Example

Take the binomial model with two assets.

In a period, asset one’s price can go from S to S; or

Sa.

In a period, asset two’s price can go from P to P; or
bs.

Assume
S S So
Py P P

to rule out arbitrage opportunities.
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Example (continued)

e For any derivative security, let C be its price at time

one if asset one’s price moves to S;.

e Let (5 be its price at time one if asset one’s price

moves to Ss.

e Replicate the derivative by solving

aS1 + P C1,
aSo + 8P Co,

using « units of asset one and 4 units of asset two.
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Example (continued)

e This yields

_RG=PG o S0 =810
- PQSl — P152 - SQPl — Slpg .

0%

e The derivative costs

C aS + P

PQS—PSQ PSl—PlS
C Cs.
P,S; — P Sy ! + P,S; — P Sy ?
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Example (concluded)

e [t is easy to verify that

¢c_ G
P _Pp

— Above,
(5/P) — (52/P,)
(S1/P1) — (S2/P2)

e The derivative’s price using asset two as numeraire is

p

thus a martingale under the risk-neutral probability p.

e The expected returns of the two assets are irrelevant.
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Brownian Motion?

e Brownian motion is a stochastic process { X(¢),t >0}

with the following properties.

1. X(0) = 0, unless stated otherwise.
2. forany 0 <ty <ty <---<t,, the random variables

X(tk) — X(tk_1>

for 1 < k <n are independent.

3. for 0 <s<t, X(t)— X(s) is normally distributed

with mean pu(t — s) and variance o?(t — s), where pu

and o # 0 are real numbers.

2Robert Brown (1773-1858).
PSo X(t) — X(s) is independent of X(r) for r < s < t.
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Brownian Motion (concluded)

Such a process will be called a (u,0) Brownian motion

with drift p and variance o?.

The existence and uniqueness of such a process is

guaranteed by Wiener’s theorem.?

Although Brownian motion is a continuous function of ¢

with probability one, it is almost nowhere differentiable.

The (0,1) Brownian motion is also called the Wiener

process.

2Norbert Wiener (1894-1964).
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Example

o If { X(¢),t >0} is the Wiener process, then
X(t) — X(s) ~ N(0,t—s).

e A (p,0) Brownian motion ¥ ={Y(¢),t >0} can be
expressed in terms of the Wiener process:

Y(t) = pt + o X (1), (45)

e Note that Y (t+s) — Y (t) ~ N(us,c°s).
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Brownian Motion Is a Random Walk in Continuous
Time

Claim 1 A (u,0) Brownian motion is the limiting case of

random walk.

e A particle moves Ax to the left with probability 1 — p.

e It moves to the right with probability p after At time.

e Assume n =t/At is an integer.

e Its position at time ¢ is

Yit)=Ax (X1 +Xo+ -+ X,,).
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Brownian Motion as Limit of Random Walk
(continued)

e (continued)

— Here

¥ = +1 if the ¢th move is to the right,
T —1 if the 72th move is to the left.

— X, are independent with
Prob[ X; =1]=p=1—-Prob| X; = —1].

e Recall E[X;]=2p—1 and Var[X;]=1- (2p— 1)
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Brownian Motion as Limit of Random Walk
(continued)

e Therefore,

Var[Y(t)] = n(Az)* [1—(2p —1)7].

e With Az =o0VAt and p=[1+ (u/o)VAL]/2,
= noVAt(p/o)VAL = ut,

= no’At[1— (u/o)*At] — ot
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Brownian Motion as Limit of Random Walk
(concluded)

Thus, { Y (t),t > 0} converges to a (u,c) Brownian

motion by the central limit theorem.

Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing u = 0.
Note that
Var|Y (t + At) — Y (t) ]
=Var[Az X, 1] = (Ax)? x Var[ X,,11 ]| — 0?At.

Similarity to the the BOPM: The p is identical to the
probability in Eq. (23) on p. 239 and Az = Inu.
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Geometric Brownian Motion
Let X ={X(t),t >0} be a Brownian motion process.

The process
(Y())=eXW t >0},

is called geometric Brownian motion.
Suppose further that X is a (u, o) Brownian motion.

