e Consider a two-year 99 European call on the three-year,
5% Treasury.

Fixed-Income Options

e Assume the Treasury pays annual interest.

e From p. 739 the three-year Treasury’s price minus the $5
interest could be $102.046, $100.630, or $98.579 two

years from now.

e Since these prices do not include the accrued interest,

we should compare the strike price against them.

e The call is therefore in the money in the first two

scenarios, with values of $3.046 and $1.630, and out of

the money in the third scenario.
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Fixed-Income Options (continued)
e The option value is calculated to be $1.458 on p. 739(a).
e European interest rate puts can be valued similarly.

e Consider a two-year 99 European put on the same

security.

e At expiration, the put is in the money only if the
Treasury is worth $98.579 without the accrued interest.

e The option value is computed to be $0.096 on p. 739(b).
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Fixed-Income Options (concluded)

e The present value of the strike price is
PV(X) = 99 x 0.92101 = 91.18.

e The Treasury is worth B = 101.955.

e The present value of the interest payments during the

life of the options is

PV(I) =5 x0.96154 4+ 5 x 0.92101 = 9.41275.

e The call and the put are worth C = 1.458 and
P = 0.096, respectively.

e Hence the put-call parity is preserved:

C =P+ B—-PV(I)—PV(X).
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Delta or Hedge Ratio

e How much does the option price change in response to
changes in the price of the underlying bond?
e This relation is called delta (or hedge ratio) defined as
Oh - Of
P,-P

e In the above P, and P, denote the bond prices if the
short rate moves up and down, respectively.

e Similarly, O, and O, denote the option values if the
short rate moves up and down, respectively.

Volatility Term Structures

e The binomial interest rate tree can be used to calculate

the yield volatility of zero-coupon bonds.

e Consider an n-period zero-coupon bond.

e First find its yield to maturity yn (¢, respectively) at

the end of the initial period if the rate rises (declines,

respectively).

e The yield volatility for our model is defined as

(1/2) In(yn/ye).
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Delta or Hedge Ratio (concluded)

e Since delta measures the sensitivity of the option value
to changes in the underlying bond price, it shows how to
hedge one with the other.

e Take the call and put on p. 739 as examples.

e Their deltas are

0.774 — 2.258 — 0441,
99.350 — 102.716
0.200 — 0.000 — _0.059,

99.350 — 102.716

respectively.

Volatility Term Structures (continued)

e For example, based on the tree on p. 720, the two-year
zero’s yield at the end of the first period is 5.289% if the
rate rises and 3.526% if the rate declines.

e [ts yield volatility is therefore
1 <0.05289
—In

=20.2 .
2 0.03526) 0273%
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Volatility Term Structures (continued)
e Consider the three-year zero-coupon bond.

e If the rate rises, the price of the zero one year from now

will be
1 X ! X 1 + 1 = 0.90096
2 1.05289 1.04343 ~ 1.06514 ) ’

e Thus its yield is 1/ 550595 — 1 = 0.053531.

e If the rate declines, the price of the zero one year from
now will be

1 1 1 1
1 — 0.93225.
2~ 1.03526 (1.02895 * 1.04343> 093225

Spot rate volatility

0.104

0. 103

0.102

0.101

0 100 200 300 400 500
Ti ne period

Short rate volatility given flat %10 volatility term structure.
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Volatility Term Structures (continued)

e Thus its yield is 1/ ggagss — 1 = 0.0357.

e The yield volatility is hence

1 <0.053531

- Cose > = 20.256%,

5 I
slightly less than the one-year yield volatility.

e This is consistent with the reality that longer-term
bonds typically have lower yield volatilities than
shorter-term bonds.

e The procedure can be repeated for longer-term zeros to
obtain their yield volatilities.
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Volatility Term Structures (continued)

o We started with v; and then derived the volatility term

structure.
e In practice, the steps are reversed.

e The volatility term structure is supplied by the user

along with the term structure.

e The v;—hence the short rate volatilities via Eq. (77) on

p- 700—and the r; are then simultaneously determined.

e The result is the Black-Derman-Toy model.
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Volatility Term Structures (concluded)

e Suppose the user supplies the volatility term structure

which results in (v, vs,v3,...) for the tree.

