
Fixed-Income Options

• Consider a two-year 99 European call on the three-year,

5% Treasury.

• Assume the Treasury pays annual interest.

• From p. 739 the three-year Treasury’s price minus the $5

interest could be $102.046, $100.630, or $98.579 two

years from now.

• Since these prices do not include the accrued interest,

we should compare the strike price against them.

• The call is therefore in the money in the first two

scenarios, with values of $3.046 and $1.630, and out of

the money in the third scenario.
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105
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105
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4.00%

101.955

1.458

3.526%

102.716

2.258

2.895%

102.046

3.046

5.289%

99.350

0.774

4.343%

100.630

1.630

6.514%

98.579

0.000

(a)

A

C

B

B

C

C

D

D

D

D

105

105

105

105

4.00%

101.955

0.096

3.526%

102.716

0.000

2.895%

102.046

0.000

5.289%

99.350

0.200

4.343%

100.630

0.000

6.514%

98.579

0.421

(b)
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Fixed-Income Options (continued)

• The option value is calculated to be $1.458 on p. 739(a).

• European interest rate puts can be valued similarly.

• Consider a two-year 99 European put on the same

security.

• At expiration, the put is in the money only if the

Treasury is worth $98.579 without the accrued interest.

• The option value is computed to be $0.096 on p. 739(b).
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Fixed-Income Options (concluded)

• The present value of the strike price is

PV(X) = 99 × 0.92101 = 91.18.

• The Treasury is worth B = 101.955.

• The present value of the interest payments during the

life of the options is

PV(I) = 5 × 0.96154 + 5 × 0.92101 = 9.41275.

• The call and the put are worth C = 1.458 and

P = 0.096, respectively.

• Hence the put-call parity is preserved:

C = P + B − PV(I) − PV(X).
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Delta or Hedge Ratio

• How much does the option price change in response to

changes in the price of the underlying bond?

• This relation is called delta (or hedge ratio) defined as

Oh − Oℓ

Ph − Pℓ
.

• In the above Ph and Pℓ denote the bond prices if the

short rate moves up and down, respectively.

• Similarly, Oh and Oℓ denote the option values if the

short rate moves up and down, respectively.
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Delta or Hedge Ratio (concluded)

• Since delta measures the sensitivity of the option value

to changes in the underlying bond price, it shows how to

hedge one with the other.

• Take the call and put on p. 739 as examples.

• Their deltas are

0.774 − 2.258

99.350 − 102.716
= 0.441,

0.200 − 0.000

99.350 − 102.716
= −0.059,

respectively.
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Volatility Term Structures

• The binomial interest rate tree can be used to calculate

the yield volatility of zero-coupon bonds.

• Consider an n-period zero-coupon bond.

• First find its yield to maturity yh (yℓ, respectively) at

the end of the initial period if the rate rises (declines,

respectively).

• The yield volatility for our model is defined as

(1/2) ln(yh/yℓ).
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Volatility Term Structures (continued)

• For example, based on the tree on p. 720, the two-year

zero’s yield at the end of the first period is 5.289% if the

rate rises and 3.526% if the rate declines.

• Its yield volatility is therefore

1

2
ln

(
0.05289

0.03526

)
= 20.273%.
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Volatility Term Structures (continued)

• Consider the three-year zero-coupon bond.

• If the rate rises, the price of the zero one year from now

will be

1

2
× 1

1.05289
×

(
1

1.04343
+

1

1.06514

)
= 0.90096.

• Thus its yield is
√

1
0.90096 − 1 = 0.053531.

• If the rate declines, the price of the zero one year from

now will be

1

2
× 1

1.03526
×

(
1

1.02895
+

1

1.04343

)
= 0.93225.
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Volatility Term Structures (continued)

• Thus its yield is
√

1
0.93225 − 1 = 0.0357.

• The yield volatility is hence

1

2
ln

(
0.053531

0.0357

)
= 20.256%,

slightly less than the one-year yield volatility.

• This is consistent with the reality that longer-term

bonds typically have lower yield volatilities than

shorter-term bonds.

• The procedure can be repeated for longer-term zeros to

obtain their yield volatilities.
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Volatility Term Structures (continued)

• We started with vi and then derived the volatility term

structure.

• In practice, the steps are reversed.

