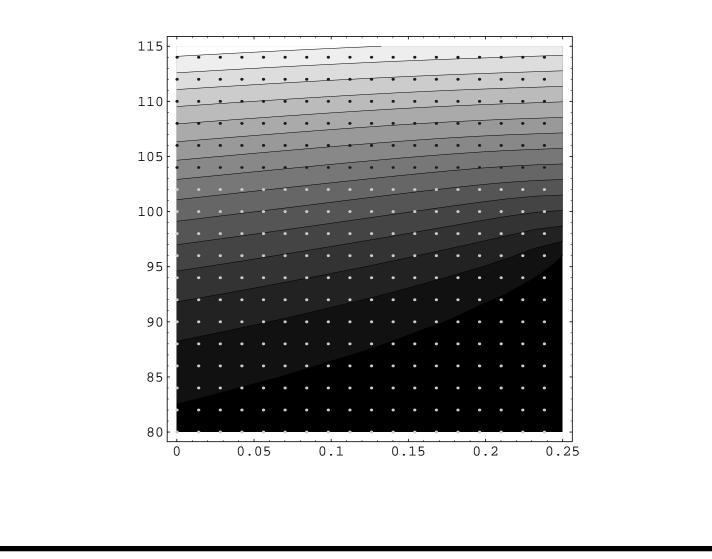
Numerical Methods

All science is dominated by the idea of approximation. — Bertrand Russell

Finite-Difference Methods

- Place a grid of points on the space over which the desired function takes value.
- Then approximate the function value at each of these points (p. 582).
- Solve the equation numerically by introducing difference equations in place of derivatives.



Example: Poisson's Equation

- It is $\partial^2 \theta / \partial x^2 + \partial^2 \theta / \partial y^2 = -\rho(x, y)$.
- Replace second derivatives with finite differences through central difference.
- Introduce evenly spaced grid points with distance of Δx along the x axis and Δy along the y axis.
- The finite difference form is

$$-\rho(x_i, y_j) = \frac{\theta(x_{i+1}, y_j) - 2\theta(x_i, y_j) + \theta(x_{i-1}, y_j)}{(\Delta x)^2} + \frac{\theta(x_i, y_{j+1}) - 2\theta(x_i, y_j) + \theta(x_i, y_{j-1})}{(\Delta y)^2}.$$

Example: Poisson's Equation (concluded)

- In the above, $\Delta x \equiv x_i x_{i-1}$ and $\Delta y \equiv y_j y_{j-1}$ for $i, j = 1, 2, \dots$
- When the grid points are evenly spaced in both axes so that $\Delta x = \Delta y = h$, the difference equation becomes

$$-h^{2}\rho(x_{i}, y_{j}) = \theta(x_{i+1}, y_{j}) + \theta(x_{i-1}, y_{j}) + \theta(x_{i}, y_{j+1}) + \theta(x_{i}, y_{j-1}) - 4\theta(x_{i}, y_{j}).$$

- Given boundary values, we can solve for the x_i s and the y_j s within the square $[\pm L, \pm L]$.
- From now on, $\theta_{i,j}$ will denote the finite-difference approximation to the exact $\theta(x_i, y_j)$.

Explicit Methods

- Consider the diffusion equation $D(\partial^2 \theta / \partial x^2) - (\partial \theta / \partial t) = 0.$
- Use evenly spaced grid points (x_i, t_j) with distances Δx and Δt , where $\Delta x \equiv x_{i+1} x_i$ and $\Delta t \equiv t_{j+1} t_j$.
- Employ central difference for the second derivative and forward difference for the time derivative to obtain

$$\frac{\partial \theta(x,t)}{\partial t}\Big|_{t=t_j} = \frac{\theta(x,t_{j+1}) - \theta(x,t_j)}{\Delta t} + \cdots, \qquad (60)$$

$$\frac{\partial^2 \theta(x,t)}{\partial x^2}\Big|_{x=x_i} = \frac{\theta(x_{i+1},t) - 2\theta(x_i,t) + \theta(x_{i-1},t)}{(\Delta x)^2} + \cdots . (61)$$

