sensitivity on
the seed of the pseudorandom-number generator.
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Matrix Computation
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To set up a philosophy against physics is rash;
philosophers who have done so
have always ended in disaster.

— Bertrand Russell
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Definitions and Basic Results

• Let A ≡ [ aij ]1≤i≤m,1≤j≤n, or simply A ∈ Rm×n,
denote an m× n matrix.

• It can also be represented as [ a1, a2, . . . , an ] where
ai ∈ Rm are vectors.

– Vectors are column vectors unless stated otherwise.

• A is a square matrix when m = n.

• The rank of a matrix is the largest number of linearly
independent columns.
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Definitions and Basic Results (continued)

• A square matrix A is said to be symmetric if AT = A.

• A real n× n matrix

A ≡ [ aij ]i,j

is diagonally dominant if | aii | >
∑

j 6=i | aij | for
1 ≤ i ≤ n.

– Such matrices are nonsingular.

• The identity matrix is the square matrix

I ≡ diag[ 1, 1, . . . , 1 ].
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Definitions and Basic Results (concluded)

• A matrix has full column rank if its columns are linearly
independent.

• A real symmetric matrix A is positive definite if

xTAx =
∑

i,j

aijxixj > 0

for any nonzero vector x.

• A matrix A is positive definite if and only if there exists
a matrix W such that A = WTW and W has full
column rank.
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Cholesky Decomposition

• Positive definite matrices can be factored as

A = LLT,

called the Cholesky decomposition.

– Above, L is a lower triangular matrix.
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Generation of Multivariate Distribution

• Let x ≡ [ x1, x2, . . . , xn ]T be a vector random variable
with a positive definite covariance matrix C.

• As usual, assume E[ x ] = 0.

• This distribution can be generated by Py.

– C = PPT is the Cholesky decomposition of C.a

– y ≡ [ y1, y2, . . . , yn ]T is a vector random variable
with a covariance matrix equal to the identity matrix.

aWhat if C is not positive definite? See Lai and Lyuu (2007).
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Generation of Multivariate Normal Distribution

• Suppose we want to generate the multivariate normal
distribution with a covariance matrix C = PPT.

• We start with independent standard normal
distributions y1, y2, . . . , yn.

• Then P [ y1, y2, . . . , yn ]T has the desired distribution.
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Multivariate Derivatives Pricing

• Generating the multivariate normal distribution is
essential for the Monte Carlo pricing of multivariate
derivatives (p. 566).

• For example, the rainbow option on k assets has payoff

max(max(S1, S2, . . . , Sk)−X, 0)

at maturity.

• The closed-form formula is a multi-dimensional integral.a

aJohnson (1987).
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Multivariate Derivatives Pricing (concluded)

• Suppose dSj/Sj = r dt + σj dWj , 1 ≤ j ≤ n, where C is
the correlation matrix for dW1, dW2, . . . , dWk.

• Let C = PPT.

• Let ξ consist of k independent random variables from
N(0, 1).

• Let ξ′ = Pξ.

• Similar to Eq. (63) on p. 606,

Si+1 = Sie
(r−σ2

j /2) ∆t+σj

√
∆t ξ′j , 1 ≤ j ≤ n.
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Least-Squares Problems

• The least-squares (LS) problem is concerned with

min
x∈Rn

‖ Ax− b ‖,

where A ∈ Rm×n, b ∈ Rm, m ≥ n.

• The LS problem is called regression analysis in statistics
and is equivalent to minimizing the mean-square error.

• Often written as
Ax = b.
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Polynomial Regression

• In polynomial regression, x0 + x1x + · · ·+ xnxn is used
to fit the data { (a1, b1), (a2, b2), . . . , (am, bm) }.

• This leads to the LS problem,



1 a1 a2
1 · · · an

1

1 a2 a2
2 · · · an

2

...
...

...
. . .

...

1 am a2
m · · · an

m







x0

x1

...

xn




=




b1

b2

...

bm




.

• Consult the text for solutions.
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American Option Pricing by Simulation

• The continuation value of an American option is the
conditional expectation of the payoff from keeping the
option alive now.

• The option holder must compare the immediate exercise
value and the continuation value.

• In standard Monte Carlo simulation, each path is
treated independently of other paths.

• But the decision to exercise the option cannot be
reached by looking at only one path alone.
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The Least-Squares Monte Carlo Approach

• The continuation value can be estimated from the
cross-sectional information in the simulation by using
least squares.a

• The result is a function (of the state) for estimating the
continuation values.

• Use the function to estimate the continuation value for
each path to determine its cash flow.

• This is called the least-squares Monte Carlo (LSM)
approach and is provably convergent.b

aLongstaff and Schwartz (2001).
bClément, Lamberton, and Protter (2002).
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A Numerical Example

• Consider a 3-year American put on a
non-dividend-paying stock.

• The put is exercisable at years 0, 1, 2, and 3.

• The strike price X = 105.

• The annualized riskless rate is r = 5%.