• The volatility term structure is supplied by the user

along with the term structure.

• The vi—hence the short rate volatilities via Eq. (77) on

p. 700—and the ri are then simultaneously determined.

• The result is the Black-Derman-Toy model.
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Volatility Term Structures (concluded)

• Suppose the user supplies the volatility term structure

which results in (v1, v2, v3, . . . ) for the tree.

• The volatility term structure one period from now will

be determined by (v2, v3, v4, . . . ) not (v1, v2, v3, . . . ).

• The volatility term structure supplied by the user is

hence not maintained through time.

• This issue will be addressed by other types of (complex)

models.
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Foundations of Term Structure Modeling
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[Meriwether] scoring especially high marks

in mathematics — an indispensable subject

for a bond trader.

— Roger Lowenstein,

When Genius Failed
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Terminology

• A period denotes a unit of elapsed time.

– Viewed at time t, the next time instant refers to time

t + dt in the continuous-time model and time t + 1

in the discrete-time case.

• Bonds will be assumed to have a par value of one unless

stated otherwise.

• The time unit for continuous-time models will usually be

measured by the year.
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Standard Notations

The following notation will be used throughout.

t: a point in time.

r(t): the one-period riskless rate prevailing at time t for

repayment one period later (the instantaneous spot rate,

or short rate, at time t).

P (t, T ): the present value at time t of one dollar at time T .
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Standard Notations (continued)

r(t, T ): the (T − t)-period interest rate prevailing at time t

stated on a per-period basis and compounded once per

period—in other words, the (T − t)-period spot rate at

time t.

• The long rate is defined as r(t,∞).

F (t, T, M): the forward price at time t of a forward

contract that delivers at time T a zero-coupon bond

maturing at time M ≥ T .
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Standard Notations (concluded)

f(t, T, L): the L-period forward rate at time T implied at

time t stated on a per-period basis and compounded

once per period.

f(t, T ): the one-period or instantaneous forward rate at

time T as seen at time t stated on a per period basis

and compounded once per period.

• It is f(t, T, 1) in the discrete-time model and

f(t, T, dt) in the continuous-time model.

• Note that f(t, t) equals the short rate r(t).
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Fundamental Relations

• The price of a zero-coupon bond equals

P (t, T ) =





(1 + r(t, T ))−(T−t) in discrete time,

e−r(t,T )(T−t) in continuous time.

• r(t, T ) as a function of T defines the spot rate curve at

time t.

• By definition,

f(t, t) =





r(t, t + 1) in discrete time,

r(t, t) in continuous time.
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Fundamental Relations (continued)

• Forward prices and zero-coupon bond prices are related:

F (t, T, M) =
P (t, M)

P (t, T )
, T ≤ M. (82)

– The forward price equals the future value at time T

of the underlying asset (see text for proof).

• Equation (82) holds whether the model is discrete-time

or continuous-time, and it implies

F (t, T, M) = F (t, T, S) F (t, S, M), T ≤ S ≤ M.
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Fundamental Relations (continued)

• Forward rates and forward prices are related
definitionally by

f(t, T, L) =

(
1

F (t, T, T + L)

)1/L

− 1 =

(
P (t, T )

P (t, T + L)

)1/L

− 1

(83)

in discrete time.

– f(t, T, L) = 1
L ( P (t,T )

P (t,T+L) − 1) is the analog to

Eq. (83) under simple compounding.
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Fundamental Relations (continued)

• In continuous time,

f(t, T, L) = − lnF (t, T, T + L)

L
=

ln(P (t, T )/P (t, T + L))

L
(84)

by Eq. (82) on p. 758.

• Furthermore,

f(t, T, ∆t) =
ln(P (t, T )/P (t, T + ∆t))

∆t
→ −∂ lnP (t, T )

∂T

= −∂P (t, T )/∂T

P (t, T )
.
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Fundamental Relations (continued)

• So

f(t, T ) ≡ lim
∆t→0

f(t, T, ∆t) = −∂P (t, T )/∂T

P (t, T )
, t ≤ T.

