
Gamma

• The finite-difference formula for gamma is

e−rτ E

[
P (S + ε)− 2× P (S) + P (S − ε)

ε2

]
.

• For a correlation option with multiple underlying assets,
the finite-difference formula for the cross gammas
∂2P (S1, S2, . . . )/(∂S1∂S2) is:

e−rτ E

[
P (S1 + ε1, S2 + ε2)− P (S1 − ε1, S2 + ε2)

4ε1ε2

−P (S1 + ε1, S2 − ε2) + P (S1 − ε1, S2 − ε2)
]

.
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Gamma (concluded)

• Choosing an ε of the right magnitude can be
challenging.

– If ε is too large, inaccurate Greeks result.

– If ε is too small, unstable Greeks result.
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Biases in Pricing Continuously Monitored Options
with Monte Carlo

• We are asked to price a continuously monitored
up-and-out call with barrier H.

• The Monte Carlo method samples the stock price at n

discrete time points t1, t2, . . . , tn.

• A sample path S(t0), S(t1), . . . , S(tn) is produced.

– Here, t0 = 0 is the current time, and tn = T is the
expiration time of the option.

• If all of the sampled prices are below the barrier, this
sample path pays max(S(tn)−X, 0).

c©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 601



Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

• Repeating these steps and averaging the payoffs yield a
Monte Carlo estimate.

• This estimate is biased.

– Suppose none of the sampled prices on a sample path
equals or exceeds the barrier H.

– It remains possible for the continuous sample path
that passes through them to hit the barrier between
sampled time points (see plot on next page).

c©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 602



H
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (concluded)

• The bias can certainly be lowered by increasing the
number of observations along the sample path.

• However, even daily sampling may not suffice.

• The computational cost also rises as a result.
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Brownian Bridge Approach to Pricing Barrier Options

• We desire an unbiased estimate efficiently.

• So the above-mentioned payoff should be multiplied by
the probability p that a continuous sample path does
not hit the barrier conditional on the sampled prices.

• This methodology is called the Brownian bridge
approach.

• Formally, we have

p ≡ Prob[ S(t) < H, 0 ≤ t ≤ T |S(t0), S(t1), . . . , S(tn) ].
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

• As a barrier is hit over a time interval if and only if the
maximum stock price over that period is at least H,

p = Prob
[

max
0≤t≤T

S(t) < H |S(t0), S(t1), . . . , S(tn)
]

.

• Luckily, the conditional distribution of the maximum
over a time interval given the beginning and ending
stock prices is known.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

Lemma 19 Assume S follows dS/S = µ dt + σ dW and define

ζ(x) ≡ exp

[
−2 ln(x/S(t)) ln(x/S(t + ∆t))

σ2∆t

]
.

(1) If H > max(S(t), S(t + ∆t)), then

Prob

[
max

t≤u≤t+∆t
S(u) < H

∣∣∣∣ S(t), S(t + ∆t)

]
= 1− ζ(H).

(2) If h < min(S(t), S(t + ∆t)), then

Prob

[
min

t≤u≤t+∆t
S(u) > h

∣∣∣∣ S(t), S(t + ∆t)

]
= 1− ζ(h).
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

• Lemma 19 gives the probability that the barrier is not
hit in a time interval, given the starting and ending
stock prices.

• For our up-and-out call, choose n = 1.

• As a result,

p =





1− exp
[
− 2 ln(H/S(0)) ln(H/S(T ))

σ2T

]
, if H > max(S(0), S(T )),

0, otherwise.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

1: C := 0;

2: for i = 1, 2, 3, . . . , m do

3: P := S × e(r−q−σ2/2) T+σ
√

T ξ( );

4: if (S < H and P < H) or (S > H and P > H) then

5: C := C+max(P−X, 0)×
{

1− exp
[
− 2 ln(H/S)×ln(H/P )

σ2T

]}
;

6: end if

7: end for

8: return Ce−rT /m;
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Brownian Bridge Approach to Pricing Barrier Options
(concluded)

• The idea can be generalized.

• For example, we can handle more complex barrier
options.

• Consider an up-and-out call with barrier Hi for the
time interval (ti, ti+1 ], 0 ≤ i < n.

• This option thus contains n barriers.

• It is a simple matter of multiplying the probabilities for
the n time intervals properly to obtain the desired
probability adjustment term.
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Variance Reduction: Antithetic Variates

• We are interested in estimating E[ g(X1, X2, . . . , Xn) ],
where X1, X2, . . . , Xn are independent.

• Let Y1 and Y2 be random variables with the same
distribution as g(X1, X2, . . . , Xn).

• Then

Var
[

Y1 + Y2

2

]
=

Var[ Y1 ]
2

+
Cov[Y1, Y2 ]

2
.

– Var[ Y1 ]/2 is the variance of the Monte Carlo
method with two (independent) replications.

• The variance Var[ (Y1 + Y2)/2 ] is smaller than
Var[Y1 ]/2 when Y1 and Y2 are negatively correlated.
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Variance Reduction: Antithetic Variates (continued)

• For each simulated sample path X, a second one is
obtained by reusing the random numbers on which the
first path is based.