• The spot stock price is 101.

– The annual discount factor hence equals 0.951229.

• We use only 8 price paths to illustrate the algorithm.
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A Numerical Example (continued)

Stock price paths

Path Year 0 Year 1 Year 2 Year 3

1 101 97.6424 92.5815 107.5178

2 101 101.2103 105.1763 102.4524

3 101 105.7802 103.6010 124.5115

4 101 96.4411 98.7120 108.3600

5 101 124.2345 101.0564 104.5315

6 101 95.8375 93.7270 99.3788

7 101 108.9554 102.4177 100.9225

8 101 104.1475 113.2516 115.0994
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A Numerical Example (continued)

• We use the basis functions 1, x, x2.

– Other basis functions are possible.a

• The plot next page shows the final estimated optimal
exercise strategy given by LSM.

• We now proceed to tackle our problem.

• Our concrete problem is to calculate the cash flow along
each path, using information from all paths.

aLaguerre polynomials, Hermite polynomials, Legendre polynomials,

Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomi-

als.
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A Numerical Example (continued)

Cash flows at year 3

Path Year 0 Year 1 Year 2 Year 3

1 — — — 0

2 — — — 2.5476

3 — — — 0

4 — — — 0

5 — — — 0.4685

6 — — — 5.6212

7 — — — 4.0775

8 — — — 0
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A Numerical Example (continued)

• The cash flows at year 3 are the exercise value if the put
is in the money.

• Only 4 paths are in the money: 2, 5, 6, 7.

• Some of the cash flows may not occur if the put is
exercised earlier, which we will find out step by step.

• Incidentally, the European counterpart has a value of

0.9512293 × 2.5476 + 0.4685 + 5.6212 + 4.0775
8

= 1.3680.
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A Numerical Example (continued)

• We move on to year 2.

• For each state that is in the money at year 2, we must
decide whether to exercise it.

• There are 6 paths for which the put is in the money: 1,
3, 4, 5, 6, 7.

• Only in-the-money paths will be used in the regression
because they are where early exercise is relevant.

– If there were none, we would move on to year 1.
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A Numerical Example (continued)

• Let x denote the stock prices at year 2 for those 6 paths.

• Let y denote the corresponding discounted future cash
flows (at year 3) if the put is not exercised at year 2.
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A Numerical Example (continued)

Regression at year 2

Path x y

1 92.5815 0× 0.951229

2 — —

3 103.6010 0× 0.951229

4 98.7120 0× 0.951229

5 101.0564 0.4685× 0.951229

6 93.7270 5.6212× 0.951229

7 102.4177 4.0775× 0.951229

8 — —
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A Numerical Example (continued)

• We regress y on 1, x, and x2.

• The result is

f(x) = 22.08− 0.313114× x + 0.00106918× x2.

• f estimates the continuation value conditional on the
stock price at year 2.

• We next compare the immediate exercise value and the
continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 2

Path Exercise Continuation

1 12.4185 f(92.5815) = 2.2558

2 — —

3 1.3990 f(103.6010) = 1.1168

4 6.2880 f(98.7120) = 1.5901

5 3.9436 f(101.0564) = 1.3568

6 11.2730 f(93.7270) = 2.1253

7 2.5823 f(102.4177) = 0.3326

8 — —
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A Numerical Example (continued)

• Amazingly, the put should be exercised in all 6 paths: 1,
3, 4, 5, 6, 7.

• Now, any positive cash flow at year 3 should be set to
zero for these paths as the put is exercised before year 3.

– They are paths 5, 6, 7.

• Hence the cash flows on p. 658 become the next ones.
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A Numerical Example (continued)

Cash flows at years 2 & 3

Path Year 0 Year 1 Year 2 Year 3

1 — — 12.4185 0

2 — — 0 2.5476

3 — — 1.3990 0

4 — — 6.2880 0

5 — — 3.9436 0

6 — — 11.2730 0

7 — — 2.5823 0

8 — — 0 0
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A Numerical Example (continued)

• We move on to year 1.

• For each state that is in the money at year 1, we must
decide whether to exercise it.

• There are 5 paths for which the put is in the money: 1,
2, 4, 6, 8.

• Only in-the-money paths will be used in the regression
because they are where early exercise is relevant.

– If there were none, we would move on to year 0.
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A Numerical Example (continued)

• Let x denote the stock prices at year 1 for those 5 paths.

• Let y denote the corresponding discounted future cash
flows if the put is not exercised at year 1.

• From p. 666, we have the following table.
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A Numerical Example (continued)

Regression at year 1

Path x y

1 97.6424 12.4185× 0.951229

2 101.2103 2.5476× 0.9512292

3 — —

4 96.4411 6.2880× 0.951229

5 — —

6 95.8375 11.2730× 0.951229

7 — —

8 104.1475 0
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A Numerical Example (continued)

• We regress y on 1, x, and x2.

• The result is

f(x) = −420.964 + 9.78113× x− 0.0551567× x2.

• f estimates the continuation value conditional on the
stock price at year 1.