X(t) ~ N(ut,0°t) with moment generating function

B[eX®] = By (1)) = e/

from Eq. (16) on p 141.
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Geometric Brownian Motion (continued)

e In particular,

E[Y(#)] = eut+(02t/2),

Var[Y(t)] = E[Y(t)?] — E[Y (1) ]2

2 2
_ 2utto’t (60 t 1) .
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Geometric Brownian Motion (continued)

e It is useful for situations in which percentage changes
are independent and identically distributed.

e Let Y,, denote the stock price at time n and Yy = 1.

e Assume relative returns
Y,

X;
Yi 1

are independent and identically distributed.
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Geometric Brownian Motion (concluded)

e Then

InY, = i In X;
i=1

is a sum of independent, identically distributed random
variables.
e Thus {InY,,n >0} is approximately Brownian motion.

— And {Y,,,n >0} is approximately geometric

Brownian motion.
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.
— Mark Kac (1914-1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861-1947),
Science and the Modern World
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Stochastic Integrals

Use W ={W(t),t >0} to denote the Wiener process.

The goal is to develop integrals of X from a class of

stochastic processes,?

t
It(X)E/ X dW, t > 0.
0

I[;(X) is a random variable called the stochastic integral
of X with respect to W.

The stochastic process {1;(X),t > 0} will be denoted
by [ X dW.

aTto (1915-).
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Stochastic Integrals (concluded)

e Typical requirements for X in financial applications are:

— Prob[fJXQ(s) ds <oo]=1 forall t >0 or the
stronger fot E[X?(s)]ds < oo.

— The information set at time ¢ includes the history of

X and W up to that point in time.

— But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).
— The future cannot influence the present.

o { X(5),0<s<t} isindependent of
{Wit+u)—W(t),u>0}.
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lto Integral

e A theory of stochastic integration.
e As with calculus, it starts with step functions.

e A stochastic process { X ()} is simple if there exist
0=ty <t; <--- such that

X(t) = X(tk_l) for t € [tk—latk)y k = 1,2,. ..

for any realization (see figure next page).
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Ito Integral (continued)

e The Ito integral of a simple process is defined as

LX) = S X)W (ter) — Wil (46)
k=0

where t,, = t.
— The integrand X is evaluated at i, not tx.q.
e Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.
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Ito Integral (continued)

e Let X ={X(t),t >0} be a general stochastic process.

e Then there exists a random variable I;(X), unique
almost certainly, such that I;(X,) converges in
probability to I;(X) for each sequence of simple
stochastic processes X7, Xo,... such that X,, converges
in probability to X.

If X is continuous with probability one, then I;(X,)
converges in probability to I;(X) as

dp, = maxj<g<n(ty —tx—1) goes to zero.
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Ito Integral (concluded)

e It is a fundamental fact that [ X dW is continuous
almost surely.

e The following theorem says the Ito integral is a
martingale.

— A corollary is the mean value formula

b
5 /W]:o.

Theorem 15 The Ito integral [ X dW is a martingale.
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Discrete Approximation
e Recall Eq. (46) on p. 455.

e The following simple stochastic process { X (¢)} can be

used in place of X to approximate the stochastic
integral fot X dW,

AN

X(s) = X(tg—1) for s e [tx_1,tr), k=1,2,... ,n.

e Note the nonanticipating feature of X.

— The information up to time s,
{X(t),W(t),0<t<s},

cannot determine the future evolution of X or W.

©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 458



Discrete Approximation (concluded)

e Suppose we defined the stochastic integral as

S X () (W (tin) — Wit) )
k=0

e Then we would be using the following different simple
stochastic process in the approximation,

Y(s)= X(tg) for s € [tp_1,te), k=1,2,... ,n.

e This clearly anticipates the future evolution of X.
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lto Process

e The stochastic process X ={ X;,t > 0} that solves

¢ t
Xt:X0+/ a(XS,s)ds+/ b(Xs,s)dWs, t>0
0 0

is called an Ito process.

— X is a scalar starting point.

— {a(X¢,t):t >0} and {b(Xs,t):t >0} are
stochastic processes satisfying certain regularity

conditions.

e The terms a(X;,t) and b(X;,t) are the drift and the
diffusion, respectively.
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Ito Process (continued)

e A shorthand? is the following stochastic differential
equation for the Ito differential d.X;,

dXt = CL(Xt, t) dt + b(Xt, t) th (47)
— Or Slmply dXt — Q¢ dt + bt th

e This is Brownian motion with an instantaneous drift a.

and an instantaneous variance b?.

e X is a martingale if the drift a; is zero by Theorem 15
(p. 457).

