
Numerical Methods
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All science is dominated
by the idea of approximation.

— Bertrand Russell
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Finite-Difference Methods

• Place a grid of points on the space over which the
desired function takes value.

• Then approximate the function value at each of these
points (p. 582).

• Solve the equation numerically by introducing difference
equations in place of derivatives.
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Example: Poisson’s Equation

• It is ∂2θ/∂x2 + ∂2θ/∂y2 = −ρ(x, y).

• Replace second derivatives with finite differences
through central difference.

• Introduce evenly spaced grid points with distance of ∆x

along the x axis and ∆y along the y axis.

• The finite difference form is

−ρ(xi, yj) =
θ(xi+1, yj)− 2θ(xi, yj) + θ(xi−1, yj)

(∆x)2

+
θ(xi, yj+1)− 2θ(xi, yj) + θ(xi, yj−1)

(∆y)2
.
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Example: Poisson’s Equation (concluded)

• In the above, ∆x ≡ xi − xi−1 and ∆y ≡ yj − yj−1 for
i, j = 1, 2, . . . .

• When the grid points are evenly spaced in both axes so
that ∆x = ∆y = h, the difference equation becomes

−h2ρ(xi, yj) = θ(xi+1, yj) + θ(xi−1, yj)

+θ(xi, yj+1) + θ(xi, yj−1)− 4θ(xi, yj).

• Given boundary values, we can solve for the xis and the
yjs within the square [±L,±L ].

• From now on, θi,j will denote the finite-difference
approximation to the exact θ(xi, yj).
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Explicit Methods

• Consider the diffusion equation
D(∂2θ/∂x2)− (∂θ/∂t) = 0.

• Use evenly spaced grid points (xi, tj) with distances
∆x and ∆t, where ∆x ≡ xi+1 − xi and ∆t ≡ tj+1 − tj .

• Employ central difference for the second derivative and
forward difference for the time derivative to obtain

∂θ(x, t)

∂t

∣∣∣∣
t=tj

=
θ(x, tj+1)− θ(x, tj)

∆t
+ · · · , (60)

∂2θ(x, t)

∂x2

∣∣∣∣
x=xi

=
θ(xi+1, t)− 2θ(xi, t) + θ(xi−1, t)

(∆x)2
+ · · · . (61)
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Explicit Methods (continued)

• Next, assemble Eqs. (60) and (61) into a single equation
at (xi, tj).

• But we need to decide how to evaluate x in the first
equation and t in the second.

• Since central difference around xi is used in Eq. (61),
we might as well use xi for x in Eq. (60).

• Two choices are possible for t in Eq. (61).

• The first choice uses t = tj to yield the following
finite-difference equation,

θi,j+1 − θi,j

∆t
= D

θi+1,j − 2θi,j + θi−1,j

(∆x)2
. (62)
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Explicit Methods (concluded)

• The stencil of grid points involves four values, θi,j+1,
θi,j , θi+1,j , and θi−1,j .

• We can calculate θi,j+1 from θi,j , θi+1,j , θi−1,j , at the
previous time tj (see figure (a) on next page).

• Starting from the initial conditions at t0, that is,
θi,0 = θ(xi, t0), i = 1, 2, . . . , we calculate

θi,1, i = 1, 2, . . . ,

and then
θi,2, i = 1, 2, . . . ,

and so on.
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Stability

• The explicit method is numerically unstable unless

∆t ≤ (∆x)2/(2D).

– A numerical method is unstable if the solution is
highly sensitive to changes in initial conditions.

• The stability condition may lead to high running times
and memory requirements.

• For instance, halving ∆x would imply quadrupling
(∆t)−1, resulting in a running time eight times as much.
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Explicit Method and Trinomial Tree

• Rearrange Eq. (62) on p. 586 as

θi,j+1 =
D∆t

(∆x)2
θi+1,j +

(
1− 2D∆t

(∆x)2

)
θi,j +

D∆t

(∆x)2
θi−1,j .