• We next compare the immediate exercise value and the
continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 1

Path Exercise Continuation

1 7.3576 f(97.6424) = 8.2230

2 3.7897 f(101.2103) = 3.9882

3 — —

4 8.5589 f(96.4411) = 9.3329

5 — —

6 9.1625 f(95.8375) = 9.83042

7 — —

8 0.8525 f(104.1475) = −0.551885
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A Numerical Example (continued)

• The put should be exercised for 1 path only: 8.

• Now, any positive future cash flow should be set to zero
for this path as the put is exercised before years 2 and 3.

– But there is none.

• Hence the cash flows on p. 666 become the next ones.

• They also confirm the plot on p. 657.
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A Numerical Example (continued)

Cash flows at years 1, 2, & 3

Path Year 0 Year 1 Year 2 Year 3

1 — 0 12.4185 0

2 — 0 0 2.5476

3 — 0 1.3990 0

4 — 0 6.2880 0

5 — 0 3.9436 0

6 — 0 11.2730 0

7 — 0 2.5823 0

8 — 0.8525 0 0
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A Numerical Example (continued)

• We move on to year 0.

• The continuation value is, from p 673,

(12.4185× 0.9512292 + 2.5476× 0.9512293

+1.3990× 0.9512292 + 6.2880× 0.9512292

+3.9436× 0.9512292 + 11.2730× 0.9512292

+2.5823× 0.9512292 + 0.8525× 0.951229)/8

= 4.66263.
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A Numerical Example (concluded)

• As this is larger than the immediate exercise value of
105− 101 = 4, the put should not be exercised at year 0.

• Hence the put’s value is estimated to be 4.66263.

• Compare this to the European put’s value of 1.3680
(p. 659).
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Time Series Analysis
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The historian is a prophet in reverse.
— Friedrich von Schlegel (1772–1829)
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Conditional Variance Models for Price Volatility

• Although a stationary model (see text for definition) has
constant variance, its conditional variance may vary.

• Take for example an AR(1) process Xt = aXt−1 + εt

with | a | < 1.

– Here, εt is a stationary, uncorrelated process with
zero mean and constant variance σ2.

• The conditional variance,

Var[Xt |Xt−1, Xt−2, . . . ],

equals σ2, which is smaller than the unconditional
variance Var[Xt ] = σ2/(1− a2).
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Conditional Variance Models for Price Volatility
(concluded)

• In the lognormal model, the conditional variance evolves
independently of past returns.

• Suppose we assume that conditional variances are
deterministic functions of past returns:

Vt = f(Xt−1, Xt−2, . . . )

for some function f .

• Then Vt can be computed given the information set of
past returns:

It−1 ≡ {Xt−1, Xt−2, . . . }.
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ARCH Modelsa

• An influential model in this direction is the
autoregressive conditional heteroskedastic (ARCH)
model.

• Assume that {Ut } is a Gaussian stationary,
uncorrelated process.

aEngle (1982), co-winner of the 2003 Nobel Prize in Economic Sci-

ences.
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ARCH Models (continued)

• The ARCH(p) process is defined by

Xt − µ =

(
a0 +

p∑

i=1

ai(Xt−i − µ)2
)1/2

Ut,

where a1, . . . , ap ≥ 0 and a0 > 0.

– Thus Xt | It−1 ∼ N(µ, V 2
t ).

• The variance V 2
t satisfies

V 2
t = a0 +

p∑

i=1

ai(Xt−i − µ)2.

• The volatility at time t as estimated at time t− 1
depends on the p most recent observations on squared
returns.
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ARCH Models (concluded)

• The ARCH(1) process

Xt − µ = (a0 + a1(Xt−1 − µ)2)1/2Ut

is the simplest.

• For it,

Var[ Xt |Xt−1 = xt−1 ] = a0 + a1(xt−1 − µ)2.

• The process {Xt } is stationary with finite variance if
and only if a1 < 1, in which case Var[Xt ] = a0/(1− a1).
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GARCH Modelsa

• A very popular extension of the ARCH model is the
generalized autoregressive conditional heteroskedastic
(GARCH) process.

• The simplest GARCH(1, 1) process adds a2V
2
t−1 to the

ARCH(1) process, resulting in

V 2
t = a0 + a1(Xt−1 − µ)2 + a2V

2
t−1.

• The volatility at time t as estimated at time t− 1
depends on the squared return and the estimated
volatility at time t− 1.

aBollerslev (1986); Taylor (1986).
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GARCH Models (concluded)

• The estimate of volatility averages past squared returns
by giving heavier weights to recent squared returns (see
text).

• It is usually assumed that a1 + a2 < 1 and a0 > 0, in
which case the unconditional, long-run variance is given
by a0/(1− a1 − a2).

• A popular special case of GARCH(1, 1) is the
exponentially weighted moving average process, which
sets a0 to zero and a2 to 1− a1.

• This model is used in J.P. Morgan’s RiskMetricsTM.
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