Principles of Financial Computing

Prof. Yuh-Dauh Lyuu

Dept. Computer Science & Information Engineering and

Department of Finance

National Taiwan University

Class Information

- Yuh-Dauh Lyuu. Financial Engineering & Computation: Principles, Mathematics, Algorithms. Cambridge University Press. 2002.
- Official Web page is

www.csie.ntu.edu.tw/~lyuu/finance1.html

• Check

www.csie.ntu.edu.tw/~lyuu/capitals.html

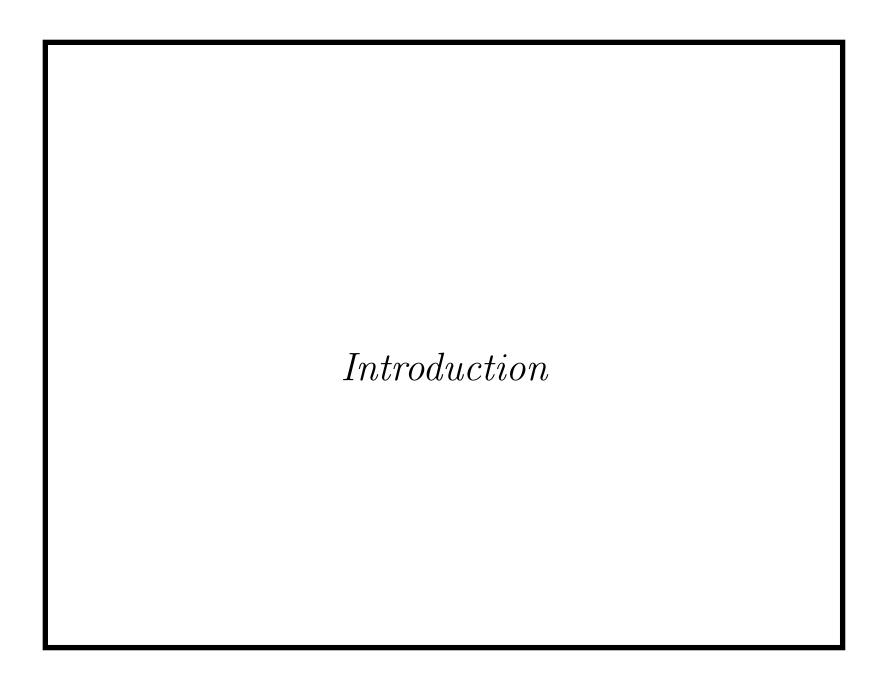
for some of the software.

Class Information (concluded)

- Please ask many questions in class.
 - The best way for me to remember you in a large class.^a
- Teaching assistants will be announced later.

^a "[A] science concentrator [...] said that in his eighth semester of [Harvard] college, there was not a single science professor who could identify him by name." (*New York Times*, September 3, 2003.)

Useful Journals


- Applied Mathematical Finance.
- Finance and Stochastics.
- Financial Analysts Journal.
- Journal of Banking & Finance.
- Journal of Computational Finance.
- Journal of Derivatives.
- Journal of Economic Dynamics & Control.
- Journal of Finance.
- Journal of Financial Economics.

Useful Journals (continued)

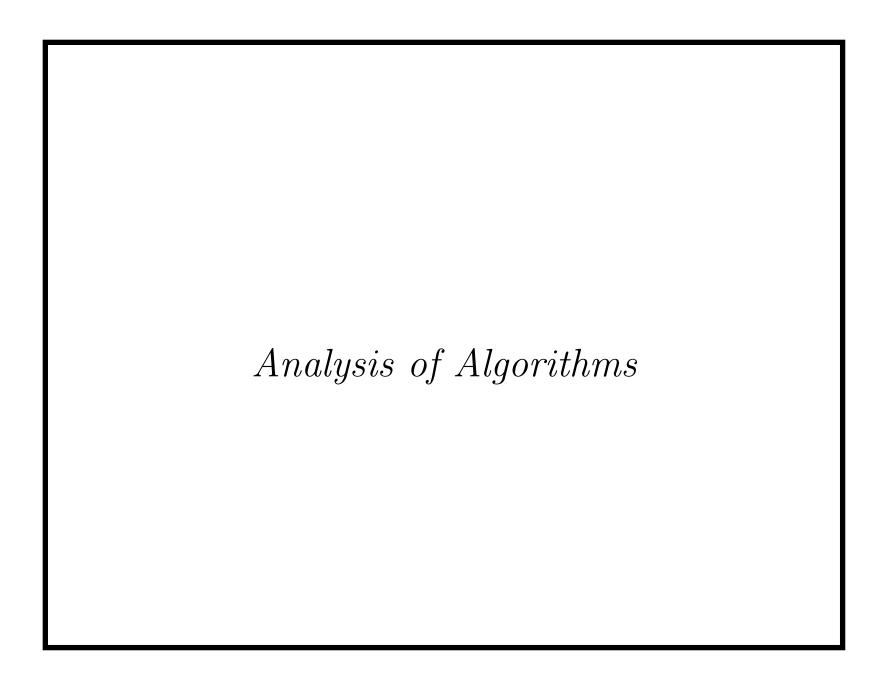
- Journal of Fixed Income.
- Journal of Futures Markets.
- Journal of Financial and Quantitative Analysis.
- Journal of Portfolio Management.
- Journal of Real Estate Finance and Economics.
- Management Science.
- Mathematical Finance.

