Gamma

e The finite-difference formula for gamma is

P(S +¢) —2x P(S) + P(S — ¢)

e " E [

€

e For a correlation option with multiple underlying assets,

the finite-difference formula for the cross gammas

(92P(Sl, SQ, co )/(851832) 1S:

P(S1 +€1,82 +€2) — P(S1 — €1, 52 + €2)
4eq€en

e ""E

—P(S1 +€1,52 —€2) + P(S1 — €1, 52 — €2)
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Gamma (concluded)

e Choosing an ¢ of the right magnitude can be
challenging.

— If € is too large, inaccurate Greeks result.

— If € is too small, unstable Greeks result.
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Biases in Pricing Continuously Monitored Options
with Monte Carlo

We are asked to price a continuously monitored

up-and-out call with barrier H.

The Monte Carlo method samples the stock price at n

discrete time points t1,to,... , ;.

A sample path S(tg), S(t1),...,S(t,) is produced.

— Here, tg = 0 is the current time, and ¢,, =71 is the

expiration time of the option.

If all of the sampled prices are below the barrier, this

sample path pays max(S(t,) — X, 0).
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

e Repeating these steps and averaging the payofts yield a

Monte Carlo estimate.

e This estimate is biased.

— Suppose none of the sampled prices on a sample path

equals or exceeds the barrier H.

— It remains possible for the continuous sample path
that passes through them to hit the barrier between

sampled time points (see plot on next page).
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (concluded)

e The bias can certainly be lowered by increasing the

number of observations along the sample path.
e However, even daily sampling may not suffice.

e The computational cost also rises as a result.
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Brownian Bridge Approach to Pricing Barrier Options

e We desire an unbiased estimate efficiently.

e So the above-mentioned payoft should be multiplied by
the probability p that a continuous sample path does

not hit the barrier conditional on the sampled prices.

This methodology is called the Brownian bridge
approach.

Formally, we have

p =Prob[S(t) < H,0 <t < T[S(to),S(t1),-.. . S(ta) ]
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

e As a barrier is hit over a time interval if and only if the

maximum stock price over that period is at least H,

p = Prob o?%XTS(t) < H|S(ty),S(t1),...,S(tn)
e Luckily, the conditional distribution of the maximum
over a time interval given the beginning and ending

stock prices is known.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

Lemma 19 Assume S follows dS/S = pdt + odW and define

21n(z/S(t)) In(z/S(t + At)) ]
o2 At .

((z) = exp [—

(1) If H > max(S(t),S(t + At)), then

Prob [ max  S(u) < H‘ S(t), S(t + At)] — 1 — ¢(H).

t<u<t+At

(2) If h < min(S(t),S(t + At)), then

t<u<t+At

Prob [ min  S(u) > h‘ S(t), S(t + At)] —1—¢(h).
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

Lemma 19 gives the probability that the barrier is not
hit in a time interval, given the starting and ending

stock prices.
For our up-and-out call, choose n = 1.

As a result,

1 —exp {— QIH(H/S(OG)%;?(H/S(T)) } , if H > max(S5(0),S(T)),

0, otherwise.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

. C':=0;
: fort=1,2,3,... ,m do
P = § x erma—o2/2) T+oVT €0,
if (S<H and P< H)or (> H and P > H) then
C = C+max(P—X,0)x {1 — exp [— 2In(H/5) xIn(H/ P) } };
end if

- end for

. return Ce " /m;
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Brownian Bridge Approach to Pricing Barrier Options
(concluded)

The idea can be generalized.

For example, we can handle more complex barrier

options.

Consider an up-and-out call with barrier H; for the
time interval (¢;,t;411],0 <17 <mn.

This option thus contains n barriers.

It is a simple matter of multiplying the probabilities for
the n time intervals properly to obtain the desired

probability adjustment term.
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Variance Reduction: Antithetic Variates

We are interested in estimating F[g(X1, Xo,... , X,)],
where X1, Xo,..., X, are independent.

Let Y7 and Y5 be random variables with the same
distribution as ¢(X1, Xa,...,X,).

Then

Var [

Yl + YQ V&I’[Yl ] COV[ Yl, Y2 ]
2 -5 ° 2

— Var[Y7 /2 is the variance of the Monte Carlo
method with two (independent) replications.

The variance Var| (Y7 + Y3)/2] is smaller than
Var[Y7]/2 when Y; and Y, are negatively correlated.
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Variance Reduction: Antithetic Variates (continued)

e For each simulated sample path X, a second one is
obtained by reusing the random numbers on which the
first path is based.

e This yields a second sample path Y.

e Two estimates are then obtained: One based on X and
the other on Y.

e If NV independent sample paths are generated, the
antithetic-variates estimator averages over 2N

estimates.
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Variance Reduction: Antithetic Variates (continued)

e Consider process dX = a; dt + b\/dt €.