Explicit Methods (continued)

- Next, assemble Eqs. (60) and (61) into a single equation at (x_i, t_j) .
- But we need to decide how to evaluate x in the first equation and t in the second.
- Since central difference around x_i is used in Eq. (61), we might as well use x_i for x in Eq. (60).
- Two choices are possible for t in Eq. (61).
- The first choice uses $t = t_j$ to yield the following finite-difference equation,

$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2}.$$
 (62)

Explicit Methods (concluded)

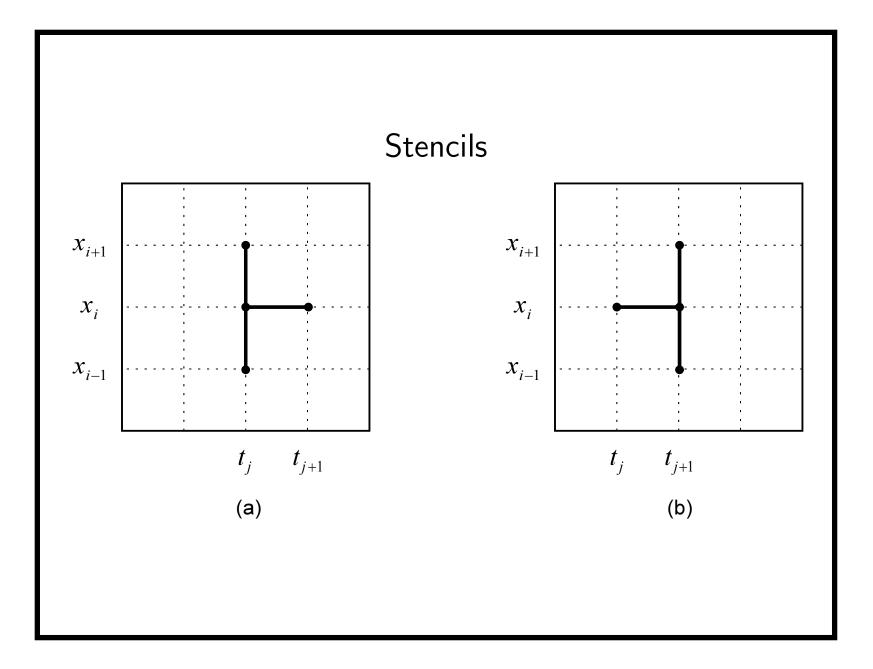
- The stencil of grid points involves four values, $\theta_{i,j+1}$, $\theta_{i,j}$, $\theta_{i+1,j}$, and $\theta_{i-1,j}$.
- We can calculate $\theta_{i,j+1}$ from $\theta_{i,j}, \theta_{i+1,j}, \theta_{i-1,j}$, at the previous time t_j (see figure (a) on next page).
- Starting from the initial conditions at t_0 , that is, $\theta_{i,0} = \theta(x_i, t_0), i = 1, 2, \dots$, we calculate

$$\theta_{i,1}, \quad i=1,2,\ldots,$$

and then

$$\theta_{i,2}, \quad i=1,2,\ldots,$$

and so on.



Stability

• The explicit method is numerically unstable unless

 $\Delta t \le (\Delta x)^2 / (2D).$

- A numerical method is unstable if the solution is highly sensitive to changes in initial conditions.
- The stability condition may lead to high running times and memory requirements.
- For instance, halving Δx would imply quadrupling $(\Delta t)^{-1}$, resulting in a running time eight times as much.

Explicit Method and Trinomial Tree

• Rearrange Eq. (62) on p. 586 as

$$\theta_{i,j+1} = \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i+1,j} + \left(1 - \frac{2D\Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i-1,j}.$$

- When the stability condition is satisfied, the three coefficients for $\theta_{i+1,j}$, $\theta_{i,j}$, and $\theta_{i-1,j}$ all lie between zero and one and sum to one.
- They can be interpreted as probabilities.
- So the finite-difference equation becomes identical to backward induction on trinomial trees!
- The freedom in choosing Δx corresponds to similar freedom in the construction of the trinomial trees.