(85)

• Because Eq. (85) is equivalent to

P (t, T ) = e−
∫ T

t
f(t,s) ds, (86)

the spot rate curve is

r(t, T ) =
1

T − t

∫ T

t

f(t, s) ds.
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Fundamental Relations (concluded)

• The discrete analog to Eq. (86) is

P (t, T ) =
1

(1 + r(t))(1 + f(t, t + 1)) · · · (1 + f(t, T − 1))
.

(87)

• The short rate and the market discount function are

related by

r(t) = − ∂P (t, T )

∂T

∣∣∣∣
T=t

.

– This can be verified with Eq. (85) on p. 761 and the

observation that P (t, t) = 1 and r(t) = f(t, t).
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Risk-Neutral Pricing

• Under the local expectations theory, the expected rate of

return of any riskless bond over a single period equals

the prevailing one-period spot rate.

– For all t + 1 < T ,

Et[ P (t + 1, T ) ]

P (t, T )
= 1 + r(t). (88)

– Relation (88) in fact follows from the risk-neutral

valuation principle, Theorem 14 (p. 419).
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Risk-Neutral Pricing (continued)

• The local expectations theory is thus a consequence of

the existence of a risk-neutral probability π.

• Rewrite Eq. (88) as

Eπ
t [ P (t + 1, T ) ]

1 + r(t)
= P (t, T ).

– It says the current spot rate curve equals the

expected spot rate curve one period from now

discounted by the short rate.
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Risk-Neutral Pricing (continued)

• Apply the above equality iteratively to obtain

P (t, T )

= Eπ
t

[
P (t + 1, T )

1 + r(t)

]

= Eπ
t

[
Eπ

t+1
[ P (t + 2, T ) ]

(1 + r(t))(1 + r(t + 1))

]
= · · ·

= Eπ
t

[
1

(1 + r(t))(1 + r(t + 1)) · · · (1 + r(T − 1))

]
. (89)
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Risk-Neutral Pricing (concluded)

• Equation (88) on p. 763 can also be expressed as

Et[ P (t + 1, T ) ] = F (t, t + 1, T ).

• Hence the forward price for the next period is an

unbiased estimator of the expected bond price.
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Continuous-Time Risk-Neutral Pricing

• In continuous time, the local expectations theory implies

P (t, T ) = Et

[
e−

∫ T
t

r(s) ds
]
, t < T. (90)

• Note that e
∫ T

t
r(s) ds is the bank account process, which

denotes the rolled-over money market account.

• When the local expectations theory holds, riskless

arbitrage opportunities are impossible.
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Interest Rate Swaps

• Consider an interest rate swap made at time t with

payments to be exchanged at times t1, t2, . . . , tn.

• The fixed rate is c per annum.

• The floating-rate payments are based on the future

annual rates f0, f1, . . . , fn−1 at times t0, t1, . . . , tn−1.

• For simplicity, assume ti+1 − ti is a fixed constant ∆t

for all i, and the notional principal is one dollar.

• If t < t0, we have a forward interest rate swap.

• The ordinary swap corresponds to t = t0.
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Interest Rate Swaps (continued)

• The amount to be paid out at time ti+1 is (fi − c) ∆t

for the floating-rate payer.

– Simple rates are adopted here.

• Hence fi satisfies

P (ti, ti+1) =
1

1 + fi∆t
.
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Interest Rate Swaps (continued)

• The value of the swap at time t is thus

n∑

i=1

Eπ
t

[
e−

∫ ti
t r(s) ds(fi−1 − c) ∆t

]

=

n∑

i=1

Eπ
t

[
e−

∫ ti
t r(s) ds

(
1

P (ti−1, ti)
− (1 + c∆t)

)]

=
n∑

i=1

(P (t, ti−1) − (1 + c∆t) × P (t, ti))

= P (t, t0) − P (t, tn) − c∆t
n∑

i=1

P (t, ti).
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Interest Rate Swaps (concluded)

• So a swap can be replicated as a portfolio of bonds.

• In fact, it can be priced by simple present value

calculations.
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Swap Rate

• The swap rate, which gives the swap zero value, equals

Sn(t) ≡ P (t, t0) − P (t, tn)∑n
i=1 P (t, ti) ∆t

. (91)

• The swap rate is the fixed rate that equates the present

values of the fixed payments and the floating payments.

• For an ordinary swap, P (t, t0) = 1.
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The Binomial Model

• The analytical framework can be nicely illustrated with

the binomial model.

