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To set up a philosophy against physics is rash;
philosophers who have done so
have always ended in disaster.

— Bertrand Russell
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Definitions and Basic Results

• Let A ≡ [ aij ]1≤i≤m,1≤j≤n, or simply A ∈ Rm×n,
denote an m× n matrix.

• It can also be represented as [ a1, a2, . . . , an ] where
ai ∈ Rm are vectors.

– Vectors are column vectors unless stated otherwise.

• A is a square matrix when m = n.

• The rank of a matrix is the largest number of linearly
independent columns.
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Definitions and Basic Results (continued)

• A square matrix A is said to be symmetric if AT = A.

• A real n× n matrix

A ≡ [ aij ]i,j

is diagonally dominant if | aii | >
∑

j 6=i | aij | for
1 ≤ i ≤ n.

– Such matrices are nonsingular.

• The identity matrix is the square matrix

I ≡ diag[ 1, 1, . . . , 1 ].
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Definitions and Basic Results (concluded)

• A matrix has full column rank if its columns are linearly
independent.

• A real symmetric matrix A is positive definite if

xTAx =
∑

i,j

aijxixj > 0

for any nonzero vector x.

• A matrix A is positive definite if and only if there exists
a matrix W such that A = WTW and W has full
column rank.
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Cholesky Decomposition

• Positive definite matrices can be factored as

A = LLT,

called the Cholesky decomposition.

– Above, L is a lower triangular matrix.
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Generation of Multivariate Normal Distribution

• Let x ≡ [ x1, x2, . . . , xn ]T be a vector random variable
with a positive definite covariance matrix C.

• As usual, assume E[ x ] = 0.

• This distribution can be generated by Py.

– C = PPT is the Cholesky decomposition of C.a

– y ≡ [ y1, y2, . . . , yn ]T is a vector random variable
with a covariance matrix equal to the identity matrix.

aWhat if C is not positive definite? See Lai and Lyuu (2007).
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Generation of Multivariate Normal Distribution
(concluded)

• Suppose we want to generate the multivariate normal
distribution with a covariance matrix C = PPT.

• We start with independent standard normal
distributions y1, y2, . . . , yn.

• Then P [ y1, y2, . . . , yn ]T has the desired distribution.
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Multivariate Derivatives Pricing

• Generating the multivariate normal distribution is
essential for the Monte Carlo pricing of multivariate
derivatives (p. 556).

• For example, the rainbow option on k assets has payoff

max(max(S1, S2, . . . , Sk)−X, 0)

at maturity.

• The closed-form formula is a multi-dimensional integral.a

aJohnson (1987).

c©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 635



Multivariate Derivatives Pricing (concluded)

• Suppose dSj/Sj = r dt + σj dWj , 1 ≤ j ≤ n, where C is
the correlation matrix for dW1, dW2, . . . , dWk.

• Let C = PPT.

• Let ξ consist of k independent random variables from
N(0, 1).

• Let ξ′ = Pξ.

• Similar to Eq. (63) on p. 595,

Si+1 = Sie
(r−σ2

j /2) ∆t+σj

√
∆t ξ′j , 1 ≤ j ≤ n.
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Least-Squares Problems

• The least-squares (LS) problem is concerned with
minx∈Rn ‖ Ax− b ‖, where A ∈ Rm×n, b ∈ Rm, m ≥ n.

• The LS problem is called regression analysis in statistics
and is equivalent to minimizing the mean-square error.

• Often written as
Ax = b.

c©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 637



Polynomial Regression

• In polynomial regression, x0 + x1x + · · ·+ xnxn is used
to fit the data { (a1, b1), (a2, b2), . . . , (am, bm) }.

• This leads to the LS problem,



1 a1 a2
1 · · · an

1

1 a2 a2
2 · · · an

2

...
...

...
. . .

...

1 am a2
m · · · an

m







x0

x1

...

xn




=




b1

b2

...

bm




.

• Consult the text for solutions.
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American Option Pricing by Simulation

• The continuation value of an American option is the
conditional expectation of the payoff from keeping the
option alive now.

• The option holder must compare the immediate exercise
value and the continuation value.

• In standard Monte Carlo simulation, each path is
treated independently of other paths.

• But the decision to exercise the option cannot be
reached by looking at only one path alone.
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The Least-Squares Monte Carlo Approach

• The continuation value can be estimated from the
cross-sectional information in the simulation by using
least squares.a

• The result is a function of the state for estimating the
continuation values.

• Use the function to estimate the continuation value for
each path to determine its cash flow.

• This is called the least-squares Monte Carlo (LSM)
approach and is provably convergent.b

aLongstaff and Schwartz (2001).
bClément, Lamberton, and Protter (2002).
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A Numerical Example

• Consider a 3-year American put on a
non-dividend-paying stock.

• The put is exercisable at years 0, 1, 2, and 3.

• The strike price X = 105.

• The annualized riskless rate is r = 5%.

• The spot stock price is 101.

– The annual discount factor hence equals 0.951229.