Implicit Methods

- Suppose we use $t = t_{j+1}$ in Eq. (61) on p. 585 instead.
- The finite-difference equation becomes

$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \, \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}.$$
(63)

- The stencil involves $\theta_{i,j}$, $\theta_{i,j+1}$, $\theta_{i+1,j+1}$, and $\theta_{i-1,j+1}$.
- This method is implicit:
 - The value of any one of the three quantities at t_{j+1} cannot be calculated unless the other two are known.
 - See exhibit (b) on p. 588.

Implicit Methods (continued)

• Equation (63) can be rearranged as

$$\theta_{i-1,j+1} - (2+\gamma) \theta_{i,j+1} + \theta_{i+1,j+1} = -\gamma \theta_{i,j},$$

where $\gamma \equiv (\Delta x)^2 / (D\Delta t)$.

- This equation is unconditionally stable.
- Suppose the boundary conditions are given at $x = x_0$ and $x = x_{N+1}$.
- After $\theta_{i,j}$ has been calculated for i = 1, 2, ..., N, the values of $\theta_{i,j+1}$ at time t_{j+1} can be computed as the solution to the following tridiagonal linear system,

Implicit Methods (continued) where $a \equiv -2 - \gamma$.

Implicit Methods (concluded)

- Tridiagonal systems can be solved in O(N) time and O(N) space.
- The matrix above is nonsingular when $\gamma \geq 0$.
 - A square matrix is nonsingular if its inverse exists.

Crank-Nicolson Method

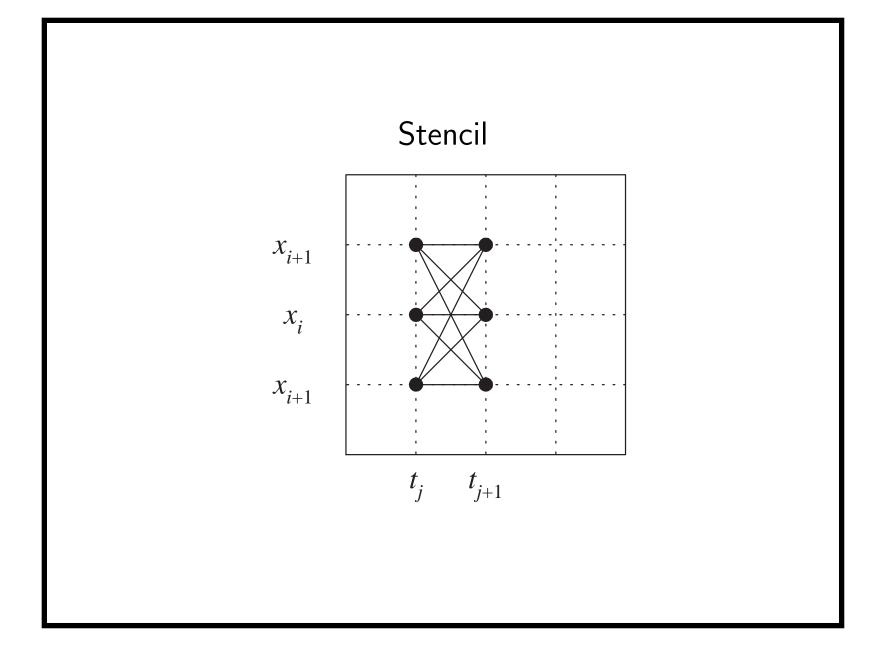
• Take the average of explicit method (62) on p. 586 and implicit method (63) on p. 591:

$$= \frac{\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t}}{\left(D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2} + D \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}\right)$$

• After rearrangement,

$$\gamma \theta_{i,j+1} - \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{2} = \gamma \theta_{i,j} + \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{2}.$$

• This is an unconditionally stable implicit method with excellent rates of convergence.



Numerically Solving the Black-Scholes PDE

• See text.

Monte Carlo Simulation $^{\rm a}$

- Monte Carlo simulation is a sampling scheme.
- In many important applications within finance and without, Monte Carlo is one of the few feasible tools.
- When the time evolution of a stochastic process is not easy to describe analytically, Monte Carlo may very well be the only strategy that succeeds consistently.