[Meriwether| scoring especially high marks

e The volatility term structure one period from now will in mathematics — an indispensable subject

be determined by (vs,vs,v4,...) not (v, ve,vs,...). for a bond trader.
e The volatility term structure supplied by the user is — Roger Lowenstein,

hence not maintained through time. When Genius Failed

e This issue will be addressed by other types of (complex)
models.
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Terminology

e A period denotes a unit of elapsed time.

— Viewed at time ¢, the next time instant refers to time
t + dt in the continuous-time model and time ¢+ 1

. . in the discrete-time case.
Foundations of Term Structure Modeling
e Bonds will be assumed to have a par value of one unless

stated otherwise.

e The time unit for continuous-time models will usually be
measured by the year.
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Standard Notations
The following notation will be used throughout.
t: a point in time.

r(t): the one-period riskless rate prevailing at time ¢ for
repayment one period later (the instantaneous spot rate,
or short rate, at time t).

P(t,T): the present value at time t of one dollar at time 7.
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Standard Notations (continued)

r(t,T): the (T — t)-period interest rate prevailing at time ¢
stated on a per-period basis and compounded once per
period—in other words, the (T — t)-period spot rate at

time f.
e The long rate is defined as r(t, c0).
F(t,T,M): the forward price at time ¢ of a forward

contract that delivers at time T a zero-coupon bond
maturing at time M >T.

Standard Notations (concluded)

f(@t,T,L): the L-period forward rate at time T implied at
time t stated on a per-period basis and compounded
once per period.

f(t,T): the one-period or instantaneous forward rate at
time T as seen at time ¢ stated on a per period basis
and compounded once per period.

e It is f(t,7,1) in the discrete-time model and
f(t,T,dt) in the continuous-time model.

e Note that f(¢,t) equals the short rate r(t).
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Fundamental Relations

e The price of a zero-coupon bond equals

(1+7(t, T))~T=Y in discrete time,
P(t,T) = —r(t,T)(T—t)

e in continuous time.

e r(t,T) as a function of T' defines the spot rate curve at
time t.

e By definition,

r(t,t+1) in discrete time,
ftt) =

r(t,t) in continuous time.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 755

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 757



Fundamental Relations (continued)

e Forward prices and zero-coupon bond prices are related:

P(t, M)
Ft,T,M)=——"—--, T<M. 82
(T = B T (52)
— The forward price equals the future value at time T
of the underlying asset (see text for proof).

e Equation (82) holds whether the model is discrete-time

or continuous-time, and it implies

F(t,T,M) = F(t,T,S)F(t,5,M), T <S8 <M.
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Fundamental Relations (continued)

e In continuous time,

 WF#T,T+L) W(PET)/P{tT+L))

L L

f(t7 T? L) =
(84)
by Eq. (82) on p. 758.
e Furthermore,

FLT,AL) = In(P(¢t,T)/P(t, T + At)) _ Ol P(t,T)

At aT
9P(t,T)/0T
Pt.T)

Fundamental Relations (continued)

e Forward rates and forward prices are related
definitionally by

- 1 1/L 7 P(t,T) 1/L
F&T L) = (F(t,T,T+L)> —1= (P(t,T+L)> _(ég)

in discrete time.

- f(t,T,L) =+ (% — 1) is the analog to

Eq. (83) under simple compounding.
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Fundamental Relations (continued)
e So
OP(t,T)/0T
t,T)= li t, T At) = —— 72— T.
ft.T) = lim f(t,T,At) PeT) 'S
(85)
e Because Eq. (85) is equivalent to
P(t,T) = e Ji T(ho)ds (86)
the spot rate curve is
1 T
r(t,T) = —— t,s)ds.
1) = 7 [ 5t
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Fundamental Relations (concluded)

e The discrete analog to Eq. (86) is

1

P S T e ) 0 T

e The short rate and the market discount function are
related by
oP(t, T
- TEH
— This can be verified with Eq. (85) on p. 761 and the
observation that P(t,t) =1 and r(t) = f(¢,¢).

Risk-Neutral Pricing (continued)

e The local expectations theory is thus a consequence of
the existence of a risk-neutral probability .

e Rewrite Eq. (88) as

ET[P(t+1,T)]
14 r(t)

= P(t,T).