2Paul Langevin (1904).
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Ito Process (concluded)

e dWW is normally distributed with mean zero and

variance dt.
e An equivalent form to Eq. (47) is
dXy = a; dt + bV dt €, (48)
where & ~ N(0,1).

e This formulation makes it easy to derive Monte Carlo

simulation algorithms.
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Euler Approximation
The following approximation follows from Eq. (48),

X (tpi1)

=X (tn) + a(X (tn), tn) At + b(X (tn), tn) AW (£,),
(49)

where t,, = nAt.

It is called the Euler or Euler-Maruyama method.

Under mild conditions, X (t,) converges to X (t,).

Recall that AW (t,,) should be interpreted as
Wi(tni1) — W(t,) instead of W(t,) — W(t,_1).
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More Discrete Approximations

e Under fairly loose regularity conditions, approximation
(49) on p. 464 can be replaced by

P

X(tn+1)
=X (tn) + a(X (tn), tn) At + b(X (tn), tn VALY (£,).

— Y (t9),Y (t1),... are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

e An even simpler discrete approximation scheme:

X(tn%—l)

AN

=X (t,) + a(X (tn), tn) At + b(X (t), tn)VALE.

— Prob[¢( =1] =Prob[¢( = —-1] =1/2.
— Note that E[¢] =0 and Var[{] = 1.

e This clearly defines a binomial model. X converges to
X.
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Trading and the Ito Integral

Consider an Ito process dS; = u; dt + o dW.

— S, is the vector of security prices at time t.

Let ¢, be a trading strategy denoting the quantity of
each type of security held at time t.

Hence the stochastic process ¢,S; is the value of the
portfolio ¢, at time t.

¢, dS: = ¢, (s dt + o4 dW,) represents the change in the

value from security price changes occurring at time ¢.

©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 467



Trading and the Ito Integral (concluded)

e The equivalent Ito integral,

Gr(¢) = /OT ¢, dS; = /OT Oy pbe dt + /OT Q.0 AWy,

measures the gains realized by the trading strategy over
the period [0,7'].
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lto's Lemma

A smooth function of an Ito process is itself an Ito process.

Theorem 16 Suppose f: R — R 1is twice continuously
differentiable and dX = asdt + b, dW. Then f(X) is the
Ito process,
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Ito’s Lemma (continued)
e In differential form, Ito’s lemma becomes

df(X) = f(X)adt+ f(X)bdW + % F(X) b2 dt.
(50)

e Compared with calculus, the interesting part is the third
term on the right-hand side.

e A convenient formulation of Ito’s lemma is

f(X)dX + % 7 (X)(dX)?.
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Ito’s Lemma (continued)

e We are supposed to multiply out
(dX)? = (adt + bdW)? symbolically according to

X dW  dt
dW dt 0
dt 0 0

— The (dW)? = dt entry is justified by a known result.

e This form is easy to remember because of its similarity
to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 17 (Higher-Dimensional Ito’s Lemma) Let
Wi, Wao, ... , W, be independent Wiener processes and

X = (X1, Xo,...,X.n) be a vector process. Suppose
f:R™ — R 1is twice continuously differentiable and X; 1s
an Ito process with dX; = a; dt + Z;’:l bij dW;. Then

df (X) is an Ito process with the differential,

) = 3 H) X+ 530S Fa(X) dX dX,

1=1 1=1 k=1

where f; = 0f/0x; and f;, = 0*f/0x;0xy.
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Ito’s Lemma (continued)

e The multiplication table for Theorem 17 is

X dWZ dt
dWy | o dt O
dt 0 0

in which
1 if ¢ =k,
O =
0 otherwise.
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Ito’s Lemma (continued)

Theorem 18 (Alternative Ito’s Lemma) Let

Wi, Wao, ... , W,, be Wiener processes and

X = (X1, Xo,...,X.n) be a vector process. Suppose

f: R™ — R 1s twice continuously differentiable and X; 1is
an Ito process with dX; = a; dt + b; dW;. Then df(X) is the

following Ito process,

0 =3 [0 dX + 5 303 filX) dX; dX.
1=1

1=1 k=1
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Ito’s Lemma (concluded)

e The multiplication table for Theorem 18 is

X dWZ dt
de Pik dt 0
dt 0 0

e Here, p;r denotes the correlation between dW,; and

dWi.
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Geometric Brownian Motion

e Consider the geometric Brownian motion process
Y(t) = eX(®)
— X(¢) is a (u,0) Brownian motion.
— Hence dX = pdt + odW by Eq. (45) on p. 439.