Useful Journals (concluded)

- Quantitative Finance.
- Review of Financial Studies.
- Review of Derivatives Research.
- Risk Magazine.
- Stochastics and Stochastics Reports.

[An] investment bank could be more collegial than a college.
— Emanuel Derman,
My Life as a Quant (2004)

The two most dangerous words in Wall Street vocabulary are "financial engineering."


— Wilbur Ross (2007)

What This Course Is About

- Financial theories in pricing.
- Mathematical backgrounds.
- Derivative securities.
- Pricing models.
- Efficient algorithms in pricing financial instruments.
- Research problems.
- Finding your thesis directions.

What This Course Is Not About

- How to program.
- Basic mathematics in calculus, probability, and algebra.
- Details of the financial markets.
- How to be rich.
- How the markets will perform tomorrow.

It is unworthy of excellent men
to lose hours like slaves
in the labor of computation.
— Gottfried Wilhelm Leibniz (1646–1716)

Computability and Algorithms

- Algorithms are precise procedures that can be turned into computer programs.
- Uncomputable problems.
 - Does this program have infinite loops?
 - Is this program bug free?
- Computable problems.
 - Intractable problems.
 - Tractable problems.

Complexity

- Start with a set of basic operations which will be assumed to take one unit of time.
- The total number of these operations is the total work done by an algorithm (its computational complexity).
- The space complexity is the amount of memory space used by an algorithm.
- Concentrate on the abstract complexity of an algorithm instead of its detailed implementation.
- Complexity is a good guide to an algorithm's *actual* running time.

Asymptotics

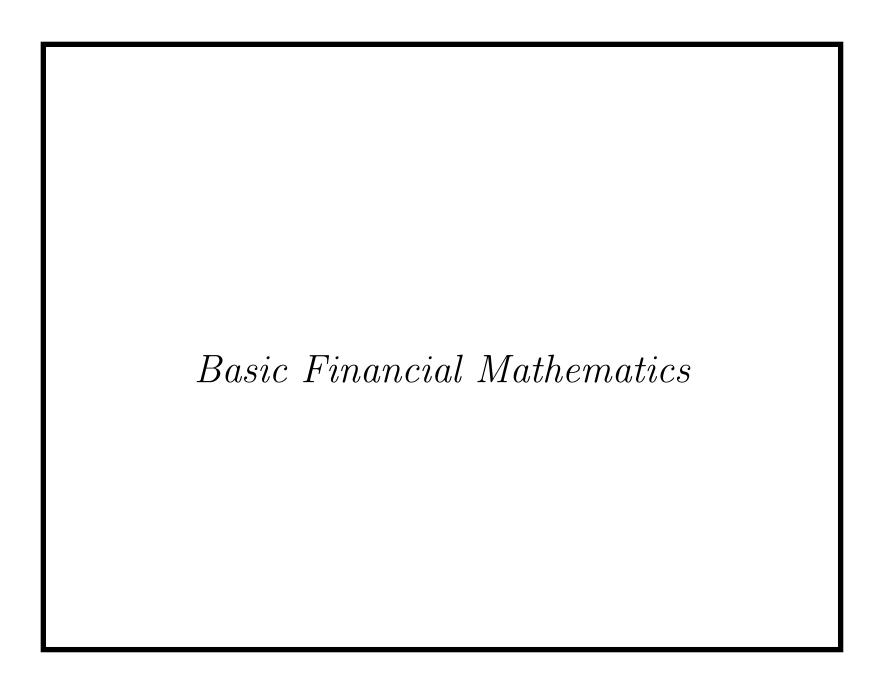
- Consider the search algorithm on p. 15.
- The worst-case complexity is n comparisons (why?).
- There are operations besides comparison.
- We care only about the asymptotic growth rate not the exact number of operations.
 - So the complexity of maintaining the loop is
 subsumed by the complexity of the body of the loop.
- The complexity is hence O(n).