— It says the current spot rate curve equals the
expected spot rate curve one period from now
discounted by the short rate.
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Risk-Neutral Pricing

e Under the local expectations theory, the expected rate of
return of any riskless bond over a single period equals

the prevailing one-period spot rate.
— Forall t+1<T,

EJ[P(t+1,T)]

P =Lt (88)

— Relation (88) in fact follows from the risk-neutral
valuation principle, Theorem 14 (p. 419).
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Risk-Neutral Pricing (continued)

e Apply the above equality iteratively to obtain

P(,T)
[ PE+1,7T)
= B { 1+r(t) }
_ r{ EfL[P(t+2,T)] }
T A+ r@) A +r(t+ 1)
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1
= ET { 89
Hlormarery arayl ™
©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 765




Interest Rate Swaps

e Consider an interest rate swap made at time ¢ with
payments to be exchanged at times ti,%s,... ,t,.

Risk-Neutral Pricing (concluded)

. e The fixed rate is ¢ per annum.
e Equation (88) on p. 763 can also be expressed as

e The floating-rate payments are based on the future
EJ[P(t+1,T)]=F(t,t+1,T).

annual rates fo, f1,..., fn_1 at times tg,t1,...,tnh_1.
e Hence the forward price for the next period is an e For simplicity, assume t;41 — t; is a fixed constant At
unbiased estimator of the expected bond price. for all 7, and the notional principal is one dollar.

e If t < ty, we have a forward interest rate swap.

e The ordinary swap corresponds to t = tg.
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Continuous-Time Risk-Neutral Pricing Interest Rate Swaps (continued)

e In continuous time, the local expectations theory implies . . .
’ *p y mp e The amount to be paid out at time t;41 is (f; —c) At

P(t,T)=E; {6* I 7“(S)dS} , t<T. (90) for the floating-rate payer.
— Simple rates are adopted here.
T

e Note that elt 7(9)ds ig the bank account process, which .
e Hence f; satisfies

denotes the rolled-over money market account.

1

e When the local expectations theory holds, riskless P(t;, tip1) = m

arbitrage opportunities are impossible.
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Interest Rate Swaps (continued)

e The value of the swap at time ¢ is thus

E”: E] |:€7 Jitr(s) d(f; 1 —c) At}
i=1

n . 1
— ™ — [ %r(s)ds o
;Et {e (P(t,;l,t,;) (1+0At)>}

n

= Z(P(t,ti_l) — (1 + cAt) x P(t,t;))

i=1

= P(t,tg) — P(t,t,) — cAt Z P(t,t;).

i=1
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Interest Rate Swaps (concluded)
e So a swap can be replicated as a portfolio of bonds.

e In fact, it can be priced by simple present value
calculations.

Swap Rate

e The swap rate, which gives the swap zero value, equals

P(t,tg) — P(t,t,)

Sn(?) S Pt ) At

(91)

e The swap rate is the fixed rate that equates the present
values of the fixed payments and the floating payments.

e For an ordinary swap, P(t,tg) = 1.
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The Binomial Model

e The analytical framework can be nicely illustrated with
the binomial model.

e Suppose the bond price P can move with probability ¢
to Pu and probability 1 —q to Pd, where u > d:

1=a_ py
P<
Pu
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The Binomial Model (continued) The Binomial Model (concluded)
e Over the period, the bond’s expected rate of return is e Now change the probability from ¢ to

. _qPu+(1—gq)Pd 1 —d
Q= (P ) —1=qu+(1-q)d—1 qu—)\\/Q(l—Q):%v (94)

(92) !
which is independent of bond maturity and q.

e The variance of that return rate is _ Recall the BOPM

~2 _ 2

0”=¢q(1—q)(u—d)”. (93) e The bond’s expected rate of return becomes

ity i i i P 1—p)Pd
e The bond Whos-e maturity is only o.ne period away will pPu+(1—p) l=put(1-pd—1=r
move from a price of 1/(1+r) to its par value $1. P

e This is the money market account modeled by the short ® The local expectations theory hence holds under the

rate. new probability measure p.
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Numerical Examples

The Binomial Model (continued) e Assume this spot rate curve:
Year 1 2

Spot rate 4% 5%

e The market price of risk is defined as A= (g —r) /0.

e The same arbitrage argument as in the continuous-time

case can be employed to show that A is independent of e Assume the one-year rate (short rate) can move up to

8% or down to 2% after a year:

8%
4%<
2%

the maturity of the bond (see text).
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Numerical Examples (continued)
e No real-world probabilities are specified.

e The prices of one- and two-year zero-coupon bonds are,

respectively,

100/1.04 = 96.154,100/(1.05)? = 90.703.