e As9Y/0X =Y and 0°Y/0X? =Y, Ito’s formula (50)
on p. 470 implies

dY YdX + (1/2)Y (dX)?
Y (pdt +odW)+(1/2)Y (pdt + o dW)?
Y (udt +odW)+(1/2) Yo dt.
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Geometric Brownian Motion (concluded)

e Hence

ar _ (1 +0%/2) dt + o dW.

Y

e The annualized instantaneous rate of return is p -+ 02/2
not u.
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Product of Geometric Brownian Motion Processes

o Let

dY /Y adt +bdWy,
d7/7 Fdt+gdWy.

e Consider the Ito process U =Y Z.

e Apply Ito’s lemma (Theorem 18 on p. 474):

dU ZdY +Y dZ +dY dZ
ZY (adt +bdWy )+ Y Z(fdt + gdWz)
+YZ(adt +bdWy ) (fdt + gdWz)
U(a+ f+bgp)dt + UbdWy +UgdWy.
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Product of Geometric Brownian Motion Processes
(continued)

e The product of two (or more) correlated geometric
Brownian motion processes thus remains geometric

Brownian motion.

e Note that

exp [(a — b*/2) dt + bdWy ],
exp (f —92/2) dt—l—gdWZ] :
exp[(a+f— (b®+g%) /2)dt+bdWy + gdWy].
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Product of Geometric Brownian Motion Processes
(concluded)

e InU is Brownian motion with a mean equal to the sum
of the means of InY and InZ.

e This holds even if Y and Z are correlated.

e Finally, InY and InZ have correlation p.
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Quotients of Geometric Brownian Motion Processes

e Suppose Y and Z are drawn from p. 478.
e et U=Y/Z.

e We now show that

dU
—U — (a— f—l—g2 — bgp) dt+deY —gdtiz-
(51)

e Keep in mind that dWy and dW; have correlation p.
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Quotients of Geometric Brownian Motion Processes
(concluded)

e The multidimensional Ito’s lemma (Theorem 18 on
p. 474) can be employed to show that

dU
(1/2)dY — (Y/Z*)dZ — (1)Z°)dY dZ + (Y/Z?) (dZ)*

(1/Z)(aY dt +bY dWy) — (Y/Z*)(fZ dt + gZ dWz)
—(1/2%)(bgY Zpdt) + (Y/Z7)(g" Z* dt)

Uladt +bdWy ) —U(fdt + gdWyz)

—U(bgpdt) + U(g” dt)

Ula — f + g° — bgp) dt + UbdWy — UgdWy.
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Ornstein-Uhlenbeck Process

e The Ornstein-Uhlenbeck process:
dX = —r X dt + o dW,

where k,o0 > 0.

e It is known that

E[X(1)] e "t t0) Blag ],

0_2

Var[ X ()] - (1 _ 6—2““—’50)) e 27010 yar[ x|,

2
Cov[ X (s), X(t)] g_ o~ (=) [1 B e_zn(s_to)]
K

+e—l€(t—|—$—2t0) Var[ To ]’

for tg < s <t and X(ty) = xo.
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Ornstein-Uhlenbeck Process (continued)

X (t) is normally distributed if z( is a constant or
normally distributed.

X is said to be a normal process.
Elxg] = z9 and Var[zg] =0 if xg is a constant.

The Ornstein-Uhlenbeck process has the following mean

reversion property.
— When X > 0, X is pulled X toward zero.
— When X < 0, it is pulled toward zero again.

©2007 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 484



Ornstein-Uhlenbeck Process (continued)

e Another version:
dX = k(p— X)dt + o dW,
where o > 0.

e Given X(ty) = xp, a constant, it is known that

E[X(1)] ot (o — p)e ") (52)

Var[ X(t)] ;? | — e=2n(t=to) |

for to <'t.
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Ornstein-Uhlenbeck Process (concluded)

e The mean and standard deviation are roughly 1 and
o /v 2k , respectively.

e For large ¢, the probability of X < 0 is extremely
unlikely in any finite time interval when p > 0 is large

relative to o/V2k (say pu > 40/vV2kK).
e The process is mean-reverting.
— X tends to move toward .