• Suppose the bond price P can move with probability q

to Pu and probability 1 − q to Pd, where u > d:

P
* Pd

1 − q

j Puq
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The Binomial Model (continued)

• Over the period, the bond’s expected rate of return is

µ̂ ≡ qPu + (1 − q) Pd

P
− 1 = qu + (1 − q) d − 1.

(92)

• The variance of that return rate is

σ̂2 ≡ q(1 − q)(u − d)2. (93)

• The bond whose maturity is only one period away will

move from a price of 1/(1 + r) to its par value $1.

• This is the money market account modeled by the short

rate.
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The Binomial Model (continued)

• The market price of risk is defined as λ ≡ (µ̂ − r)/σ̂.

• The same arbitrage argument as in the continuous-time

case can be employed to show that λ is independent of

the maturity of the bond (see text).
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The Binomial Model (concluded)

• Now change the probability from q to

p ≡ q − λ
√

q(1 − q) =
(1 + r) − d

u − d
, (94)

which is independent of bond maturity and q.

– Recall the BOPM.

• The bond’s expected rate of return becomes

pPu + (1 − p) Pd

P
− 1 = pu + (1 − p) d − 1 = r.

• The local expectations theory hence holds under the

new probability measure p.
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Numerical Examples

• Assume this spot rate curve:

Year 1 2

Spot rate 4% 5%

• Assume the one-year rate (short rate) can move up to

8% or down to 2% after a year:

4%
* 8%

j 2%
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Numerical Examples (continued)

• No real-world probabilities are specified.

• The prices of one- and two-year zero-coupon bonds are,

respectively,

100/1.04 = 96.154, 100/(1.05)2 = 90.703.

• They follow the binomial processes on p. 779.
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Numerical Examples (continued)

90.703
*

92.593 (= 100/1.08)

j 98.039 (= 100/1.02)
96.154

* 100

j 100

The price process of the two-year zero-coupon bond is on the

left; that of the one-year zero-coupon bond is on the right.
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Numerical Examples (continued)

• The pricing of derivatives can be simplified by assuming

investors are risk-neutral.

• Suppose all securities have the same expected one-period

rate of return, the riskless rate.

• Then

(1 − p) × 92.593

90.703
+ p × 98.039

90.703
− 1 = 4%,

where p denotes the risk-neutral probability of an up

move in rates.
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Numerical Examples (concluded)

• Solving the equation leads to p = 0.319.

• Interest rate contingent claims can be priced under this

probability.
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Numerical Examples: Fixed-Income Options

• A one-year European call on the two-year zero with a

$95 strike price has the payoffs,

C
* 0.000

j 3.039

• To solve for the option value C, we replicate the call by

a portfolio of x one-year and y two-year zeros.
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Numerical Examples: Fixed-Income Options
(continued)

• This leads to the simultaneous equations,

x × 100 + y × 92.593 = 0.000,

x × 100 + y × 98.039 = 3.039.

• They give x = −0.5167 and y = 0.5580.

• Consequently,

C = x × 96.154 + y × 90.703 ≈ 0.93

to prevent arbitrage.
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Numerical Examples: Fixed-Income Options
(continued)

• This price is derived without assuming any version of an

expectations theory.

• Instead, the arbitrage-free price is derived by replication.

• The price of an interest rate contingent claim does not

depend directly on the real-world probabilities.

• The dependence holds only indirectly via the current

bond prices.
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Numerical Examples: Fixed-Income Options
(concluded)

• An equivalent method is to utilize risk-neutral pricing.

• The above call option is worth

C =
(1 − p) × 0 + p × 3.039

1.04
≈ 0.93,

the same as before.

• This is not surprising, as arbitrage freedom and the

existence of a risk-neutral economy are equivalent.
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Numerical Examples: Futures and Forward Prices

• A one-year futures contract on the one-year rate has a

payoff of 100 − r, where r is the one-year rate at

maturity, as shown below.

F
*

92 (= 100 − 8)

j 98 (= 100 − 2)

• As the futures price F is the expected future payoff (see

text), F = (1 − p) × 92 + p × 98 = 93.914.

• On the other hand, the forward price for a one-year

forward contract on a one-year zero-coupon bond equals

90.703/96.154 = 94.331%.