• We use only 8 price paths to illustrate the algorithm.
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A Numerical Example (continued)

Stock price paths

Path Year 0 Year 1 Year 2 Year 3

1 101 97.6424 92.5815 107.5178

2 101 101.2103 105.1763 102.4524

3 101 105.7802 103.6010 124.5115

4 101 96.4411 98.7120 108.3600

5 101 124.2345 101.0564 104.5315

6 101 95.8375 93.7270 99.3788

7 101 108.9554 102.4177 100.9225

8 101 104.1475 113.2516 115.0994
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A Numerical Example (continued)

• We use the basis functions 1, x, x2.

– Other basis functions are possible.a

• The plot next page shows the final estimated optimal
exercise strategy given by LSM.

• We now proceed to tackle our problem.

• Our concrete problem is to calculate the cash flow along
each path, using information from all paths.

aLaguerre polynomials, Hermite polynomials, Legendre polynomials,

Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomi-

als.
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A Numerical Example (continued)

Cash flows at year 3

Path Year 0 Year 1 Year 2 Year 3

1 — — — 0

2 — — — 2.5476

3 — — — 0

4 — — — 0

5 — — — 0.4685

6 — — — 5.6212

7 — — — 4.0775

8 — — — 0
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A Numerical Example (continued)

• The cash flows at year 3 are the exercise value if the put
is in the money.

• Only 4 paths are in the money: 2, 5, 6, 7.

• Some of the cash flows may not occur if the put is
exercised earlier, which we will find out step by step.

• Incidentally, the European counterpart has a value of

0.9512293 × 2.5476 + 0.4685 + 5.6212 + 4.0775
8

= 1.3680.
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A Numerical Example (continued)

• We move on to year 2.

• For each state that is in the money at year 2, we must
decide whether to exercise it.

• There are 6 paths for which the put is in the money: 1,
3, 4, 5, 6, 7.

• Only in-the-money paths will be used in the regression
because they are where early exercise is relevant.

– If there were none, we would move on to year 1.
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A Numerical Example (continued)

• Let x denote the stock prices at year 2 for those 6 paths.

• Let y denote the corresponding discounted future cash
flows (at year 3) if the put is not exercised at year 2.

c©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 649



A Numerical Example (continued)

Regression at year 2

Path x y

1 92.5815 0× 0.951229

2 — —

3 103.6010 0× 0.951229

4 98.7120 0× 0.951229

5 101.0564 0.4685× 0.951229

6 93.7270 5.6212× 0.951229

7 102.4177 4.0775× 0.951229

8 — —
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A Numerical Example (continued)

• We regress y on 1, x, and x2.

• The result is

f(x) = 22.08− 0.313114× x + 0.00106918× x2.

• f estimates the continuation value conditional on the
stock price at year 2.

• We next compare the immediate exercise value and the
continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 2

Path Exercise Continuation

1 12.4185 f(92.5815) = 2.2558

2 — —

3 1.3990 f(103.6010) = 1.1168

4 6.2880 f(98.7120) = 1.5901

5 3.9436 f(101.0564) = 1.3568

6 11.2730 f(93.7270) = 2.1253

7 2.5823 f(102.4177) = 0.3326

8 — —
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A Numerical Example (continued)

• Amazingly, the put should be exercised in all 6 paths: 1,
3, 4, 5, 6, 7.

• Now, any positive cash flow at year 3 should be set to
zero for these paths as the put is exercised before year 3.

– They are paths 5, 6, 7.

• Hence the cash flows on p. 646 become the next ones.
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A Numerical Example (continued)

Cash flows at years 2 & 3

Path Year 0 Year 1 Year 2 Year 3

1 — — 12.4185 0

2 — — 0 2.5476

3 — — 1.3990 0

4 — — 6.2880 0

5 — — 3.9436 0

6 — — 11.2730 0

7 — — 2.5823 0

8 — — 0 0
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A Numerical Example (continued)

• We move on to year 1.

• For each state that is in the money at year 1, we must
decide whether to exercise it.

• There are 5 paths for which the put is in the money: 1,
2, 4, 6, 8.

• Only in-the-money paths will be used in the regression
because they are where early exercise is relevant.

– If there were none, we would move on to year 0.

c©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 655



A Numerical Example (continued)

• Let x denote the stock prices at year 1 for those 5 paths.

• Let y denote the corresponding discounted future cash
flows if the put is not exercised at year 1.

• From p. 654, we have the following table.
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A Numerical Example (continued)

Regression at year 1

Path x y

1 97.6424 12.4185× 0.951229

2 101.2103 2.5476× 0.9512292

3 — —

4 96.4411 6.2880× 0.951229

5 — —

6 95.8375 11.2730× 0.951229

7 — —

8 104.1475 0
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A Numerical Example (continued)

• We regress y on 1, x, and x2.

• The result is

f(x) = −420.964 + 9.78113× x− 0.0551567× x2.

• f estimates the continuation value conditional on the
stock price at year 1.

• We next compare the immediate exercise value and the
continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 1

Path Exercise Continuation

1 7.3576 f(97.6424) = 8.2230

2 3.7897 f(101.2103) = 3.9882

3 — —

4 8.5589 f(96.4411) = 9.3329

5 — —

6 9.1625 f(95.8375) = 9.83042

7 — —

8 0.8525 f(104.1475) = −0.551885
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A Numerical Example (continued)

• The put should be exercised for 1 path only: 8.