Let g be a function of n samples X4, Xs,...,X,, on
the sample path.

We are interested in F[g(X1, Xo,...,X,)].

Suppose one simulation run has realizations
£1,&9, ... ,&, for the normally distributed fluctuation

term &.
This generates samples x1,x2,...,T,.

The estimate is then g(a), where * = (x1,22 ... ,2,).

©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 613



Variance Reduction: Antithetic Variates (concluded)

e We do not sample n more numbers from & for the
second estimate.

e The antithetic-variates method computes g(ax’) from
the sample path o’ = (7,25 ... ,x]) generated by
_617 _527 RIS _gn

e We then output (g(x)+ g(x’))/2.

e Repeat the above steps for as many times as required by

accuracy.
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Variance Reduction: Conditioning

We are interested in estimating FE[ X |.

Suppose here is a random variable Z such that

E| X |Z = z] can be efficiently and precisely computed.
E|X]|=F[E|X|Z]] by the law of iterated conditional

expectations.

Hence the random variable F[X | Z] is also an unbiased
estimator of E|X |.
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Variance Reduction: Conditioning (concluded)

As Var|E| X | Z]]| < Var| X |, E[ X | Z] has a smaller
variance than observing X directly.

First obtain a random observation z on Z.

Then calculate E[X | Z = z] as our estimate.
— There is no need to resort to simulation in computing

E[X|Z=z]

The procedure can be repeated a few times to reduce

the variance.
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Control Variates

e Use the analytic solution of a similar yet simpler

problem to improve the solution.

e Suppose we want to estimate E| X | and there exists a

random variable Y with a known mean p= E|Y |.

e Then W = X 4 (Y — p) can serve as a “controlled”

estimator of F| X | for any constant S.

— 3 can scale the deviation Y — u to arrive at an

adjustment for X.

— However [ is chosen, W remains an unbiased
estimator of F[X | as

E[W]=E[X]+BE[Y — u] = E[X].
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Control Variates (continued)

e Note that

Var[W ] = Var[ X | 4+ 8% Var[Y ] 4+ 28 Cov[ X, Y],
(64)

e Hence W is less variable than X if and only if

3% Var[ Y] +23Cov[X,Y ] <O. (65)

e The success of the scheme clearly depends on both [
and the choice of Y.
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Control Variates (concluded)

e For example, arithmetic average-rate options can be
priced by choosing Y to be the otherwise identical
geometric average-rate option’s price and (= —1.

e This approach is much more effective than the
antithetic-variates method.
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Choice of Y

In general, the choice of Y is ad hoc, and experiments
must be performed to confirm the wisdom of the choice.

Try to match calls with calls and puts with puts.®

On many occasions, Y is a discretized version of the
derivative that gives u.

— Discretely monitored geometric average-rate option
vs. the continuously monitored geometric

average-rate option given by formulas (29) on p. 327.

For some choices, the discrepancy can be significant,

such as the lookback option.P

2Contributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
PContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
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Optimal Choice of

e Equation (64) on p. 618 is minimized when
B=—Cov|X,Y |/Var|Y |,
which was called beta earlier in the book.

e For this specific 3,

Cov[ X, Y |*

Var|W | = Var| X | — = (1 - px%.y) Var[ X ],

Var|Y |
where px y 1s the correlation between X and Y.

e The stronger X and Y are correlated, the greater the

reduction in variance.
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Optimal Choice of (3 (continued)

For example, if this correlation is nearly perfect (41),
we could control X almost exactly, eliminating
practically all of its variance.

Typically, neither Var|Y | nor Cov|X,Y | is known.

Therefore, we cannot obtain the maximum reduction in

variance.

We can guess these values and hope that the resulting
W does indeed have a smaller variance than X.

A second possibility is to use the simulated data to

estimate these quantities.
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Optimal Choice of (3 (concluded)

e Observe that —( has the same sign as the correlation
between X and Y.

e Hence, if X and Y are positively correlated, 8 < 0,
then X is adjusted downward whenever Y > u and

upward otherwise.

e The opposite is true when X and Y are negatively

correlated, in which case 3 > 0.
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Problems with the Monte Carlo Method
The error bound is only probabilistic.

The probabilistic error bound of N does not benefit
from regularity of the integrand function.

The requirement that the points be independent random

samples are wasteful because of clustering.

In reality, pseudorandom numbers generated by

completely deterministic means are used.

Monte Carlo simulation exhibits a great sensitivity on
the seed of the pseudorandom-number generator.
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