• The forward price exceeds the futures price.
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Numerical Examples: Mortgage-Backed Securities

• Consider a 5%-coupon, two-year mortgage-backed

security without amortization, prepayments, and default

risk.

• Its cash flow and price process are illustrated on p. 788.

• Its fair price is

M =
(1 − p) × 102.222 + p × 107.941

1.04
= 100.045.

• Identical results could have been obtained via arbitrage

considerations.
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105

ր

5

ր ց 102.222 (= 5 + (105/1.08))

105 ր

0 M

105 ց

ց ր 107.941 (= 5 + (105/1.02))

5

ց

105

The left diagram depicts the cash flow; the right diagram

illustrates the price process.
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Numerical Examples: MBSs (continued)

• Suppose that the security can be prepaid at par.

• It will be prepaid only when its price is higher than par.

• Prepayment will hence occur only in the “down” state

when the security is worth 102.941 (excluding coupon).

• The price therefore follows the process,

M
* 102.222

j 105

• The security is worth

M =
(1 − p) × 102.222 + p × 105

1.04
= 99.142.
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Numerical Examples: MBSs (continued)

• The cash flow of the principal-only (PO) strip comes

from the mortgage’s principal cash flow.

• The cash flow of the interest-only (IO) strip comes from

the interest cash flow (p. 791(a)).

• Their prices hence follow the processes on p. 791(b).

• The fair prices are

PO =
(1 − p) × 92.593 + p × 100

1.04
= 91.304,

IO =
(1 − p) × 9.630 + p × 5

1.04
= 7.839.
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PO: 100 IO: 5

ր ր
0 5

ր ց ր ց
100 5

0 0

0 0

ց ր ց ր
100 5

ց ց
0 0

(a)

92.593 9.630

ր ր
po io

ց ց
100 5

(b)

The price 9.630 is derived from 5 + (5/1.08).
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Numerical Examples: MBSs (continued)

• Suppose the mortgage is split into half floater and half

inverse floater.

• Let the floater (FLT) receive the one-year rate.

• Then the inverse floater (INV) must have a coupon rate

of

(10% − one-year rate)

to make the overall coupon rate 5%.

• Their cash flows as percentages of par and values are

shown on p. 793.
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FLT: 108 INV: 102

ր ր
4 6

ր ց ր ց
108 102

0 0

0 0

ց ր ց ր
104 106

ց ց
0 0

(a)

104 100.444

ր ր
flt inv

ց ց
104 106

(b)
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Numerical Examples: MBSs (concluded)

• On p. 793, the floater’s price in the up node, 104, is

derived from 4 + (108/1.08).

• The inverse floater’s price 100.444 is derived from

6 + (102/1.08).

• The current prices are

FLT =
1

2
× 104

1.04
= 50,

INV =
1

2
× (1 − p) × 100.444 + p × 106

1.04
= 49.142.
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Equilibrium Term Structure Models
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8. What’s your problem? Any moron

can understand bond pricing models.

— Top Ten Lies Finance Professors

Tell Their Students
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Introduction

• This chapter surveys equilibrium models.

• Since the spot rates satisfy

r(t, T ) = − lnP (t, T )

T − t
,

the discount function P (t, T ) suffices to establish the

spot rate curve.

• All models to follow are short rate models.

• Unless stated otherwise, the processes are risk-neutral.
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The Vasicek Modela

• The short rate follows

dr = β(µ − r) dt + σ dW.

• The short rate is pulled to the long-term mean level µ

at rate β.

• Superimposed on this “pull” is a normally distributed

stochastic term σ dW .

• Since the process is an Ornstein-Uhlenbeck process,

E[ r(T ) | r(t) = r ] = µ + (r − µ) e−β(T−t)

from Eq. (52) on p. 475.

aVasicek (1977).
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The Vasicek Model (continued)

• The price of a zero-coupon bond paying one dollar at

maturity can be shown to be

P (t, T ) = A(t, T ) e−B(t,T ) r(t), (95)

where

A(t, T ) =






exp

[
(B(t,T )−T+t)(β2µ−σ2/2)

β2 −
σ2B(t,T )2

4β

]
if β 6= 0,

exp

[
σ2(T−t)3

6

]
if β = 0.

and

B(t, T ) =






1−e−β(T−t)

β if β 6= 0,

T − t if β = 0.
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The Vasicek Model (concluded)

• If β = 0, then P goes to infinity as T → ∞.