• Now, any positive future cash flow should be set to zero
for this path as the put is exercised before years 2 and 3.

– But there is none.

• Hence the cash flows on p. 654 become the next ones.

• They also confirm the plot on p. 645.
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A Numerical Example (continued)

Cash flows at years 1, 2, & 3

Path Year 0 Year 1 Year 2 Year 3

1 — 0 12.4185 0

2 — 0 0 2.5476

3 — 0 1.3990 0

4 — 0 6.2880 0

5 — 0 3.9436 0

6 — 0 11.2730 0

7 — 0 2.5823 0

8 — 0.8525 0 0
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A Numerical Example (continued)

• We move on to year 0.

• The continuation value is, from p 661,

(12.4185× 0.9512292 + 2.5476× 0.9512293

+1.3990× 0.9512292 + 6.2880× 0.9512292

+3.9436× 0.9512292 + 11.2730× 0.9512292

+2.5823× 0.9512292 + 0.8525× 0.951229)/8

= 4.66263.
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A Numerical Example (concluded)

• As this is larger than the immediate exercise value of
105− 101 = 4, the put should not be exercised at year 0.

• Hence the put’s value is estimated to be 4.66263.

• Compare this to the European put’s value of 1.3680
(p. 647).
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Time Series Analysis
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The historian is a prophet in reverse.
— Friedrich von Schlegel (1772–1829)
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Conditional Variance Models for Price Volatility

• Although a stationary model (see text for definition) has
constant variance, its conditional variance may vary.

• Take for example an AR(1) process Xt = aXt−1 + εt

with | a | < 1.

– Here, εt is a stationary, uncorrelated process with
zero mean and constant variance σ2.

• The conditional variance,

Var[Xt |Xt−1, Xt−2, . . . ],

equals σ2, which is smaller than the unconditional
variance Var[Xt ] = σ2/(1− a2).
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Conditional Variance Models for Price Volatility
(concluded)

• In the lognormal model, the conditional variance evolves
independently of past returns.

• Suppose we assume that conditional variances are
deterministic functions of past returns:

Vt = f(Xt−1, Xt−2, . . . )

for some function f .

• Then Vt can be computed given the information set of
past returns:

It−1 ≡ {Xt−1, Xt−2, . . . }.
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ARCH Modelsa

• An influential model in this direction is the
autoregressive conditional heteroskedastic (ARCH)
model.

• Assume that {Ut } is a Gaussian stationary,
uncorrelated process.

aEngle (1982), co-winner of the 2003 Nobel Prize in Economic Sci-

ences.
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ARCH Models (continued)

• The ARCH(p) process is defined by

Xt − µ =

(
a0 +

p∑

i=1

ai(Xt−i − µ)2
)1/2

Ut,

where a1, . . . , ap ≥ 0 and a0 > 0.

– Thus Xt | It−1 ∼ N(µ, V 2
t ).

• The variance V 2
t satisfies

V 2
t = a0 +

p∑

i=1

ai(Xt−i − µ)2.

• The volatility at time t as estimated at time t− 1
depends on the p most recent observations on squared
returns.
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ARCH Models (concluded)

• The ARCH(1) process

Xt − µ = (a0 + a1(Xt−1 − µ)2)1/2Ut

is the simplest.

• For it,

Var[ Xt |Xt−1 = xt−1 ] = a0 + a1(xt−1 − µ)2.

• The process {Xt } is stationary with finite variance if
and only if a1 < 1, in which case Var[Xt ] = a0/(1− a1).
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GARCH Modelsa

• A very popular extension of the ARCH model is the
generalized autoregressive conditional heteroskedastic
(GARCH) process.

• The simplest GARCH(1, 1) process adds a2V
2
t−1 to the

ARCH(1) process, resulting in

V 2
t = a0 + a1(Xt−1 − µ)2 + a2V

2
t−1.

• The volatility at time t as estimated at time t− 1
depends on the squared return and the estimated
volatility at time t− 1.

aBollerslev (1986); Taylor (1986).
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GARCH Models (concluded)

• The estimate of volatility averages past squared returns
by giving heavier weights to recent squared returns (see
text).

• It is usually assumed that a1 + a2 < 1 and a0 > 0, in
which case the unconditional, long-run variance is given
by a0/(1− a1 − a2).

• A popular special case of GARCH(1, 1) is the
exponentially weighted moving average process, which
sets a0 to zero and a2 to 1− a1.

• This model is used in J.P. Morgan’s RiskMetricsTM.

c©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 672



GARCH Option Pricing

• Options can be priced when the underlying asset’s
return follows a GARCH process.

• Let St denote the asset price at date t.

• Let h2
t be the conditional variance of the return over

the period [ t, t + 1 ] given the information at date t.