Algorithm for Searching an Element

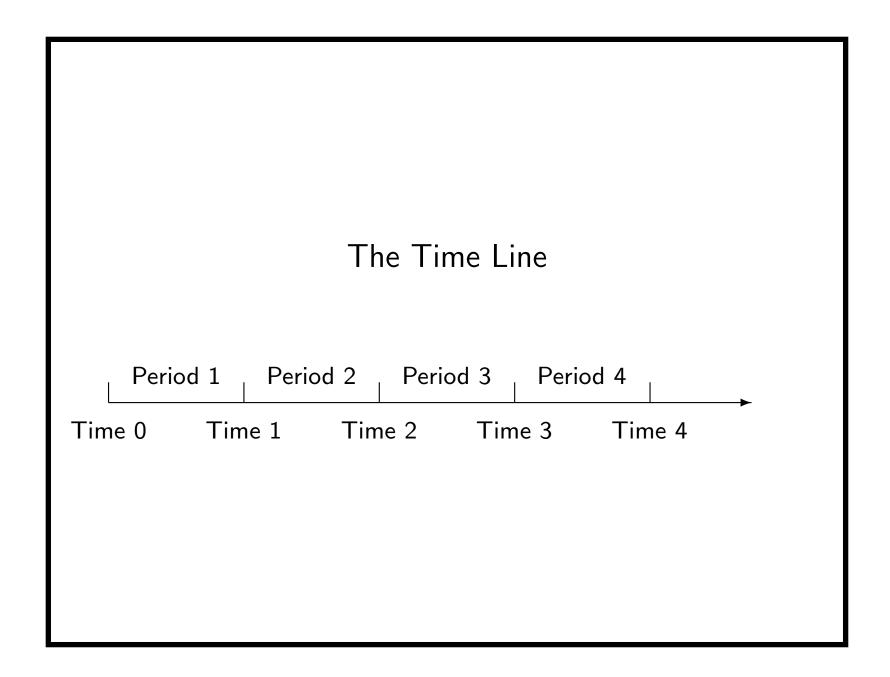
1: **for** $k = 1, 2, 3, \ldots, n$ **do**

2: if $x = A_k$ then

3: return k;


4: end if

5: end for


6: return not-found;

Common Complexities

- Let n stand for the "size" of the problem.
 - Number of elements, number of cash flows, etc.
- Linear time if the complexity is O(n).
- Quadratic time if the complexity is $O(n^2)$.
- Cubic time if the complexity is $O(n^3)$.
- Exponential time if the complexity is $2^{O(n)}$.
- Superpolynomial if the complexity is less than exponential but higher than polynomials, say $2^{O(\sqrt{n})}$.

In the fifteenth century mathematics was mainly concerned with questions of commercial arithmetic and the problems of the architect. — Joseph Alois Schumpeter (1883–1950)

Time Value of Money

$$FV = PV(1+r)^{n},$$

$$PV = FV \times (1+r)^{-n}.$$

- FV (future value).
- PV (present value).
- r: interest rate.

Periodic Compounding

• Suppose the interest is compounded m times per annum, then

$$1 \to \left(1 + \frac{r}{m}\right) \to \left(1 + \frac{r}{m}\right)^2 \to \left(1 + \frac{r}{m}\right)^3 \to \cdots$$

• Hence

$$FV = PV \left(1 + \frac{r}{m}\right)^{nm}.$$
 (1)

Common Compounding Methods

- Annual compounding: m = 1.
- Semiannual compounding: m=2.
- Quarterly compounding: m = 4.
- Monthly compounding: m = 12.
- Weekly compounding: m = 52.
- Daily compounding: m = 365.

Easy Translations

- An interest rate of r compounded m times a year is "equivalent to" an interest rate of r/m per 1/m year.
- If a loan asks for a return of 1% per month, the annual interest rate will be 12% with monthly compounding.

Example

- Annual interest rate is 10% compounded twice per annum.
- Each dollar will grow to be

$$[1 + (0.1/2)]^2 = 1.1025$$

one year from now.

• The rate is equivalent to an interest rate of 10.25% compounded once *per annum*.

Continuous Compounding

• Let $m \to \infty$ so that

$$\left(1+\frac{r}{m}\right)^m \to e^r$$

in Eq. (1) on p. 21.

• Then

$$FV = PV \times e^{rn},$$

where e = 2.71828...

Continuous Compounding (concluded)

- Continuous compounding is easier to work with.
- Suppose the annual interest rate is r_1 for n_1 years and r_2 for the following n_2 years.
- Then the FV of one dollar will be

$$e^{r_1n_1+r_2n_2}$$
.