• This yields a second sample path Y .

• Two estimates are then obtained: One based on X and
the other on Y .

• If N independent sample paths are generated, the
antithetic-variates estimator averages over 2N

estimates.
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Variance Reduction: Antithetic Variates (continued)

• Consider process dX = at dt + bt

√
dt ξ.

• Let g be a function of n samples X1, X2, . . . , Xn on
the sample path.

• We are interested in E[ g(X1, X2, . . . , Xn) ].

• Suppose one simulation run has realizations
ξ1, ξ2, . . . , ξn for the normally distributed fluctuation
term ξ.

• This generates samples x1, x2, . . . , xn.

• The estimate is then g(x), where x ≡ (x1, x2 . . . , xn).
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Variance Reduction: Antithetic Variates (concluded)

• We do not sample n more numbers from ξ for the
second estimate.

• The antithetic-variates method computes g(x′) from
the sample path x′ ≡ (x′1, x

′
2 . . . , x′n) generated by

−ξ1,−ξ2, . . . ,−ξn.

• We then output (g(x) + g(x′))/2.

• Repeat the above steps for as many times as required by
accuracy.
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Variance Reduction: Conditioning

• We are interested in estimating E[ X ].

• Suppose here is a random variable Z such that
E[ X |Z = z ] can be efficiently and precisely computed.

• E[ X ] = E[ E[X |Z ] ] by the law of iterated conditional
expectations.

• Hence the random variable E[X |Z ] is also an unbiased
estimator of E[ X ].
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Variance Reduction: Conditioning (concluded)

• As Var[E[X |Z ] ] ≤ Var[X ], E[X |Z ] has a smaller
variance than observing X directly.

• First obtain a random observation z on Z.

• Then calculate E[X |Z = z ] as our estimate.

– There is no need to resort to simulation in computing
E[ X |Z = z ].

• The procedure can be repeated a few times to reduce
the variance.
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Control Variates

• Use the analytic solution of a similar yet simpler
problem to improve the solution.

• Suppose we want to estimate E[ X ] and there exists a
random variable Y with a known mean µ ≡ E[Y ].

• Then W ≡ X + β(Y − µ) can serve as a “controlled”
estimator of E[ X ] for any constant β.

– β can scale the deviation Y − µ to arrive at an
adjustment for X.

– However β is chosen, W remains an unbiased
estimator of E[X ] as

E[ W ] = E[ X ] + βE[Y − µ ] = E[X ].
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Control Variates (continued)

• Note that

Var[ W ] = Var[ X ] + β2 Var[ Y ] + 2β Cov[ X, Y ],

(64)

• Hence W is less variable than X if and only if

β2 Var[ Y ] + 2β Cov[X,Y ] < 0. (65)

• The success of the scheme clearly depends on both β

and the choice of Y .
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Control Variates (concluded)

• For example, arithmetic average-rate options can be
priced by choosing Y to be the otherwise identical
geometric average-rate option’s price and β = −1.

• This approach is much more effective than the
antithetic-variates method.
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Choice of Y

• In general, the choice of Y is ad hoc, and experiments
must be performed to confirm the wisdom of the choice.

• Try to match calls with calls and puts with puts.a

• On many occasions, Y is a discretized version of the
derivative that gives µ.

– Discretely monitored geometric average-rate option
vs. the continuously monitored geometric
average-rate option given by formulas (29) on p. 327.

• For some choices, the discrepancy can be significant,
such as the lookback option.b

aContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
bContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
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Optimal Choice of β

• Equation (64) on p. 618 is minimized when

β = −Cov[ X, Y ]/Var[Y ],

which was called beta earlier in the book.

• For this specific β,

Var[W ] = Var[X ]− Cov[X,Y ]2

Var[ Y ]
=

(
1− ρ2

X,Y

)
Var[X ],

where ρX,Y is the correlation between X and Y .

• The stronger X and Y are correlated, the greater the
reduction in variance.
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Optimal Choice of β (continued)

• For example, if this correlation is nearly perfect (±1),
we could control X almost exactly, eliminating
practically all of its variance.

• Typically, neither Var[Y ] nor Cov[X,Y ] is known.

• Therefore, we cannot obtain the maximum reduction in
variance.

• We can guess these values and hope that the resulting
W does indeed have a smaller variance than X.

• A second possibility is to use the simulated data to
estimate these quantities.
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Optimal Choice of β (concluded)

• Observe that −β has the same sign as the correlation
between X and Y .

• Hence, if X and Y are positively correlated, β < 0,
then X is adjusted downward whenever Y > µ and
upward otherwise.

• The opposite is true when X and Y are negatively
correlated, in which case β > 0.
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Problems with the Monte Carlo Method

• The error bound is only probabilistic.

• The probabilistic error bound of
√

N does not benefit
from regularity of the integrand function.

• The requirement that the points be independent random
samples are wasteful because of clustering.

• In reality, pseudorandom numbers generated by
completely deterministic means are used.

• Monte Carlo simulation exhibits a great sensitivity on
the seed of the pseudorandom-number generator.
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