– “One day” is merely a convenient term for any
elapsed time ∆t.
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GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for the price
dynamics:a

ln
St+1

St
= r − h2

t

2
+ htεt+1, (66)

where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (εt+1 − c)2, (67)

εt+1 ∼ N(0, 1) given information at date t,

r = daily riskless return,

c ≥ 0.

aDuan (1995).
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GARCH Option Pricing (continued)

• The five unknown parameters of the model are c, h0, β0,
β1, and β2.

• It is postulated that β0, β1, β2 ≥ 0 to make the
conditional variance positive.

• The above process, called the nonlinear asymmetric
GARCH model, generalizes the GARCH(1, 1) model (see
text).
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GARCH Option Pricing (continued)

• It captures the volatility clustering in asset returns first
noted by Mandelbrot (1963).a

– When c = 0, a large εt+1 results in a large ht+1,
which in turns tends to yield a large ht+2, and so on.

• It also captures the negative correlation between the
asset return and changes in its (conditional) volatility.b

– For c > 0, a positive εt+1 (good news) tends to
decrease ht+1, whereas a negative εt+1 (bad news)
tends to do the opposite.

a“. . . large changes tend to be followed by large changes—of either

sign—and small changes tend to be followed by small changes . . . ”
bNoted by Black (1976): Volatility tends to rise in response to “bad

news” and fall in response to “good news.”
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GARCH Option Pricing (concluded)

• With yt ≡ ln St denoting the logarithmic price, the
model becomes

yt+1 = yt + r − h2
t

2
+ htεt+1. (68)

• The pair (yt, h
2
t ) completely describes the current state.

• The conditional mean and variance of yt+1 are clearly

E[ yt+1 | yt, h
2
t ] = yt + r − h2

t

2
, (69)

Var[ yt+1 | yt, h
2
t ] = h2

t . (70)
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The Ritchken-Trevor (RT) Algorithma

• The GARCH model is a continuous-state model.

• To approximate it, we turn to trees with discrete states.

• Path dependence in GARCH makes the tree for asset
prices explode exponentially (why?).

• We need to mitigate this combinatorial explosion.
aRitchken and Trevor (1999).
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The Ritchken-Trevor Algorithm (continued)

• Partition a day into n periods.

• Three states follow each state (yt, h
2
t ) after a period.

• As the trinomial model combines, 2n + 1 states at date
t + 1 follow each state at date t (recall p. 539).

• These 2n + 1 values must approximate the distribution
of (yt+1, h

2
t+1).

• So the conditional moments (69)–(70) at date t + 1 on
p. 677 must be matched by the trinomial model to
guarantee convergence to the continuous-state model.
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The Ritchken-Trevor Algorithm (continued)

• It remains to pick the jump size and the three branching
probabilities.

• The role of σ in the Black-Scholes option pricing model
is played by ht in the GARCH model.

• As a jump size proportional to σ/
√

n is picked in the
BOPM, a comparable magnitude will be chosen here.

• Define γ ≡ h0, though other multiples of h0 are
possible, and

γn ≡ γ√
n

.

• The jump size will be some integer multiple η of γn.

• We call η the jump parameter (p. 681).
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(0, 0)
yt

(1, 1)

(1, 0)

(1,−1)

6
?
ηγn

-¾ 1 day

The seven values on the right approximate the distribution
of logarithmic price yt+1.
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The Ritchken-Trevor Algorithm (continued)

• The middle branch does not change the underlying
asset’s price.

• The probabilities for the up, middle, and down branches
are

pu =
h2

t

2η2γ2
+

r − (h2
t /2)

2ηγ
√

n
, (71)

pm = 1− h2
t

η2γ2
, (72)

pd =
h2

t

2η2γ2
− r − (h2

t /2)
2ηγ

√
n

. (73)
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The Ritchken-Trevor Algorithm (continued)

• It can be shown that:

– The trinomial model takes on 2n + 1 values at date
t + 1 for yt+1 .

– These values have a matching mean for yt+1 .

– These values have an asymptotically matching
variance for yt+1 .

• The central limit theorem thus guarantees the desired
convergence as n increases.
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The Ritchken-Trevor Algorithm (continued)

• We can dispense with the intermediate nodes between
dates to create a (2n + 1)-nomial tree (p. 685).

• The resulting model is multinomial with 2n + 1
branches from any state (yt, h

2
t ).

• There are two reasons behind this manipulation.

– Interdate nodes are created merely to approximate
the continuous-state model after one day.

– Keeping the interdate nodes results in a tree that can
be as much as n times larger.
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yt

6
?
ηγn

-¾ 1 day

This heptanomial tree is the outcome of the trinomial tree
on p. 681 after its intermediate nodes are removed.
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The Ritchken-Trevor Algorithm (continued)

• A node with logarithmic price yt + `ηγn at date t + 1
follows the current node at date t with price yt for
some −n ≤ ` ≤ n.

• To reach that price in n periods, the number of up
moves must exceed that of down moves by exactly `.

• The probability that this happens is

P (`) ≡
∑

ju,jm,jd

n!
ju! jm! jd!

pju
u pjm

m pjd

d ,

with ju, jm, jd ≥ 0, n = ju + jm + jd, and ` = ju − jd.
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The Ritchken-Trevor Algorithm (continued)

• A particularly simple way to calculate the P (`)s starts
by noting that

(pux + pm + pdx
−1)n =

n∑

`=−n

P (`) x`. (74)

• So we expand (pux + pm + pdx
−1)n and retrieve the

probabilities by reading off the coefficients.