Efficient Algorithms for PV and FV

• The PV of the cash flow C_1, C_2, \ldots, C_n at times $1, 2, \ldots, n$ is

$$\frac{C_1}{1+y} + \frac{C_2}{(1+y)^2} + \dots + \frac{C_n}{(1+y)^n}.$$

- This formula and its variations are the engine behind most of financial calculations.^a
 - What is y?
 - What are C_i ?
 - What is n?

^a "Asset pricing theory all stems from one simple concept [...]: price equals expected discounted payoff" (see Cochrane (2005)).

Algorithm for Evaluating PV

1: x := 0;

2: d := 1 + y;

3: **for** $i = n, n - 1, \dots, 1$ **do**

 $4: \quad x := (x + C_i)/d;$

5: end for

6: return x;

Horner's Rule: The Idea Behind p. 28

• This idea is

$$\left(\cdots \left(\left(\frac{C_n}{1+y} + C_{n-1}\right) \frac{1}{1+y} + C_{n-2}\right) \frac{1}{1+y} + \cdots\right) \frac{1}{1+y}.$$

- Due to Horner (1786–1837) in 1819.
- The algorithm takes O(n) time.
- It is the most efficient possible in terms of the absolute number of arithmetic operations.^a

^aBorodin and Munro (1975).

Conversion between Compounding Methods

- Suppose r_1 is the annual rate with continuous compounding.
- Suppose r_2 is the equivalent rate compounded m times per annum.
- How are they related?

Conversion between Compounding Methods (concluded)

- Both interest rates must produce the same amount of money after one year.
- That is,

$$\left(1 + \frac{r_2}{m}\right)^m = e^{r_1}.$$

• Therefore,

$$r_1 = m \ln \left(1 + \frac{r_2}{m}\right),$$

$$r_2 = m \left(e^{r_1/m} - 1\right).$$

Annuities

- An annuity pays out the same C dollars at the end of each year for n years.
- With a rate of r, the FV at the end of the nth year is

$$\sum_{i=0}^{n-1} C(1+r)^i = C \frac{(1+r)^n - 1}{r}.$$
 (2)

General Annuities

• If m payments of C dollars each are received per year (the general annuity), then Eq. (2) becomes

$$C \frac{\left(1 + \frac{r}{m}\right)^{nm} - 1}{\frac{r}{m}}.$$

• The PV of a general annuity is

$$\sum_{i=1}^{nm} C \left(1 + \frac{r}{m} \right)^{-i} = C \frac{1 - \left(1 + \frac{r}{m} \right)^{-nm}}{\frac{r}{m}}.$$
 (3)

Amortization

- It is a method of repaying a loan through regular payments of interest and principal.
- The size of the loan (the original balance) is reduced by the principal part of each payment.
- The interest part of each payment pays the interest incurred on the remaining principal balance.
- As the principal gets paid down over the term of the loan, the interest part of the payment diminishes.

Example: Home Mortgage

- By paying down the principal consistently, the risk to the lender is lowered.
- When the borrower sells the house, the remaining principal is due the lender.
- Consider the equal-payment case, i.e., fixed-rate, level-payment, fully amortized mortgages.
 - They are called traditional mortgages in the U.S.

A Numerical Example

- Consider a 15-year, \$250,000 loan at 8.0% interest rate.
- Solving Eq. (3) on p. 33 with PV = 250000, n = 15, m = 12, and r = 0.08 gives a monthly payment of C = 2389.13.
- The amortization schedule is shown on p. 37.
- In every month (1) the principal and interest parts add up to \$2,389.13, (2) the remaining principal is reduced by the amount indicated under the Principal heading, and (3) the interest is computed by multiplying the remaining balance of the previous month by 0.08/12.

Month	Payment	Interest	Principal	Remaining principal
				250,000.000
1	2,389.13	1,666.667	722.464	249,277.536
2	2,389.13	1,661.850	727.280	$248,\!550.256$
3	2,389.13	$1,\!657.002$	732.129	247,818.128
		• • •		
178	2,389.13	47.153	2,341.980	4,730.899
179	2,389.13	31.539	$2,\!357.591$	$2,\!373.308$
180	2,389.13	15.822	2,373.308	0.000
Total	430,043.438	180,043.438	250,000.000	

Method 1 of Calculating the Remaining Principal

- Go down the amortization schedule until you reach the particular month you are interested in.
 - A month's principal payment equals the monthly payment subtracted by the previous month's remaining principal times the monthly interest rate.
 - A month's remaining principal equals the previous month's remaining principal subtracted by the principal payment calculated above.