— Useful for modeling term structure, stock price

volatility, and stock price return.
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Continuous-Time Derivatives Pricing
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I have hardly met a mathematician

who was capable of reasoning.
— Plato (428 B.C.-347 B.C.)
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Toward the Black-Scholes Differential Equation

The price of any derivative on a non-dividend-paying

stock must satisfy a partial differential equation.

The key step is recognizing that the same random

process drives both securities.

As their prices are perfectly correlated, we figure out the
amount of stock such that the gain from it offsets

exactly the loss from the derivative.

The removal of uncertainty forces the portfolio’s return

to be the riskless rate.
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Assumptions

The stock price follows dS = uSdt + oS dW'.
There are no dividends.

Trading is continuous, and short selling is allowed.
There are no transactions costs or taxes.

All securities are infinitely divisible.

The term structure of riskless rates is flat at r.
There is unlimited riskless borrowing and lending.

t is the current time, 1’ is the expiration time, and
T=1T —1.
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Black-Scholes Differential Equation
Let C be the price of a derivative on S.

From Ito’s lemma (p. 472),
6’(] oc 1

+ =~ 0282 ——

0S ot 2 0852
— The same W drives both C and S.

dt + oS — dW.

0*C oC
0S

dC' = (,uS

Short one derivative and long 0C/0S shares of stock
(call it IT).

By construction,

1= —C+ S(0C/dS).
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Black-Scholes Differential Equation (continued)

e The change in the value of the portfolio at time dt is

oC
dll = —d —dS.
C+8S S

e Substitute the formulas for dC' and dS into the partial

differential equation to yield

[ 0C 1 4., 0%C

e As this equation does not involve dW, the portfolio is
riskless during dt time: dII = rIl dt.
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Black-Scholes Differential Equation (concluded)

e So

oC 1 ,.,0°C\ . oC
(E+§oSw>dt—r<C Sﬁs)dt.

e Equate the terms to finally obtain

2
3_C+TS(3’_C’+102S28C

ot s 2 95z ~ "¢

e When there is a dividend yield g,

2
a—CJr(?“—q)Sa—CJr1<72528C

o1 o5 t27° 552 =7¢
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Rephrase

e The Black-Scholes differential equation can be expressed

in terms of sensitivity numbers,

1
O+ rSA+ 50252F = rC. (53)

e Identity (53) leads to an alternative way of computing

© numerically from A and I

e When a portfolio is delta-neutral,

O + % a?S°T = rC.

— A definite relation thus exists between I' and ©.
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PDEs for Asian Options
e Add the new variable A(t fo

e Then the value V of the Asian option satisfies this
two-dimensional PDE:?

oV oV 1, .0V AV
5 T e T geE P ga TV

e The terminal conditions are

A
V(T,S,A) max (T — X, O) for call,

A
V(T,S, A) max (X — O) for put.

2Kemna and Vorst (1990).
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PDEs for Asian Options (continued)

e The two-dimensional PDE produces algorithms similar
to that on pp. 329ff.

e But one-dimensional PDEs are available for Asian

options.?

e For example, Vecef (2001) derives the following PDE for

Asian calls:

2
ou t —z) o
aqtr(l—f—z) =0

with the terminal condition u(7, z) = max(z,0).

2Rogers and Shi (1995); Vecef (2001); Dubois and Lelievre (2005).
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PDEs for Asian Options (concluded)

e For Asian puts:

2
L T

8z+ 2

R
ot T ©

with the same terminal condition.

e One-dimensional PDEs lead to highly efficient numerical
methods.
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Hedging
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When Professors Scholes and Merton and 1

invested in warrants,

Professor Merton lost the most money.
And I lost the least.
— Fischer Black (1938-1995)
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Delta Hedge

The delta (hedge ratio) of a derivative f is defined as
A=090f/0S.

Thus Af ~ A x AS for relatively small changes in the
stock price, AS.

A delta-neutral portfolio is hedged in the sense that it is
immunized against small changes in the stock price.

A trading strategy that dynamically maintains a
delta-neutral portfolio is called delta hedge.
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