e They follow the binomial processes on p. 779.
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Numerical Examples (continued)

92.593 (= 100/1.08) 100
90.703 < 96.154 <

98.039 (= 100/1.02) 100
The price process of the two-year zero-coupon bond is on the
left; that of the one-year zero-coupon bond is on the right.
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Numerical Examples (continued)

e The pricing of derivatives can be simplified by assuming

investors are risk-neutral.

e Suppose all securities have the same expected one-period

rate of return, the riskless rate.

e Then
92.593 98.039
1 i
(1=P)x 55703 T2 90.703 %,

where p denotes the risk-neutral probability of an up

move in rates.
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Numerical Examples (concluded)
e Solving the equation leads to p = 0.319.

e Interest rate contingent claims can be priced under this
probability.
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Numerical Examples: Fixed-Income Options

e A one-year European call on the two-year zero with a
$95 strike price has the payoffs,

0.000
c <
3.039
e To solve for the option value C, we replicate the call by
a portfolio of x one-year and y two-year zeros.
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Numerical Examples: Fixed-Income Options
(continued)

e This leads to the simultaneous equations,

z x 100 4+ y x 92.593
z x 100 4y x 98.039

0.000,
3.039.

e They give x = —0.5167 and y = 0.5580.

e Consequently,
C =1z x96.154 +y x 90.703 ~ 0.93

to prevent arbitrage.
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Numerical Examples: Fixed-Income Options
(continued)

e This price is derived without assuming any version of an

expectations theory.
e Instead, the arbitrage-free price is derived by replication.

e The price of an interest rate contingent claim does not

depend directly on the real-world probabilities.

e The dependence holds only indirectly via the current

bond prices.
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Numerical Examples: Fixed-Income Options
(concluded)

e An equivalent method is to utilize risk-neutral pricing.

e The above call option is worth

(1-—p)x0+px3.039
1.04

C = ~ 0.93,

the same as before.

e This is not surprising, as arbitrage freedom and the

existence of a risk-neutral economy are equivalent.
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Numerical Examples: Futures and Forward Prices
e A one-year futures contract on the one-year rate has a 105
payoff of 100 — r, where r is the one-year rate at 4
. 5
maturity, as shown below. 02 (= 100 8) p N 102.222 (= 5 + (105/1.08))
105 Ve
F 0 M
98 (=100 — 2) 105 N
e As the futures price F' is the expected future payoff (see N Va 107.941 (= 5 + (105/1.02))
text), FF = (1 —p) x 92+ p x 98 = 93.914. 5
N
e On the other hand, the forward price for a one-year 105
forward contract on a one-year zero-coupon bond equals
90.703/96.154 = 94.331%. The left diagram depicts the cash flow; the right diagram
e The forward price exceeds the futures price. illustrates the price process.
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Numerical Examples: MBSs (continued)
Numerical Examples: Mortgage-Backed Securities

Suppose that the security can be prepaid at par.
e Consider a 5%-coupon, two-year mortgage-backed

) ) o It will be prepaid only when its price is higher than par.
security without amortization, prepayments, and default

risk. e Prepayment will hence occur only in the “down” state

) ) when the security is worth 102.941 (excluding coupon).
e Its cash flow and price process are illustrated on p. 788.

e The price therefore follows the process,
e Its fair price is

102.222
(1—p) x 102.222 + p x 107.941 M<
M = 101 = 100.045. 105

. . . . The security is worth
e Identical results could have been obtained via arbitrage

1—p) x 102.222 + p x 105

considerations. M= (
1.04

= 99.142.
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Numerical Examples: MBSs (continued)

The cash flow of the principal-only (PO) strip comes

from the mortgage’s principal cash flow.

The cash flow of the interest-only (IO) strip comes from
the interest cash flow (p. 791(a)).

e Their prices hence follow the processes on p. 791(b).

The fair prices are

(1 —p) x92.593 + p x 100

Numerical Examples: MBSs (continued)

e Suppose the mortgage is split into half floater and half

inverse floater.
e Let the floater (FLT) receive the one-year rate.

e Then the inverse floater (INV) must have a coupon rate

of
(10% — one-year rate)

to make the overall coupon rate 5%.

e Their cash flows as percentages of par and values are

shown on p. 793.