• When the stability condition is satisfied, the three
coefficients for θi+1,j , θi,j , and θi−1,j all lie between
zero and one and sum to one.

• They can be interpreted as probabilities.

• So the finite-difference equation becomes identical to
backward induction on trinomial trees!

• The freedom in choosing ∆x corresponds to similar
freedom in the construction of the trinomial trees.
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Implicit Methods

• Suppose we use t = tj+1 in Eq. (61) on p. 585 instead.

• The finite-difference equation becomes

θi,j+1 − θi,j

∆t
= D

θi+1,j+1 − 2θi,j+1 + θi−1,j+1

(∆x)2
.

(63)

• The stencil involves θi,j , θi,j+1, θi+1,j+1, and θi−1,j+1.

• This method is implicit:

– The value of any one of the three quantities at tj+1

cannot be calculated unless the other two are known.

– See exhibit (b) on p. 588.
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Implicit Methods (continued)

• Equation (63) can be rearranged as

θi−1,j+1 − (2 + γ) θi,j+1 + θi+1,j+1 = −γθi,j ,

where γ ≡ (∆x)2/(D∆t).

• This equation is unconditionally stable.

• Suppose the boundary conditions are given at x = x0

and x = xN+1.

• After θi,j has been calculated for i = 1, 2, . . . , N , the
values of θi,j+1 at time tj+1 can be computed as the
solution to the following tridiagonal linear system,

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 592



Implicit Methods (continued)
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,

where a ≡ −2− γ.
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Implicit Methods (concluded)

• Tridiagonal systems can be solved in O(N) time and
O(N) space.

• The matrix above is nonsingular when γ ≥ 0.

– A square matrix is nonsingular if its inverse exists.
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Crank-Nicolson Method
• Take the average of explicit method (62) on p. 586 and

implicit method (63) on p. 591:
θi,j+1 − θi,j

∆t

=
1

2

(
D

θi+1,j − 2θi,j + θi−1,j

(∆x)2
+ D

θi+1,j+1 − 2θi,j+1 + θi−1,j+1

(∆x)2

)
.

• After rearrangement,

γθi,j+1 −
θi+1,j+1 − 2θi,j+1 + θi−1,j+1

2
= γθi,j +

θi+1,j − 2θi,j + θi−1,j

2
.

• This is an unconditionally stable implicit method with
excellent rates of convergence.
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Numerically Solving the Black-Scholes PDE

• See text.
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Monte Carlo Simulationa

• Monte Carlo simulation is a sampling scheme.

• In many important applications within finance and
without, Monte Carlo is one of the few feasible tools.

• When the time evolution of a stochastic process is not
easy to describe analytically, Monte Carlo may very well
be the only strategy that succeeds consistently.

aA top 10 algorithm according to Dongarra and Sullivan (2000).
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The Big Idea

• Assume X1, X2, . . . , Xn have a joint distribution.

• θ ≡ E[ g(X1, X2, . . . , Xn) ] for some function g is
desired.

• We generate
(
x

(i)
1 , x

(i)
2 , . . . , x(i)

n

)
, 1 ≤ i ≤ N

independently with the same joint distribution as
(X1, X2, . . . , Xn).

• Set
Yi ≡ g

(
x

(i)
1 , x

(i)
2 , . . . , x(i)

n

)
.
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The Big Idea (concluded)

• Y1, Y2, . . . , YN are independent and identically
distributed random variables.

• Each Yi has the same distribution as

Y ≡ g(X1, X2, . . . , Xn).

• Since the average of these N random variables, Y ,
satisfies E[Y ] = θ, it can be used to estimate θ.

• The strong law of large numbers says that this
procedure converges almost surely.

• The number of replications (or independent trials), N , is
called the sample size.
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Accuracy

• The Monte Carlo estimate and true value may differ
owing to two reasons:

1. Sampling variation.

2. The discreteness of the sample paths.a

• The first can be controlled by the number of replications.