• It can be computed in O(n2) time.
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The Ritchken-Trevor Algorithm (continued)

• The updating rule (67) on p. 674 must be modified to
account for the adoption of the discrete-state model.

• The logarithmic price yt + `ηγn at date t + 1 following
state (yt, h

2
t ) at date t has a variance equal to

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε

′
t+1 − c)2, (75)

– Above,

ε′t+1 =
`ηγn − (r − h2

t /2)
ht

, ` = 0,±1,±2, . . . ,±n,

is a discrete random variable with 2n + 1 values.
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The Ritchken-Trevor Algorithm (continued)

• Different conditional variances h2
t may require different

η so that the probabilities calculated by Eqs. (71)–(73)
on p. 682 lie between 0 and 1.

• This implies varying jump sizes.

• The necessary requirement pm ≥ 0 implies η ≥ ht/γ.

• Hence we try

η = dht/γ e, dht/γ e+ 1, dht/γ e+ 2, . . .

until valid probabilities are obtained or until their
nonexistence is confirmed.
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The Ritchken-Trevor Algorithm (continued)

• The sufficient and necessary condition for valid
probabilities to exist isa

| r − (h2
t /2) |

2ηγ
√

n
≤ h2

t

2η2γ2
≤ min

(
1− | r − (h2

t /2) |
2ηγ

√
n

,
1
2

)
.

• Obviously, the magnitude of η tends to grow with ht.

• The plot on p. 691 uses n = 1 to illustrate our points
for a 3-day model.

• For example, node (1, 1) of date 1 and node (2, 3) of
date 2 pick η = 2.

aLyuu and Wu (2003).
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(1, 1)

(2, 3)

(2, 0)

(2,−1)

6
?

γn = γ1

-¾ 3 days
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The Ritchken-Trevor Algorithm (continued)

• The topology of the tree is not a standard combining
multinomial tree.

• For example, a few nodes on p. 691 such as nodes (2, 0)
and (2,−1) have multiple jump sizes.

• The reason is the path dependence of the model.

– Two paths can reach node (2, 0) from the root node,
each with a different variance for the node.

– One of the variances results in η = 1, whereas the
other results in η = 2.
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The Ritchken-Trevor Algorithm (concluded)

• The possible values of h2
t at a node are exponential

nature.

• To address this problem, we record only the maximum
and minimum h2

t at each node.a

• Therefore, each node on the tree contains only two
states (yt, h

2
max) and (yt, h

2
min).

• Each of (yt, h
2
max) and (yt, h

2
min) carries its own η and

set of 2n + 1 branching probabilities.
aCakici and Topyan (2000).
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Negative Aspects of the Ritchken-Trevor Algorithma

• A small n may yield inaccurate option prices.

• But the tree will grow exponentially if n is large enough.

– Specifically, n > (1− β1)/β2 when r = c = 0.

• A large n has another serious problem: The tree cannot
grow beyond a certain date.

• Thus the choice of n may be limited in practice.

• The RT algorithm can be modified to be free of
shortened maturity and (to some extent) exponential
complexity.b

aLyuu and Wu (2003); Lyuu and Wu (2005).
bIt is only quadratic if n is not too large!
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Numerical Examples

• Assume S0 = 100, y0 = ln S0 = 4.60517, r = 0,
h2

0 = 0.0001096, γ = h0 = 0.010469, n = 1,
γn = γ/

√
n = 0.010469, β0 = 0.000006575, β1 = 0.9,

β2 = 0.04, and c = 0.

• A daily variance of 0.0001096 corresponds to an annual
volatility of

√
365× 0.0001096 ≈ 20%.

• Let h2(i, j) denote the variance at node (i, j).

• Initially, h2(0, 0) = h2
0 = 0.0001096.
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Numerical Examples (continued)

• Let h2
max(i, j) denote the maximum variance at node

(i, j).

• Let h2
min(i, j) denote the minimum variance at node

(i, j).

• Initially, h2
max(0, 0) = h2

min(0, 0) = h2
0.

• The resulting three-day tree is depicted on p. 697.
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A top (bottom) number inside a gray box refers to the
minimum (maximum, respectively) variance h2

min (h2
max,

respectively) for the node. Variances are multiplied by
100,000 for readability. A top (bottom) number inside a
white box refers to η corresponding to h2

min (h2
max,

respectively).
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Numerical Examples (continued)

• Let us see how the numbers are calculated.

• Start with the root node, node (0, 0).

• Try η = 1 in Eqs. (71)–(73) on p. 682 first to obtain

pu = 0.4974,

pm = 0,

pd = 0.5026.

• As they are valid probabilities, the three branches from
the root node use single jumps.

c©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 699



Numerical Examples (continued)

• Move on to node (1, 1).

• It has one predecessor node—node (0, 0)—and it takes
an up move to reach the current node.

• So apply updating rule (75) on p. 688 with ` = 1 and
h2

t = h2(0, 0).