Method 1 of Calculating the Remaining Principal (concluded)

- This method is relatively slow but is universal in its applicability.
- It can, for example, accommodate prepayment and variable interest rates.

Method 2 of Calculating the Remaining Principal

• Right after the kth payment, the remaining principal is the PV of the future nm - k cash flows,

$$\sum_{i=1}^{nm-k} C \left(1 + \frac{r}{m} \right)^{-i} = C \frac{1 - \left(1 + \frac{r}{m} \right)^{-nm+k}}{\frac{r}{m}}.$$

• This method is faster but more limited in applications.

Yields

- The term yield denotes the return of investment.
- Two widely used yields are the bond equivalent yield (BEY) and the mortgage equivalent yield (MEY).
- Recall Eq. (1) on p. 21: $FV = PV \left(1 + \frac{r}{m}\right)^{nm}$.
- BEY corresponds to the r above that equates PV with FV when m=2.
- MEY corresponds to the r above that equates PV with FV when m = 12.

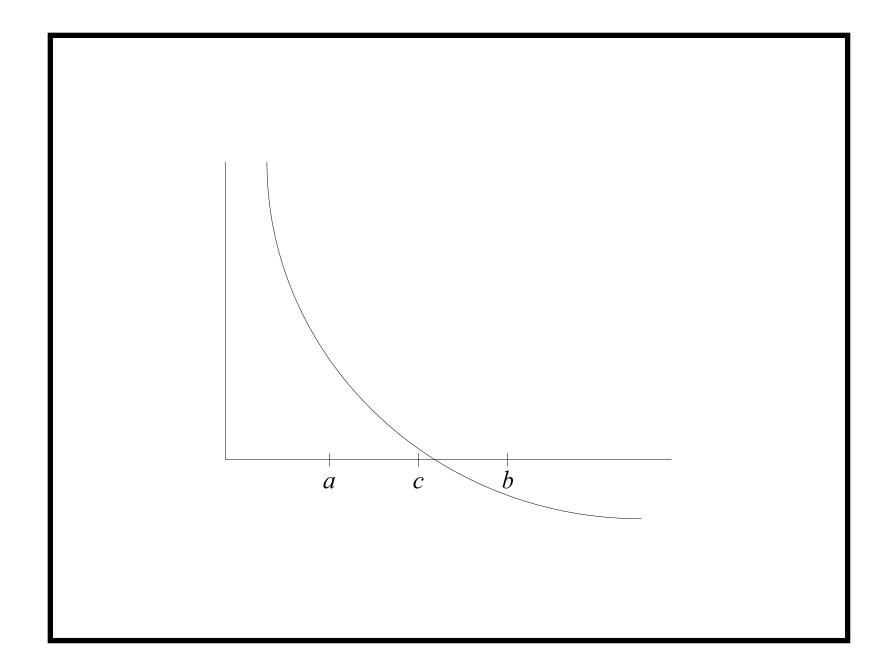
Internal Rate of Return (IRR)

• It is the interest rate which equates an investment's PV with its price P,

$$P = \frac{C_1}{(1+y)} + \frac{C_2}{(1+y)^2} + \frac{C_3}{(1+y)^3} + \dots + \frac{C_n}{(1+y)^n}.$$

• The above formula is the foundation upon which pricing methodologies are built.