PO = =91.304
1.04 ’
(1-p)x9.630+px5
10 = = 7.839.
1.04
.
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PO: 100 10: 5
e e
0 5
e N e N
100 5
0 0
0 0
N e N e
100 5
N N
0 0
@
92.593 9.630
e e
PO 10
N N

100

o

(b)

The price 9.630 is derived from 5+ (5/1.08).
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FLT: 108 INV: 102
e e
4 6
e N e N
108 102
0 0
0 0
N e N e
104 106
N N
o] o]
(@)
104 100.444
e e
FLT INV
N N
104 106
(b)
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Numerical Examples: MBSs (concluded)

e On p. 793, the floater’s price in the up node, 104, is
derived from 4 + (108/1.08).

e The inverse floater’s price 100.444 is derived from
6 + (102/1.08).

e The current prices are

1 104
FIT = = x — —50
2 Toa_ Y
1 (1—p) x 100.444 1
Ny = L, (L=p)x 100444 4px 106 _ 0 o
2 1.04
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Equilibrium Term Structure Models

8. What’s your problem? Any moron
can understand bond pricing models.
— Top Ten Lies Finance Professors

Tell Their Students
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Introduction

e This chapter surveys equilibrium models.

Since the spot rates satisfy
In P(t,T)
T—t °
the discount function P(¢,T") suffices to establish the

spot rate curve.

r(t,T) =

All models to follow are short rate models.

Unless stated otherwise, the processes are risk-neutral.
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The Vasicek Model?

e The short rate follows
dr = B(p—r)dt+odW.

e The short rate is pulled to the long-term mean level p
at rate (.

e Superimposed on this “pull” is a normally distributed
stochastic term o dW.

e Since the process is an Ornstein-Uhlenbeck process,
E[r(T)|r(t) = v] =t r = p) e T

from Eq. (52) on p. 475.

aVasicek (1977).
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The Vasicek Model (concluded)
If B =0, then P goes to infinity as T — oc.
Sensibly, P goes to zero as T — oo if § # 0.
Even if §# 0, P may exceed one for a finite 7'

The spot rate volatility structure is the curve
(or(t,T)/0r)oc =cB(t,T)/(T —t).

When (> 0, the curve tends to decline with maturity.
The speed of mean reversion, 3, controls the shape of

the curve; indeed, higher (§ leads to greater attenuation

of volatility with maturity.
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The Vasicek Model (continued)

e The price of a zero-coupon bond paying one dollar at
maturity can be shown to be

—B(t,T)r(t
P(t,T) = A(t,T) e B&TI(®), (95)
where
— 2 A,—O’2 (72 t 2 .
exp { BT uzo?/s) _ ot } it g £0,
A(t,T) =
2 3
exp { o <7;_—t>_} if §=0.
and
1_e*ﬁ(T*’5> .
=g i B#0,
B(t,T) = A
T—t if 5=0.
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The Vasicek Model: Options on Zeros®

e Consider a European call with strike price X expiring
at time T on a zero-coupon bond with par value $1 and
maturing at time s > T.

e Its price is given by

P(t,s)N(z) — XP(t,T) N(x — 0y).

aJamshidian (1989).
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The Vasicek Model: Options on Zeros (concluded)

e Above
1 P(t,s) o
T= _ln<P(t T)X) T
Oy = ( ) )B( )
o2 [1—e=20(T—D)] " 0
’U(t,T)Q = 203 , 1 B#
Uz(T—t), if =0

e By the put-call parity, the price of a European put is

XP(t,T) N(~z + 0,) — P(t,s) N(—z).

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 803

Binomial Vasicek

o Consider a binomial model for the short rate in the time

interval [0,7'] divided into n identical pieces.

e Let At=T/n and

1
e R
e The following binomial model converges to the Vasicek
model,?®

r(k+1) = r(k) + oVAt £(k), 0<k<n.

aNelson and Ramaswamy (1990).
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Binomial Vasicek (continued)
e Above, £(k) = +1 with
p(r(k)) if 0 <p(rk)) <1
Prob[&(k)=1]=4¢ 0 if p(r(k)) <0
1 if 1 <p(r(k))
e Observe that the probability of an up move, p, is a
decreasing function of the interest rate r.

e This is consistent with mean reversion.
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Binomial Vasicek (concluded)

The rate is the same whether it is the result of an up
move followed by a down move or a down move followed

by an up move.
The binomial tree combines.

The key feature of the model that makes it happen is its
constant volatility, o.