• The second can be controlled by the number of
observations along the sample path.

aThis may not be an issue if the derivative only requires discrete

sampling along the time dimension.
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Accuracy and Number of Replications

• The statistical error of the sample mean Y of the
random variable Y grows as 1/

√
N .

– Because Var[Y ] = Var[Y ]/N .

• In fact, this convergence rate is asymptotically optimal
by the Berry-Esseen theorem.

• So the variance of the estimator Y can be reduced by a
factor of 1/N by doing N times as much work.

• This is amazing because the same order of convergence
holds independently of the dimension n.
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Accuracy and Number of Replications (concluded)

• In contrast, classic numerical integration schemes have
an error bound of O(N−c/n) for some constant c > 0.

– n is the dimension.

• The required number of evaluations thus grows
exponentially in n to achieve a given level of accuracy.

– The curse of dimensionality.

• The Monte Carlo method, for example, is more efficient
than alternative procedures for securities depending on
more than one asset, the multivariate derivatives.
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Variance Reduction

• The statistical efficiency of Monte Carlo simulation can
be measured by the variance of its output.

• If this variance can be lowered without changing the
expected value, fewer replications are needed.

• Methods that improve efficiency in this manner are
called variance-reduction techniques.

• Such techniques become practical when the added costs
are outweighed by the reduction in sampling.
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Monte Carlo Option Pricing

• For the pricing of European options on a
dividend-paying stock, we may proceed as follows.

• Stock prices S1, S2, S3, . . . at times ∆t, 2∆t, 3∆t, . . .

can be generated via

Si+1 = Sie
(µ−σ2/2) ∆t+σ

√
∆t ξ, ξ ∼ N(0, 1)

(64)

when dS/S = µdt + σ dW .
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Monte Carlo Option Pricing (concluded)

• Non-dividend-paying stock prices in a risk-neutral
economy can be generated by setting µ = r.

• Pricing Asian options is easy (see text).
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Pricing American Options

• Standard Monte Carlo simulation is inappropriate for
American options because of early exercise.

• It is difficult to determine the early-exercise point based
on one single path.

• Monte Carlo simulation can be modified to price
American options with small biases (see p. 649).a

aLongstaff and Schwartz (2001).
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Delta and Common Random Numbers

• In estimating delta, it is natural to start with the
finite-difference estimate

e−rτ E[P (S + ε) ]− E[ P (S − ε) ]
2ε

.

– P (x) is the terminal payoff of the derivative security
when the underlying asset’s initial price equals x.

• Use simulation to estimate E[ P (S + ε) ] first.

• Use another simulation to estimate E[ P (S − ε) ].

• Finally, apply the formula to approximate the delta.
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Delta and Common Random Numbers (concluded)

• This method is not recommended because of its high
variance.

• A much better approach is to use common random
numbers to lower the variance:

e−rτ E

[
P (S + ε)− P (S − ε)

2ε

]
.

• Here, the same random numbers are used for P (S + ε)
and P (S − ε).

• This holds for gamma and cross gammas (for
multivariate derivatives).
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Gamma

• The finite-difference formula for gamma is

e−rτ E

[
P (S + ε)− 2× P (S) + P (S − ε)

ε2

]
.

• For a correlation option with multiple underlying assets,
the finite-difference formula for the cross gammas
∂2P (S1, S2, . . . )/(∂S1∂S2) is:

e−rτ E

[
P (S1 + ε1, S2 + ε2)− P (S1 − ε1, S2 + ε2)

4ε1ε2

−P (S1 + ε1, S2 − ε2) + P (S1 − ε1, S2 − ε2)
]

.
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Gamma (concluded)

• Choosing an ε of the right magnitude can be
challenging.

– If ε is too large, inaccurate Greeks result.

– If ε is too small, unstable Greeks result.

• This phenomenon is sometimes called the curse of
differentiation.

• Need formulas for Greeks which are integrals (thus
avoiding finite differences and resimulation).a

aLyuu and Teng (2008).
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Biases in Pricing Continuously Monitored Options
with Monte Carlo

• We are asked to price a continuously monitored
up-and-out call with barrier H.