Numerical Methods for Yields

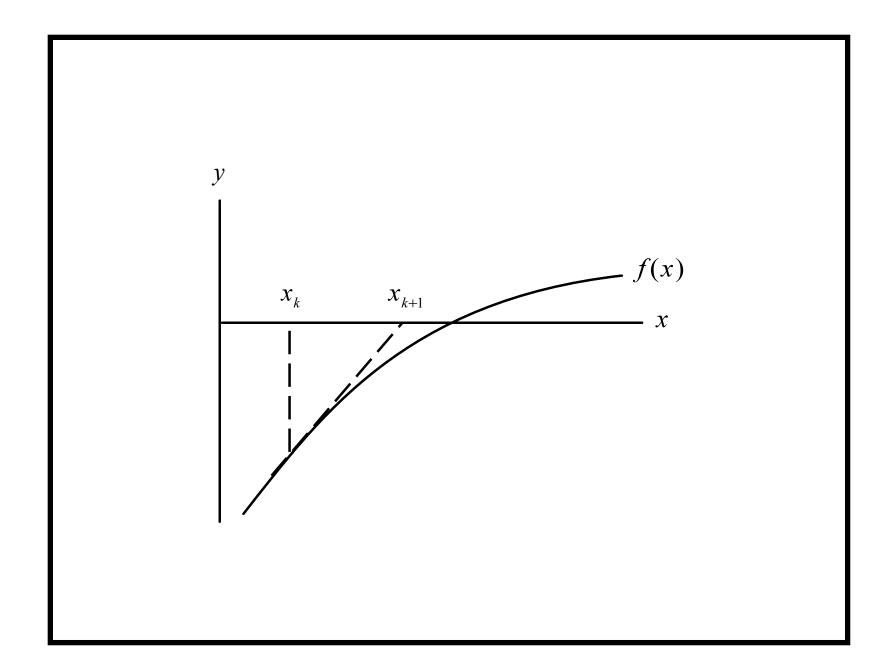

• Solve f(y) = 0 for $y \ge -1$, where

$$f(y) \equiv \sum_{t=1}^{n} \frac{C_t}{(1+y)^t} - P.$$

- -P is the market price.
- The function f(y) is monotonic in y if $C_t > 0$ for all t.
- A unique solution exists for a monotonic f(y).

The Bisection Method

- Start with a and b where a < b and f(a) f(b) < 0.
- Then $f(\xi)$ must be zero for some $\xi \in [a, b]$.
- If we evaluate f at the midpoint $c \equiv (a+b)/2$, either (1) f(c) = 0, (2) f(a) f(c) < 0, or (3) f(c) f(b) < 0.
- In the first case we are done, in the second case we continue the process with the new bracket [a, c], and in the third case we continue with [c, b].
- The bracket is halved in the latter two cases.
- After n steps, we will have confined ξ within a bracket of length $(b-a)/2^n$.


The Newton-Raphson Method

- Converges faster than the bisection method.
- Start with a first approximation x_0 to a root of f(x) = 0.
- Then

$$x_{k+1} \equiv x_k - \frac{f(x_k)}{f'(x_k)}.$$

• When computing yields,

$$f'(x) = -\sum_{t=1}^{n} \frac{tC_t}{(1+x)^{t+1}}.$$

The Secant Method

- A variant of the Newton-Raphson method.
- Replace differentiation with difference.
- Start with two approximations x_0 and x_1 .
- Then compute the (k+1)st approximation with

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}.$$

The Secant Method (concluded)

- Its convergence rate, 1.618.
- This is slightly worse than the Newton-Raphson method's 2.
- But the secant method does not need to evaluate $f'(x_k)$ needed by the Newton-Raphson method.
- This saves about 50% in computation efforts per iteration.
- The convergence rate of the bisection method is 1.

Solving Systems of Nonlinear Equations

- It is not easy to extend the bisection method to higher dimensions.
- But the Newton-Raphson method can be extended to higher dimensions.
- Let (x_k, y_k) be the kth approximation to the solution of the two simultaneous equations,

$$f(x,y) = 0,$$

$$g(x,y) = 0.$$

$$g(x,y) = 0.$$

Solving Systems of Nonlinear Equations (concluded)

• The (k+1)st approximation (x_{k+1}, y_{k+1}) satisfies the following linear equations,

$$\begin{bmatrix} \frac{\partial f(x_k, y_k)}{\partial x} & \frac{\partial f(x_k, y_k)}{\partial y} \\ \frac{\partial g(x_k, y_k)}{\partial x} & \frac{\partial g(x_k, y_k)}{\partial y} \end{bmatrix} \begin{bmatrix} \Delta x_{k+1} \\ \Delta y_{k+1} \end{bmatrix} = - \begin{bmatrix} f(x_k, y_k) \\ g(x_k, y_k) \end{bmatrix},$$

where unknowns $\Delta x_{k+1} \equiv x_{k+1} - x_k$ and $\Delta y_{k+1} \equiv y_{k+1} - y_k$.

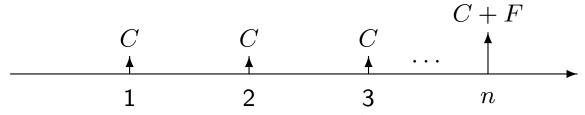
- The above has a unique solution for $(\Delta x_{k+1}, \Delta y_{k+1})$ when the 2×2 matrix is invertible.
- Set $(x_{k+1}, y_{k+1}) = (x_k + \Delta x_{k+1}, y_k + \Delta y_{k+1}).$

Zero-Coupon Bonds (Pure Discount Bonds)

• The price of a zero-coupon bond that pays F dollars in n periods is

$$F/(1+r)^n$$
,

where r is the interest rate per period.


• Can meet future obligations without reinvestment risk.

Example

- The interest rate is 8% compounded semiannually.
- A zero-coupon bond that pays the par value 20 years from now will be priced at $1/(1.04)^{40}$, or 20.83%, of its par value.
- It will be quoted as 20.83.
- If the bond matures in 10 years instead of 20, its price would be 45.64.