• Sensibly, P goes to zero as T → ∞ if β 6= 0.

• Even if β 6= 0, P may exceed one for a finite T .

• The spot rate volatility structure is the curve

(∂r(t, T )/∂r) σ = σB(t, T )/(T − t).

• When β > 0, the curve tends to decline with maturity.

• The speed of mean reversion, β, controls the shape of

the curve; indeed, higher β leads to greater attenuation

of volatility with maturity.
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The Vasicek Model: Options on Zerosa

• Consider a European call with strike price X expiring

at time T on a zero-coupon bond with par value $1 and

maturing at time s > T .

• Its price is given by

P (t, s) N(x) − XP (t, T ) N(x− σv).

aJamshidian (1989).
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The Vasicek Model: Options on Zeros (concluded)

• Above

x ≡ 1

σv
ln

(
P (t, s)

P (t, T ) X

)
+

σv

2
,

σv ≡ v(t, T ) B(T, s),

v(t, T )2 ≡






σ2[1−e−2β(T−t)]
2β , if β 6= 0

σ2(T − t), if β = 0
.

• By the put-call parity, the price of a European put is

XP (t, T ) N(−x + σv) − P (t, s) N(−x).
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Binomial Vasicek

• Consider a binomial model for the short rate in the time

interval [ 0, T ] divided into n identical pieces.

• Let ∆t ≡ T/n and

p(r) ≡ 1

2
+

β(µ − r)
√

∆t

2σ
.

• The following binomial model converges to the Vasicek

model,a

r(k + 1) = r(k) + σ
√

∆t ξ(k), 0 ≤ k < n.

aNelson and Ramaswamy (1990).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 804

Binomial Vasicek (continued)

• Above, ξ(k) = ±1 with

Prob[ ξ(k) = 1 ] =






p(r(k)) if 0 ≤ p(r(k)) ≤ 1

0 if p(r(k)) < 0

1 if 1 < p(r(k))

.

• Observe that the probability of an up move, p, is a

decreasing function of the interest rate r.

• This is consistent with mean reversion.
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Binomial Vasicek (concluded)

• The rate is the same whether it is the result of an up

move followed by a down move or a down move followed

by an up move.

• The binomial tree combines.

• The key feature of the model that makes it happen is its

constant volatility, σ.

• For a general process Y with nonconstant volatility, the

resulting binomial tree may not combine.
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The Cox-Ingersoll-Ross Modela

• It is the following square-root short rate model:

dr = β(µ − r) dt + σ
√

r dW. (96)

• The diffusion differs from the Vasicek model by a

multiplicative factor
√

r .

• The parameter β determines the speed of adjustment.

• The short rate can reach zero only if 2βµ < σ2.

• See text for the bond pricing formula.

aCox, Ingersoll, and Ross (1985).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 807

Binomial CIR

• We want to approximate the short rate process in the

time interval [ 0, T ].

• Divide it into n periods of duration ∆t ≡ T/n.

• Assume µ, β ≥ 0.

• A direct discretization of the process is problematic

because the resulting binomial tree will not combine.
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Binomial CIR (continued)

• Instead, consider the transformed process

x(r) ≡ 2
√

r/σ.

• It follows

dx = m(x) dt + dW,

where

m(x) ≡ 2βµ/(σ2x) − (βx/2) − 1/(2x).

• Since this new process has a constant volatility, its

associated binomial tree combines.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 809



Binomial CIR (continued)

• Construct the combining tree for r as follows.

• First, construct a tree for x.

• Then transform each node of the tree into one for r via

the inverse transformation r = f(x) ≡ x2σ2/4 (p. 811).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 810

x + 2
√

∆t f(x + 2
√

∆t)

ր ր
x +

√
∆t f(x +

√
∆t)

ր ց ր ց
x x f(x) f(x)

ց ր ց ր
x −

√
∆t f(x −

√
∆t)

ց ց
x − 2

√
∆t f(x − 2

√
∆t)
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Binomial CIR (concluded)

• The probability of an up move at each node r is

p(r) ≡ β(µ − r) ∆t + r − r−

r+ − r−
. (97)

– r+ ≡ f(x +
√

∆t) denotes the result of an up move

from r.