^aA top 10 algorithm according to Dongarra and Sullivan (2000).

The Big Idea

- Assume X_1, X_2, \ldots, X_n have a joint distribution.
- $\theta \equiv E[g(X_1, X_2, \dots, X_n)]$ for some function g is desired.
- We generate

$$\left(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\right), \quad 1 \le i \le N$$

independently with the same joint distribution as (X_1, X_2, \ldots, X_n) .

• Set

$$Y_i \equiv g\left(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\right).$$

The Big Idea (concluded)

- Y_1, Y_2, \ldots, Y_N are independent and identically distributed random variables.
- Each Y_i has the same distribution as

$$Y \equiv g(X_1, X_2, \ldots, X_n).$$

- Since the average of these N random variables, \overline{Y} , satisfies $E[\overline{Y}] = \theta$, it can be used to estimate θ .
- The strong law of large numbers says that this procedure converges almost surely.
- The number of replications (or independent trials), N, is called the sample size.

Accuracy

- The Monte Carlo estimate and true value may differ owing to two reasons:
 - 1. Sampling variation.
 - 2. The discreteness of the sample paths.^a
- The first can be controlled by the number of replications.
- The second can be controlled by the number of observations along the sample path.

^aThis may not be an issue if the derivative only requires discrete sampling along the time dimension.

Accuracy and Number of Replications

• The statistical error of the sample mean \overline{Y} of the random variable Y grows as $1/\sqrt{N}$.

- Because $\operatorname{Var}[\overline{Y}] = \operatorname{Var}[Y]/N$.

- In fact, this convergence rate is asymptotically optimal by the Berry-Esseen theorem.
- So the variance of the estimator \overline{Y} can be reduced by a factor of 1/N by doing N times as much work.
- This is amazing because the same order of convergence holds independently of the dimension n.

Accuracy and Number of Replications (concluded)

- In contrast, classic numerical integration schemes have an error bound of O(N^{-c/n}) for some constant c > 0.
 - n is the dimension.
- The required number of evaluations thus grows exponentially in n to achieve a given level of accuracy.
 The curse of dimensionality.
- The Monte Carlo method, for example, is more efficient than alternative procedures for securities depending on more than one asset, the multivariate derivatives.

Variance Reduction

- The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output.
- If this variance can be lowered without changing the expected value, fewer replications are needed.
- Methods that improve efficiency in this manner are called variance-reduction techniques.
- Such techniques become practical when the added costs are outweighed by the reduction in sampling.

Monte Carlo Option Pricing

- For the pricing of European options on a dividend-paying stock, we may proceed as follows.
- Stock prices S_1, S_2, S_3, \ldots at times $\Delta t, 2\Delta t, 3\Delta t, \ldots$ can be generated via

$$S_{i+1} = S_i e^{(\mu - \sigma^2/2) \,\Delta t + \sigma \sqrt{\Delta t} \,\xi}, \quad \xi \sim N(0, 1)$$
(64)

when $dS/S = \mu dt + \sigma dW$.

Monte Carlo Option Pricing (concluded)

- Non-dividend-paying stock prices in a risk-neutral economy can be generated by setting $\mu = r$.
- Pricing Asian options is easy (see text).

Pricing American Options

- Standard Monte Carlo simulation is inappropriate for American options because of early exercise.
- It is difficult to determine the early-exercise point based on one single path.
- Monte Carlo simulation can be modified to price American options with small biases (see p. 649).^a

^aLongstaff and Schwartz (2001).

Delta and Common Random Numbers

• In estimating delta, it is natural to start with the finite-difference estimate

$$e^{-r\tau} \, \frac{E[\,P(S+\epsilon)\,] - E[\,P(S-\epsilon)\,]}{2\epsilon}$$

-P(x) is the terminal payoff of the derivative security when the underlying asset's initial price equals x.

- Use simulation to estimate $E[P(S + \epsilon)]$ first.
- Use another simulation to estimate $E[P(S \epsilon)]$.
- Finally, apply the formula to approximate the delta.