Level-Coupon Bonds

- Coupon rate.
- Par value, paid at maturity.
- \bullet F denotes the par value, and C denotes the coupon.
- Cash flow:

• Coupon bonds can be thought of as a matching package of zero-coupon bonds, at least theoretically.

Pricing Formula

$$P = \sum_{i=1}^{n} \frac{C}{\left(1 + \frac{r}{m}\right)^{i}} + \frac{F}{\left(1 + \frac{r}{m}\right)^{n}}$$

$$= C \frac{1 - \left(1 + \frac{r}{m}\right)^{-n}}{\frac{r}{m}} + \frac{F}{\left(1 + \frac{r}{m}\right)^{n}}.$$
(4)

- n: number of cash flows.
- m: number of payments per year.
- r: annual rate compounded m times per annum.
- C = Fc/m when c is the annual coupon rate.
- Price P can be computed in O(1) time.

Yields to Maturity

- It is the r that satisfies Eq. (4) on p. 55 with P being the bond price.
- For a 15% BEY, a 10-year bond with a coupon rate of 10% paid semiannually sells for

$$5 \times \frac{1 - [1 + (0.15/2)]^{-2 \times 10}}{0.15/2} + \frac{100}{[1 + (0.15/2)]^{2 \times 10}}$$

$$74.5138$$

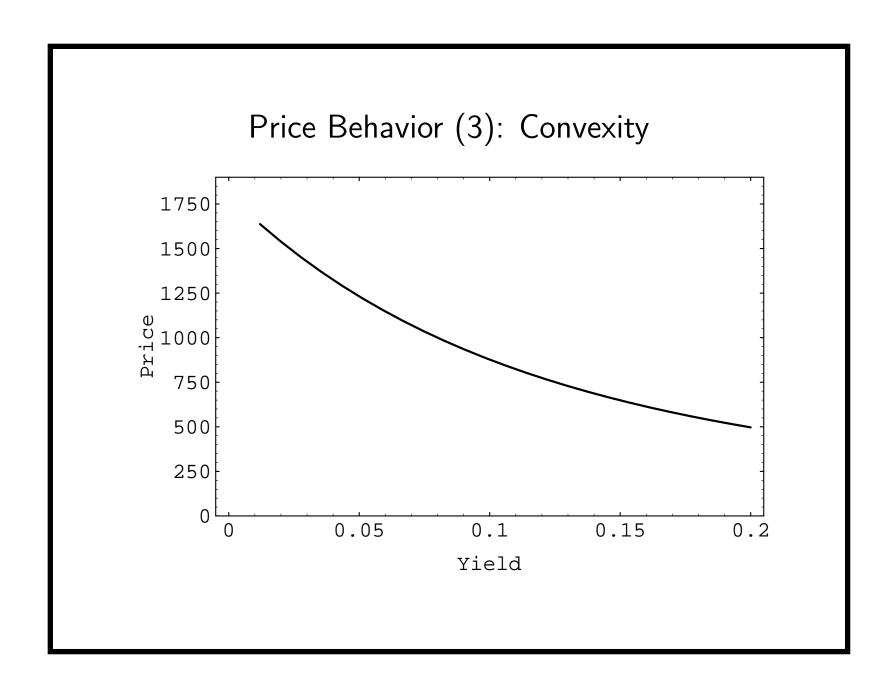
percent of par.

Price Behavior (1)

- Bond prices fall when interest rates rise, and vice versa.
- "Only 24 percent answered the question correctly." a

^aCNN, December 21, 2001.

Price Behavior (2)


- A level-coupon bond sells
 - at a premium (above its par value) when its coupon rate is above the market interest rate;
 - at par (at its par value) when its coupon rate is equal to the market interest rate;
 - at a discount (below its par value) when its coupon rate is below the market interest rate.

9% Coupon Bond

Yield (%)	Price (% of par)	
7.5	113.37	
8.0	108.65	
8.5	104.19	
9.0	100.00	
9.5	96.04	
10.0	92.31	
10.5	88.79	

Terminology

- Bonds selling at par are called par bonds.
- Bonds selling at a premium are called premium bonds.
- Bonds selling at a discount are called discount bonds.

Day Count Conventions: Actual/Actual

- The first "actual" refers to the actual number of days in a month.
- The second refers to the actual number of days in a coupon period.
- The number of days between June 17, 1992, and October 1, 1992, is 106.
 - 13 days in June, 31 days in July, 31 days in August,
 30 days in September, and 1 day in October.