• The Monte Carlo method samples the stock price at n

discrete time points t1, t2, . . . , tn.

• A sample path S(t0), S(t1), . . . , S(tn) is produced.

– Here, t0 = 0 is the current time, and tn = T is the
expiration time of the option.
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

• If all of the sampled prices are below the barrier, this
sample path pays max(S(tn)−X, 0).

• Repeating these steps and averaging the payoffs yield a
Monte Carlo estimate.
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1: C := 0; hit := 0;

2: for i = 1, 2, 3, . . . , m do

3: P := S;

4: for j = 1, 2, 3, . . . , n do

5: P := P × e(r−σ2/2) (T/n)+σ
√

(T/n) ξ;

6: if P ≥ H then

7: hit := 1;

8: break;

9: end if

10: end for

11: if hit = 0 then

12: C := C + max(P −X, 0);

13: end if

14: end for

15: return Ce−rT /m;
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

• This estimate is biased.

– Suppose none of the sampled prices on a sample path
equals or exceeds the barrier H.

– It remains possible for the continuous sample path
that passes through them to hit the barrier between
sampled time points (see plot on next page).
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H
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (concluded)

• The bias can certainly be lowered by increasing the
number of observations along the sample path.

• However, even daily sampling may not suffice.

• The computational cost also rises as a result.
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Brownian Bridge Approach to Pricing Barrier Options

• We desire an unbiased estimate efficiently.

• So the above-mentioned payoff should be multiplied by
the probability p that a continuous sample path does
not hit the barrier conditional on the sampled prices.

• This methodology is called the Brownian bridge
approach.

• Formally, we have

p ≡ Prob[ S(t) < H, 0 ≤ t ≤ T |S(t0), S(t1), . . . , S(tn) ].
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

• As a barrier is hit over a time interval if and only if the
maximum stock price over that period is at least H,

p = Prob
[

max
0≤t≤T

S(t) < H |S(t0), S(t1), . . . , S(tn)
]

.

• Luckily, the conditional distribution of the maximum
over a time interval given the beginning and ending
stock prices is known.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

Lemma 19 Assume S follows dS/S = µ dt + σ dW and define

ζ(x) ≡ exp

[
−2 ln(x/S(t)) ln(x/S(t + ∆t))

σ2∆t

]
.

(1) If H > max(S(t), S(t + ∆t)), then

Prob

[
max

t≤u≤t+∆t
S(u) < H

∣∣∣∣ S(t), S(t + ∆t)

]
= 1− ζ(H).

(2) If h < min(S(t), S(t + ∆t)), then

Prob

[
min

t≤u≤t+∆t
S(u) > h

∣∣∣∣ S(t), S(t + ∆t)

]
= 1− ζ(h).

c©2008 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 620



Brownian Bridge Approach to Pricing Barrier Options
(continued)

• Lemma 19 gives the probability that the barrier is not
hit in a time interval, given the starting and ending
stock prices.

• For our up-and-out call, choose n = 1.

• As a result,

p =





1− exp
[
− 2 ln(H/S(0)) ln(H/S(T ))

σ2T

]
, if H > max(S(0), S(T )),

0, otherwise.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

1: C := 0;

2: for i = 1, 2, 3, . . . , m do

3: P := S × e(r−q−σ2/2) T+σ
√

T ξ( );

4: if (S < H and P < H) or (S > H and P > H) then

5: C := C+max(P−X, 0)×
{

1− exp
[
− 2 ln(H/S)×ln(H/P )

σ2T

]}
;

6: end if

7: end for

8: return Ce−rT /m;
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Brownian Bridge Approach to Pricing Barrier Options
(concluded)

• The idea can be generalized.

• For example, we can handle more complex barrier
options.

• Consider an up-and-out call with barrier Hi for the
time interval (ti, ti+1 ], 0 ≤ i < n.

• This option thus contains n barriers.

• It is a simple matter of multiplying the probabilities for
the n time intervals properly to obtain the desired
probability adjustment term.
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