Delta and Common Random Numbers (concluded)

- This method is not recommended because of its high variance.
- A much better approach is to use common random numbers to lower the variance:

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - P(S-\epsilon)}{2\epsilon}\right]$$

- Here, the same random numbers are used for $P(S + \epsilon)$ and $P(S - \epsilon)$.
- This holds for gamma and cross gammas (for multivariate derivatives).

Gamma

• The finite-difference formula for gamma is

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - 2 \times P(S) + P(S-\epsilon)}{\epsilon^2}\right]$$

• For a correlation option with multiple underlying assets, the finite-difference formula for the cross gammas $\partial^2 P(S_1, S_2, \dots)/(\partial S_1 \partial S_2)$ is:

$$e^{-r\tau} E\left[\frac{P(S_1+\epsilon_1, S_2+\epsilon_2) - P(S_1-\epsilon_1, S_2+\epsilon_2)}{4\epsilon_1\epsilon_2} - P(S_1+\epsilon_1, S_2-\epsilon_2) + P(S_1-\epsilon_1, S_2-\epsilon_2)\right].$$

Gamma (concluded)

- Choosing an ϵ of the right magnitude can be challenging.
 - If ϵ is too large, inaccurate Greeks result.
 - If ϵ is too small, unstable Greeks result.
- This phenomenon is sometimes called the curse of differentiation.
- Need formulas for Greeks which are integrals (thus avoiding finite differences and resimulation).^a

^aLyuu and Teng (2008).

Biases in Pricing Continuously Monitored Options with Monte Carlo

- We are asked to price a continuously monitored up-and-out call with barrier H.
- The Monte Carlo method samples the stock price at n discrete time points t_1, t_2, \ldots, t_n .
- A sample path $S(t_0), S(t_1), \ldots, S(t_n)$ is produced.
 - Here, $t_0 = 0$ is the current time, and $t_n = T$ is the expiration time of the option.

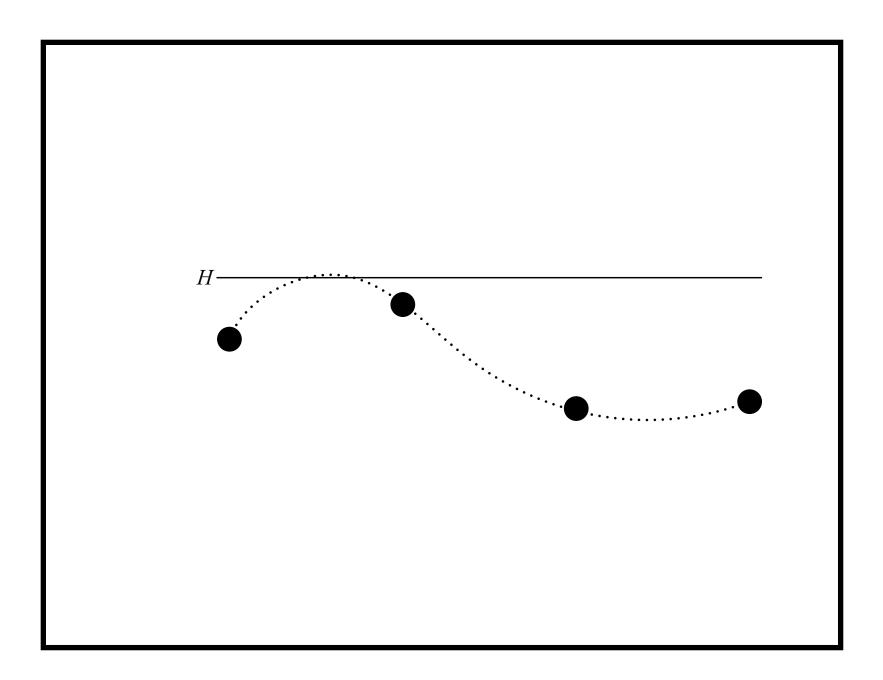
Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- If all of the sampled prices are below the barrier, this sample path pays $\max(S(t_n) X, 0)$.
- Repeating these steps and averaging the payoffs yield a Monte Carlo estimate.