Day Count Conventions: 30/360

- Each month has 30 days and each year 360 days.
- The number of days between June 17, 1992, and October 1, 1992, is 104.
 - 13 days in June, 30 days in July, 30 days in August,
 30 days in September, and 1 day in October.
- In general, the number of days from date $D_1 \equiv (y_1, m_1, d_1)$ to date $D_2 \equiv (y_2, m_2, d_2)$ is $360 \times (y_2 y_1) + 30 \times (m_2 m_1) + (d_2 d_1)$.
- Complications: 31, Feb 28, and Feb 29.

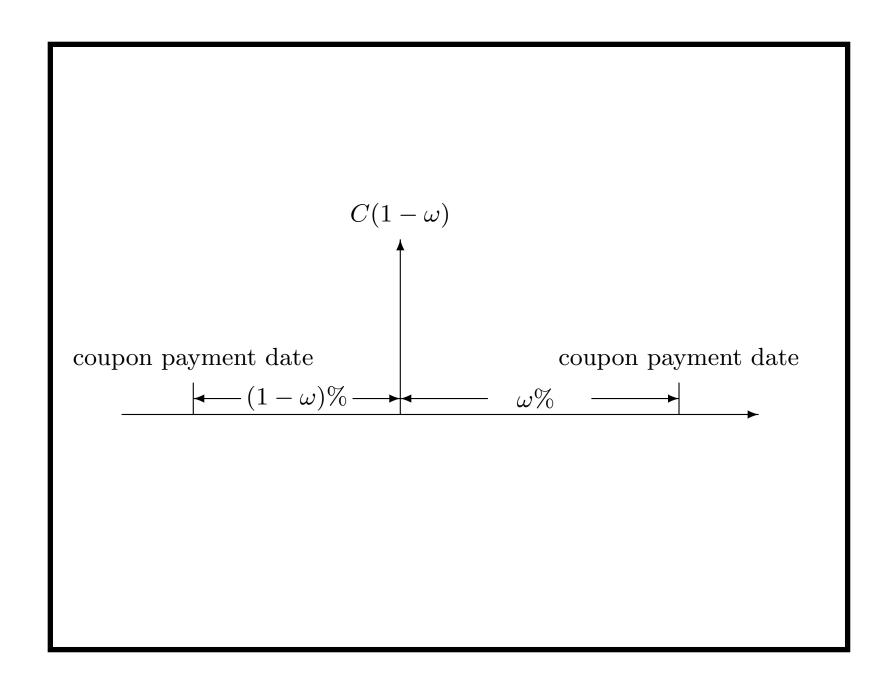
Full Price (Dirty Price, Invoice Price)

- In reality, the settlement date may fall on any day between two coupon payment dates.
- Let

number of days between the settlement $\omega \equiv \frac{\text{and the next coupon payment date}}{\text{number of days in the coupon period}}. \tag{5}$

• The price is now calculated by

$$PV = \sum_{i=0}^{n-1} \frac{C}{\left(1 + \frac{r}{m}\right)^{\omega+i}} + \frac{F}{\left(1 + \frac{r}{m}\right)^{\omega+n-1}}.$$
 (6)


Accrued Interest

• The buyer pays the quoted price plus the accrued interest — the invoice price:

number of days from the last

$$C \times \frac{\text{coupon payment to the settlement date}}{\text{number of days in the coupon period}} = C \times (1 - \omega).$$

- The yield to maturity is the r satisfying Eq. (6) when P is the invoice price.
- The quoted price in the U.S./U.K. does not include the accrued interest; it is called the clean price or flat price.

Example ("30/360")

- A bond with a 10% coupon rate and paying interest semiannually, with clean price 111.2891.
- The maturity date is March 1, 1995, and the settlement date is July 1, 1993.
- There are 60 days between July 1, 1993, and the next coupon date, September 1, 1993.

Example ("30/360") (concluded)

- The accrued interest is $(10/2) \times \frac{180-60}{180} = 3.3333$ per \$100 of par value.
- The yield to maturity is 3%.
- This can be verified by Eq. (6) on p. 64 with

$$-\omega = 60/180,$$

$$-m=2,$$

$$-C = 5,$$

$$- PV = 111.2891 + 3.3333,$$

$$-r = 0.03.$$

Price Behavior (2) Revisited

- Before: A bond selling at par if the yield to maturity equals the coupon rate.
- But it assumed that the settlement date is on a coupon payment date.
- Now suppose the settlement date for a bond selling at par (i.e., the *quoted price* is equal to the par value) falls between two coupon payment dates.
- Then its yield to maturity is less than the coupon rate.
 - The short reason: Exponential growth is replaced by linear growth, hence "overpaying" the coupon.