– r− ≡ f(x −
√

∆t) the result of a down move.

• Finally, set the probability p(r) to one as r goes to zero

to make the probability stay between zero and one.
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Numerical Examples

• Consider the process,

0.2 (0.04 − r) dt + 0.1
√

r dW,

for the time interval [ 0, 1 ] given the initial rate

r(0) = 0.04.

• We shall use ∆t = 0.2 (year) for the binomial

approximation.

• See p. 814(a) for the resulting binomial short rate tree

with the up-move probabilities in parentheses.
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0.04

(0.472049150276)

0.05988854382

(0.44081188025)

0.03155572809

(0.489789553691)

0.02411145618

(0.50975924867)

0.0713328157297

(0.426604457655)

0.08377708764

0.01222291236

0.01766718427

(0.533083330907)

0.04

(0.472049150276)

0.0494442719102

(0.455865503068)

0.0494442719102

(0.455865503068)

0.03155572809

(0.489789553691)

0.05988854382

0.04

0.02411145618

(a)

(b)

0.992031914837

0.984128889634

0.976293244408

0.968526861261

0.960831229521

0.992031914837

0.984128889634

0.976293244408
0.992031914837

0.990159879565

0.980492588317

0.970995502019

0.961665706744

0.993708727831

0.987391576942

0.981054487259

0.974702907786

0.988093738447

0.976486896485

0.965170249273

0.990159879565

0.980492588317

0.995189317343

0.990276851751

0.985271123591

0.993708727831

0.987391576942

0.98583472203

0.972116454453

0.996472798388

0.992781347933

0.983384173756

0.988093738447

0.995189317343

0.997558403086
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Numerical Examples (continued)

• Consider the node which is the result of an up move

from the root.

• Since the root has x = 2
√

r(0)/σ = 4, this particular

node’s x value equals 4 +
√

∆t = 4.4472135955.

• Use the inverse transformation to obtain the short rate

x2 × (0.1)2/4 ≈ 0.0494442719102.
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Numerical Examples (concluded)

• Once the short rates are in place, computing the

probabilities is easy.

• Note that the up-move probability decreases as interest

rates increase and decreases as interest rates decline.

• This phenomenon agrees with mean reversion.

• Convergence is quite good (see text).
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A General Method for Constructing Binomial Modelsa

• We are given a continuous-time process

dy = α(y, t) dt + σ(y, t) dW .

• Make sure the binomial model’s drift and diffusion

converge to the above process by setting the probability

of an up move to

α(y, t) ∆t + y − yu

yu − yd
.

• Here yu ≡ y + σ(y, t)
√

∆t and yd ≡ y − σ(y, t)
√

∆t

represent the two rates that follow the current rate y.

• The displacements are identical, at σ(y, t)
√

∆t .

aNelson and Ramaswamy (1990).
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A General Method (continued)

• But the binomial tree may not combine:

σ(y, t)
√

∆t − σ(yu, t)
√

∆t 6= −σ(y, t)
√

∆t + σ(yd, t)
√

∆t

in general.

• When σ(y, t) is a constant independent of y, equality

holds and the tree combines.

• To achieve this, define the transformation

x(y, t) ≡
∫ y

σ(z, t)−1 dz.

• Then x follows dx = m(y, t) dt + dW for some m(y, t)

(see text).
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A General Method (continued)

• The key is that the diffusion term is now a constant, and

the binomial tree for x combines.

• The probability of an up move remains

α(y(x, t), t) ∆t + y(x, t) − yd(x, t)

yu(x, t) − yd(x, t)
,

where y(x, t) is the inverse transformation of x(y, t)

from x back to y.

• Note that yu(x, t) ≡ y(x +
√

∆t, t + ∆t) and

yd(x, t) ≡ y(x −
√

∆t, t + ∆t) .
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A General Method (concluded)

• The transformation is
∫ r

(σ
√

z)−1 dz = 2
√

r/σ

for the CIR model.

• The transformation is
∫ S

(σz)−1 dz = (1/σ) ln S

for the Black-Scholes model.

• The familiar binomial option pricing model in fact

discretizes lnS not S.
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Finis
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