• The result is h2(1, 1) = 0.000109645.
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Numerical Examples (continued)

• Because dh(1, 1)/γ e = 2, we try η = 2 in
Eqs. (71)–(73) on p. 682 first to obtain

pu = 0.1237,

pm = 0.7499,

pd = 0.1264.

• As they are valid probabilities, the three branches from
node (1, 1) use double jumps.
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Numerical Examples (continued)

• Carry out similar calculations for node (1, 0) with
` = 0 in updating rule (75) on p. 688.

• Carry out similar calculations for node (1,−1) with
` = −1 in updating rule (75).

• Single jump η = 1 works in both nodes.

• The resulting variances are

h2(1, 0) = 0.000105215,

h2(1,−1) = 0.000109553.
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Numerical Examples (continued)

• Node (2, 0) has 2 predecessor nodes, (1, 0) and (1,−1).

• Both have to be considered in deriving the variances.

• Let us start with node (1, 0).

• Because it takes a middle move to reach the current
node, we apply updating rule (75) on p. 688 with ` = 0
and h2

t = h2(1, 0).

• The result is h2
t+1 = 0.000101269.
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Numerical Examples (continued)

• Now move on to the other predecessor node (1,−1).

• Because it takes an up move to reach the current node,
apply updating rule (75) on p. 688 with ` = 1 and
h2

t = h2(1,−1).

• The result is h2
t+1 = 0.000109603.

• We hence record

h2
min(2, 0) = 0.000101269,

h2
max(2, 0) = 0.000109603.
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Numerical Examples (continued)

• Consider state h2
max(2, 0) first.

• Because dhmax(2, 0)/γ e = 2, we first try η = 2 in
Eqs. (71)–(73) on p. 682 to obtain

pu = 0.1237,

pm = 0.7500,

pd = 0.1263.

• As they are valid probabilities, the three branches from
node (2, 0) with the maximum variance use double
jumps.
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Numerical Examples (continued)

• Now consider state h2
min(2, 0).

• Because dhmin(2, 0)/γ e = 1, we first try η = 1 in
Eqs. (71)–(73) on p. 682 to obtain

pu = 0.4596,

pm = 0.0760,

pd = 0.4644.

• As they are valid probabilities, the three branches from
node (2, 0) with the minimum variance use single jumps.
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Numerical Examples (continued)

• Node (2,−1) has 3 predecessor nodes.

• Start with node (1, 1).

• Because it takes a down move to reach the current node,
we apply updating rule (75) on p. 688 with ` = −1 and
h2

t = h2(1, 1).

• The result is h2
t+1 = 0.0001227.
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Numerical Examples (continued)

• Now move on to predecessor node (1, 0).

• Because it also takes a down move to reach the current
node, we apply updating rule (75) on p. 688 with
` = −1 and h2

t = h2(1, 0).

• The result is h2
t+1 = 0.000105609.
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Numerical Examples (continued)

• Finally, consider predecessor node (1,−1).

• Because it takes a middle move to reach the current
node, we apply updating rule (75) on p. 688 with ` = 0
and h2

t = h2(1,−1).

• The result is h2
t+1 = 0.000105173.

• We hence record

h2
min(2,−1) = 0.000105173,

h2
max(2,−1) = 0.0001227.
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Numerical Examples (continued)

• Consider state h2
max(2,−1).

• Because dhmax(2,−1)/γ e = 2, we first try η = 2 in
Eqs. (71)–(73) on p. 682 to obtain

pu = 0.1385,

pm = 0.7201,

pd = 0.1414.

• As they are valid probabilities, the three branches from
node (2,−1) with the maximum variance use double
jumps.
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Numerical Examples (continued)

• Next, consider state h2
min(2,−1).

• Because dhmin(2,−1)/γ e = 1, we first try η = 1 in
Eqs. (71)–(73) on p. 682 to obtain

pu = 0.4773,

pm = 0.0404,

pd = 0.4823.

• As they are valid probabilities, the three branches from
node (2,−1) with the minimum variance use single
jumps.
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Numerical Examples (concluded)

• Other nodes at dates 2 and 3 can be handled similarly.

• In general, if a node has k predecessor nodes, then 2k

variances will be calculated using the updating rule.

– This is because each predecessor node keeps two
variance numbers.

• But only the maximum and minimum variances will be
kept.
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Negative Aspects of the RT Algorithm Revisiteda

• Recall the problems mentioned on p. 694.

• In our case, combinatorial explosion occurs when

n >
1− β1

β2
=

1− 0.9
0.04

= 2.5.

• Suppose we are willing to accept the exponential
running time and pick n = 100 to seek accuracy.

• But the problem of shortened maturity forces the tree to
stop at date 9!

aLyuu and Wu (2003).

c©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 713



25 50 75 100 125 150 175
Date

5000

10000

15000

20000

25000

Dotted line: n = 3; dashed line: n = 4; solid line: n = 5.
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Backward Induction on the RT Tree

• After the RT tree is constructed, it can be used to price
options by backward induction.

• Recall that each node keeps two variances h2
max and

h2
min.