For a general process Y with nonconstant volatility, the

resulting binomial tree may not combine.
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The Cox-Ingersoll-Ross Model®
It is the following square-root short rate model:
dr = B(p—r)dt + o/rdW. (96)
The diffusion differs from the Vasicek model by a
multiplicative factor /7.
The parameter 3 determines the speed of adjustment.
The short rate can reach zero only if 28u < o2.

See text for the bond pricing formula.

2Cox, Ingersoll, and Ross (1985).
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Binomial CIR

time interval [0,T].

Divide it into n periods of duration At =T/n.

Assume p, 8 > 0.

We want to approximate the short rate process in the

A direct discretization of the process is problematic

because the resulting binomial tree will not combine.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 808

Binomial CIR (continued)
e Instead, consider the transformed process

z(r) = 2y/r/o.

o It follows
dzxr = m(z)dt + dW,

where
m(x) = 26u/(0x) — (Bz/2) — 1/(2x).

e Since this new process has a constant volatility, its

associated binomial tree combines.
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Binomial CIR (concluded)

e The probability of an up move at each node r is

Binomial CIR (continued) Bu—r) At + _
n—r r—r

e Construct the combining tree for r as follows. p(r) = rt—r— (97)
o First, construct a tree for x. — rT = f(z + VAt) denotes the result of an up move
e Then transform each node of the tree into one for r via from 7.

the inverse transformation r = f(z) = 2202/4 (p. 811). — r~ = f(z — VAt) the result of a down move.

e Finally, set the probability p(r) to one as r goes to zero
to make the probability stay between zero and one.
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Numerical Examples

e Consider the process,

o+ 2VAT F@ + 2VEAD 0.2 (0.04 — r)dt 4+ 0.1y/r dW,
- -
L + VAT N . f@+VAD N for the time interval [0,1] given the initial rate
. @ f(@) F(@) r(0) = 0.04.
~ - ~ ~
@ — VAL N fle = VAD N e We shall use At =0.2 (year) for the binomial
o — 2VAT f@ = 2VAD approximation.

e See p. 814(a) for the resulting binomial short rate tree
with the up-move probabilities in parentheses.
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Numerical Examples (continued)

e Consider the node which is the result of an up move

from the root.

e Since the root has = = 24/7(0)/0 = 4, this particular
node’s x value equals 4 + VAt = 4.4472135955.

e Use the inverse transformation to obtain the short rate

22 x (0.1)2/4 ~ 0.0494442719102.

Numerical Examples (concluded)

Once the short rates are in place, computing the
probabilities is easy.

Note that the up-move probability decreases as interest
rates increase and decreases as interest rates decline.

This phenomenon agrees with mean reversion.

Convergence is quite good (see text).
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A General Method for Constructing Binomial Models®

e We are given a continuous-time process
dy = a(y,t)dt + o(y,t) dW.

e Make sure the binomial model’s drift and diffusion
converge to the above process by setting the probability
of an up move to

oy, t) At +y —yu
Yu — Yd

e Here yy =y +o(y,t)VAL and yqg =y — o(y, t)VAL
represent the two rates that follow the current rate y.

e The displacements are identical, at o(y,t)V At.

2Nelson and Ramaswamy (1990).
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A General Method (continued) A General Method (concluded)

But the binomial tree may not combine:

o(y, )VAL — o (yu, )VAL # —0(y, )V AL + o (ya, ) VAL

e The transformation is

[ et =2y

for the CIR model.

in general.

e When o(y,t) is a constant independent of y, equality

holds and the tree combines. e The transformation is

s
e To achieve this, define the transformation / (02)"'dz = (1/o)In S
y
_ -1
z(y,t) = / o(z,t)7" dz. for the Black-Scholes model.

e Then « follows dz = m(y, ) dt +dW for some m(y, t) e The familiar binomial option pricing model in fact

(see text) discretizes In.S not S.

©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 818 ©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 820

A General Method (continued)

e The key is that the diffusion term is now a constant, and

the binomial tree for x combines.

e The probability of an up move remains

a(y(z,t),t) At + y(x,t) — ya(z,t)
yu(xv t) - yd(ma t)

)

Finis
where y(z,t) is the inverse transformation of z(y,t)
from x back to y.

e Note that y,(z,t) = y(z + VAt t + At) and
ya(z,t) = y(x — VAL T+ At).
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