1:
$$C := 0$$
; hit $:= 0$;
2: for $i = 1, 2, 3, ..., m$ do
3: $P := S$;
4: for $j = 1, 2, 3, ..., n$ do
5: $P := P \times e^{(r - \sigma^2/2) (T/n) + \sigma \sqrt{(T/n)} \xi}$;
6: if $P \ge H$ then
7: hit $:= 1$;
8: break;
9: end if
10: end for
11: if hit = 0 then
12: $C := C + \max(P - X, 0)$;
13: end if
14: end for
15: return Ce^{-rT}/m ;

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- This estimate is biased.
 - Suppose none of the sampled prices on a sample path equals or exceeds the barrier H.
 - It remains possible for the continuous sample path that passes through them to hit the barrier between sampled time points (see plot on next page).



Biases in Pricing Continuously Monitored Options with Monte Carlo (concluded)

- The bias can certainly be lowered by increasing the number of observations along the sample path.
- However, even daily sampling may not suffice.
- The computational cost also rises as a result.

Brownian Bridge Approach to Pricing Barrier Options

- We desire an unbiased estimate efficiently.
- So the above-mentioned payoff should be multiplied by the probability p that a continuous sample path does not hit the barrier conditional on the sampled prices.
- This methodology is called the Brownian bridge approach.
- Formally, we have

 $p \equiv \operatorname{Prob}[S(t) < H, 0 \le t \le T | S(t_0), S(t_1), \dots, S(t_n)].$

• As a barrier is hit over a time interval if and only if the maximum stock price over that period is at least H,

$$p = \operatorname{Prob}\left[\max_{0 \le t \le T} S(t) < H \,|\, S(t_0), S(t_1), \dots, S(t_n)\right].$$

• Luckily, the conditional distribution of the maximum over a time interval given the beginning and ending stock prices is known.

Lemma 19 Assume S follows $dS/S = \mu dt + \sigma dW$ and define $\begin{bmatrix} 2\ln(x/S(t))\ln(x/S(t + \Delta t)) \end{bmatrix}$

$$\zeta(x) \equiv \exp\left[-\frac{2\ln(x/S(t))\ln(x/S(t+\Delta t))}{\sigma^2 \Delta t}\right]$$

(1) If
$$H > \max(S(t), S(t + \Delta t))$$
, then

$$\operatorname{Prob}\left[\left.\max_{t\leq u\leq t+\Delta t}S(u)< H \right| S(t), S(t+\Delta t)\right] = 1-\zeta(H).$$

(2) If
$$h < \min(S(t), S(t + \Delta t))$$
, then

$$\operatorname{Prob}\left[\left.\min_{t\leq u\leq t+\Delta t}S(u)>h\right|\,S(t),S(t+\Delta t)\right]=1-\zeta(h).$$

- Lemma 19 gives the probability that the barrier is not hit in a time interval, given the starting and ending stock prices.
- For our up-and-out call, choose n = 1.
- As a result,

$$p = \begin{cases} 1 - \exp\left[-\frac{2\ln(H/S(0))\ln(H/S(T))}{\sigma^2 T}\right], & \text{if } H > \max(S(0), S(T)), \\ 0, & \text{otherwise.} \end{cases}$$

1: C := 0;2: for i = 1, 2, 3, ..., m do 3: $P := S \times e^{(r-q-\sigma^2/2)T+\sigma\sqrt{T}} \xi();$ 4: if (S < H and P < H) or (S > H and P > H) then 5: $C := C + \max(P - X, 0) \times \left\{ 1 - \exp\left[-\frac{2\ln(H/S) \times \ln(H/P)}{\sigma^2 T} \right] \right\};$ 6: end if 7: end for 8: return $Ce^{-rT}/m;$

- The idea can be generalized.
- For example, we can handle more complex barrier options.
- Consider an up-and-out call with barrier H_i for the time interval $(t_i, t_{i+1}], 0 \le i < n$.
- This option thus contains n barriers.
- It is a simple matter of multiplying the probabilities for the *n* time intervals properly to obtain the desired probability adjustment term.