• We now increase that number to K equally spaced
variances between h2

max and h2
min at each node.

• Besides the minimum and maximum variances, the other
K − 2 variances in between are linearly interpolated.a

aIn practice, log-linear interpolation works better (Lyuu and Wu

(2005)). Log-cubic interpolation works even better (Liu (2005)).
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Backward Induction on the RT Tree (continued)

• For example, if K = 3, then a variance of
10.5436× 10−6 will be added between the maximum
and minimum variances at node (2, 0) on p. 697.

• In general, the kth variance at node (i, j) is

h2
min(i, j) + k

h2
max(i, j)− h2

min(i, j)
K − 1

,

k = 0, 1, . . . ,K − 1.

• Each interpolated variance’s jump parameter and
branching probabilities can be computed as before.
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Backward Induction on the RT Tree (concluded)

• During backward induction, if a variance falls between
two of the K variances, linear interpolation of the
option prices corresponding to the two bracketing
variances will be used as the approximate option price.

• The above ideas are reminiscent of the ones on p. 332,
where we dealt with arithmetic average-rate options.
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Numerical Examples

• We next use the numerical example on p. 697 to price a
European call option with a strike price of 100 and
expiring at date 3.

• Recall that the riskless interest rate is zero.

• Assume K = 2; hence there are no interpolated
variances.

• The pricing tree is shown on p. 719 with a call price of
0.66346.

– The branching probabilities needed in backward
induction can be found on p. 720.
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Numerical Examples (continued)

• Let us derive some of the numbers on p. 719.

• The option price for a terminal node at date 3 equals
max(S3 − 100, 0), independent of the variance level.

• Now move on to nodes at date 2.

• The option price at node (2, 3) depends on those at
nodes (3, 5), (3, 3), and (3, 1).

• It therefore equals

0.1387× 5.37392 + 0.7197× 3.19054 + 0.1416× 1.05240 = 3.19054.

• Option prices for other nodes at date 2 can be computed
similarly.
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Numerical Examples (continued)

• For node (1, 1), the option price for both variances is

0.1237× 3.19054 + 0.7499× 1.05240 + 0.1264× 0.14573 = 1.20241.

• Node (1, 0) is most interesting.

• We knew that a down move from it gives a variance of
0.000105609.

• This number falls between the minimum variance
0.000105173 and the maximum variance 0.0001227 at
node (2,−1) on p. 697.
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Numerical Examples (continued)

• The option price corresponding to the minimum
variance is 0.

• The option price corresponding to the maximum
variance is 0.14573.

• The equation

x× 0.000105173 + (1− x)× 0.0001227 = 0.000105609

is satisfied by x = 0.9751.

• So the option for the down state is approximated by

x× 0 + (1− x)× 0.14573 = 0.00362.
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Numerical Examples (continued)

• The up move leads to the state with option price
1.05240.

• The middle move leads to the state with option price
0.48366.

• The option price at node (1, 0) is finally calculated as

0.4775× 1.05240 + 0.0400× 0.48366 + 0.4825× 0.00362 = 0.52360.
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Numerical Examples (concluded)

• It is possible for some of the three variances following an
interpolated variance to exceed the maximum variance
or be exceeded by the minimum variance.

• When this happens, the option price corresponding to
the maximum or minimum variance will be used during
backward induction.

• An interpolated variance may choose a branch that goes
into a node that is not reached in the forward-induction
tree-building phase.a

• In this case, the algorithm fails.
aLyuu and Wu (2005).
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Interest Rate Derivative Securities
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What you are, you are only by contracts.
— Richard Wagner (1813–1883),

Der Ring des Nibelungen

Which shows that gambling’s not a sin
provided that you always win.

— Roald Dahl (1916–1990),
“Snow-White and the Seven Dwarfs”
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Term Structure Fitting
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That’s an old besetting sin;
they think calculating is inventing.

— Johann Wolfgang Goethe (1749–1832)
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Introduction to Term Structure Modeling
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The fox often ran to the hole
by which they had come in,

to find out if his body was still thin enough
to slip through it.

— Grimm’s Fairy Tales
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Outline

• Use the binomial interest rate tree to model stochastic
term structure.

– Illustrates the basic ideas underlying future models.

– Applications are generic in that pricing and hedging
methodologies can be easily adapted to other models.

• Although the idea is similar to the earlier one used in
option pricing, the current task is more complicated.

– The evolution of an entire term structure, not just a
single stock price, is to be modeled.

– Interest rates of various maturities cannot evolve
arbitrarily or arbitrage profits may occur.
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Issues

• A stochastic interest rate model performs two tasks.

– Provides a stochastic process that defines future term
structures without arbitrage profits.

– “Consistent” with the observed term structures.

• The unbiased expectations theory, the liquidity
preference theory, and the market segmentation theory
can all be made consistent with the model.

c©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 733



History

• Methodology founded by Merton (1970).

• Modern interest rate modeling is often traced to 1977
when Vasicek and Cox, Ingersoll, and Ross developed
simultaneously their influential models.

• Early models have fitting problems because they may
not price today’s benchmark bonds correctly.

• An alternative approach pioneered by Ho and Lee (1986)
makes fitting the market yield curve mandatory.

• Models based on such a paradigm are called (somewhat
misleadingly) arbitrage-free or no-arbitrage models.
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Binomial Interest Rate Tree

• Goal is to construct a no-arbitrage interest rate tree
consistent with the yields and/or yield volatilities of
zero-coupon bonds of all maturities.

– This procedure is called calibration.a

• Pick a binomial tree model in which the logarithm of the
future short rate obeys the binomial distribution.

– Exactly like the CRR tree.

• The limiting distribution of the short rate at any future
time is hence lognormal.

aDerman (2004), “complexity without calibration is pointless.”
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Binomial Interest Rate Tree (continued)

• A binomial tree of future short rates is constructed.

• Every short rate is followed by two short rates in the
following period (see next page).

• In the figure on p. 737 node A coincides with the start of
period j during which the short rate r is in effect.
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Binomial Interest Rate Tree (continued)

• At the conclusion of period j, a new short rate goes into
effect for period j + 1.

• This may take one of two possible values:

– r`: the “low” short-rate outcome at node B.

– rh: the “high” short-rate outcome at node C.

• Each branch has a fifty percent chance of occurring in a
risk-neutral economy.
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Binomial Interest Rate Tree (continued)

• We shall require that the paths combine as the binomial
process unfolds.

• The short rate r can go to rh and r` with equal
risk-neutral probability 1/2 in a period of length ∆t.

• Hence the volatility of ln r after ∆t time is

σ =
1
2

1√
∆t

ln
(

rh

r`

)

(see Exercise 23.2.3 in text).

• Above, σ is annualized, whereas r` and rh are period
based.
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Binomial Interest Rate Tree (continued)

• Note that
rh

r`
= e2σ

√
∆t.

• Thus greater volatility, hence uncertainty, leads to larger
rh/r` and wider ranges of possible short rates.

• The ratio rh/r` may depend on time if the volatility is a
function of time.

• Note that rh/r` has nothing to do with the current
short rate r if σ is independent of r.
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Binomial Interest Rate Tree (continued)

• In general there are j possible rates in period j,

rj , rjvj , rjv
2
j , . . . , rjv

j−1
j ,

where

vj ≡ e2σj

√
∆t (76)

is the multiplicative ratio for the rates in period j (see
figure on next page).

• We shall call rj the baseline rates.

• The subscript j in σj is meant to emphasize that the
short rate volatility may be time dependent.
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Binomial Interest Rate Tree (concluded)

• In the limit, the short rate follows the following process,

r(t) = µ(t) eσ(t) W (t), (77)

in which the (percent) short rate volatility σ(t) is a
deterministic function of time.

• As the expected value of r(t) equals µ(t) eσ(t)2(t/2), a
declining short rate volatility is usually imposed to
preclude the short rate from assuming implausibly high
values.

• Incidentally, this is how the binomial interest rate tree
achieves mean reversion.
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Memory Issues

• Path independency: The term structure at any node is
independent of the path taken to reach it.

• So only the baseline rates ri and the multiplicative
ratios vi need to be stored in computer memory.

• This takes up only O(n) space.a

• Storing the whole tree would have taken up O(n2)
space.

– Daily interest rate movements for 30 years require
roughly (30× 365)2/2 ≈ 6× 107 double-precision
floating-point numbers (half a gigabyte!).

aThroughout this chapter, n denotes the depth of the tree.
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Set Things in Motion

• The abstract process is now in place.

• Now need the annualized rates of return associated with
the various riskless bonds that make up the benchmark
yield curve and their volatilities.

• In the U.S., for example, the on-the-run yield curve
obtained by the most recently issued Treasury securities
may be used as the benchmark curve.
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Set Things in Motion (concluded)

• The term structure of (yield) volatilitiesa can be
estimated from either the historical data (historical
volatility) or interest rate option prices such as cap
prices (implied volatility).

• The binomial tree should be consistent with both term
structures.

• Here we focus on the term structure of interest rates.
aOr simply the volatility (term) structure.
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Model Term Structures

• The model price is computed by backward induction.

• Refer back to the figure on p. 737.

• Given that the values at nodes B and C are PB and PC,
respectively, the value at node A is then

PB + PC

2(1 + r)
+ cash flow at node A.

• We compute the values column by column without
explicitly expanding the binomial interest rate tree (see
figure next page).

• This takes quadratic time and linear space.

c©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 747



rv

A C

B

Cash flows:

B

C

C

D

D

D

D

C

C
P P

r

1 2

2 1a f

C
P P

rv

2 3

2 1a f

r

rv
2

C
P P

rv

3 4

2
2 1c h

P
1

P
2

P
3

P
4

c©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 748



Term Structure Dynamics

• An n-period zero-coupon bond’s price can be computed
by assigning $1 to every node at period n and then
applying backward induction.

• Repeating this step for n = 1, 2, . . . , one obtains the
market discount function implied by the tree.

• The tree therefore determines a term structure.

• It also contains a term structure dynamics.

– Taking any node in the tree as the current state
induces a binomial interest rate tree and, again, a
term structure.
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