
Backward Induction on the RT Tree

• After the RT tree is constructed, it can be used to price

options by backward induction.

• Recall that each node keeps two variances h2
max and

h2
min.

• We now increase that number to K equally spaced

variances between h2
max and h2

min at each node.

• Besides the minimum and maximum variances, the other

K − 2 variances in between are linearly interpolated.a

aIn practice, log-linear interpolation works better (Lyuu and Wu

(2005)). Log-cubic interpolation works even better (Liu (2005)).
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Backward Induction on the RT Tree (continued)

• For example, if K = 3, then a variance of

10.5436 × 10−6 will be added between the maximum

and minimum variances at node (2, 0) on p. 656.

• In general, the kth variance at node (i, j) is

h2
min(i, j) + k

h2
max(i, j) − h2

min(i, j)

K − 1
,

k = 0, 1, . . . , K − 1.

• Each interpolated variance’s jump parameter and

branching probabilities can be computed as before.
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Backward Induction on the RT Tree (concluded)

• During backward induction, if a variance falls between

two of the K variances, linear interpolation of the

option prices corresponding to the two bracketing

variances will be used as the approximate option price.

• The above ideas are reminiscent of the ones on p. 323,

where we dealt with arithmetic average-rate options.
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Numerical Examples

• We next use the numerical example on p. 656 to price a

European call option with a strike price of 100 and

expiring at date 3.

• Recall that the riskless interest rate is zero.

• Assume K = 2; hence there are no interpolated

variances.

• The pricing tree is shown on p. 678 with a call price of

0.66346.

– The branching probabilities needed in backward

induction can be found on p. 679.
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Numerical Examples (continued)

• Let us derive some of the numbers on p. 678.

• The option price for a terminal node at date 3 equals

max(S3 − 100, 0), independent of the variance level.

• Now move on to nodes at date 2.

• The option price at node (2, 3) depends on those at

nodes (3, 5), (3, 3), and (3, 1).

• It therefore equals

0.1387 × 5.37392 + 0.7197 × 3.19054 + 0.1416 × 1.05240 = 3.19054.

• Option prices for other nodes at date 2 can be computed

similarly.
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Numerical Examples (continued)

• For node (1, 1), the option price for both variances is

0.1237 × 3.19054 + 0.7499 × 1.05240 + 0.1264 × 0.14573 = 1.20241.

• Node (1, 0) is most interesting.

• We knew that a down move from it gives a variance of

0.000105609.

• This number falls between the minimum variance

0.000105173 and the maximum variance 0.0001227 at

node (2,−1) on p. 656.
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Numerical Examples (continued)

• The option price corresponding to the minimum

variance is 0.

• The option price corresponding to the maximum

variance is 0.14573.

• The equation

x × 0.000105173 + (1 − x) × 0.0001227 = 0.000105609

is satisfied by x = 0.9751.

• So the option for the down state is approximated by

x × 0 + (1 − x) × 0.14573 = 0.00362.
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Numerical Examples (continued)

• The up move leads to the state with option price

1.05240.

• The middle move leads to the state with option price

0.48366.

• The option price at node (1, 0) is finally calculated as

0.4775 × 1.05240 + 0.0400 × 0.48366 + 0.4825 × 0.00362 = 0.52360.
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Numerical Examples (concluded)

• It is possible for some of the three variances following an

interpolated variance to exceed the maximum variance

or be exceeded by the minimum variance.

• When this happens, the option price corresponding to

the maximum or minimum variance will be used during

backward induction.

• An interpolated variance may choose a branch that goes

into a node that is not reached in the forward-induction

tree-building phase.a

• In this case, the algorithm fails.

aLyuu and Wu (2005).
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Interest Rate Derivative Securities
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What you are, you are only by contracts.

— Richard Wagner (1813–1883),

Der Ring des Nibelungen

Which shows that gambling’s not a sin

provided that you always win.

— Roald Dahl (1916–1990),

“Snow-White and the Seven Dwarfs”
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Term Structure Fitting
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That’s an old besetting sin;

they think calculating is inventing.

— Johann Wolfgang Goethe (1749–1832)
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Introduction to Term Structure Modeling
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The fox often ran to the hole

by which they had come in,

to find out if his body was still thin enough

to slip through it.

— Grimm’s Fairy Tales
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Outline

• Use the binomial interest rate tree to model stochastic

term structure.

– Illustrates the basic ideas underlying future models.

– Applications are generic in that pricing and hedging

methodologies can be easily adapted to other models.

• Although the idea is similar to the earlier one used in

option pricing, the current task is more complicated.

– The evolution of an entire term structure, not just a

single stock price, is to be modeled.

– Interest rates of various maturities cannot evolve

arbitrarily or arbitrage profits may occur.
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Issues

• A stochastic interest rate model performs two tasks.

– Provides a stochastic process that defines future term

structures without arbitrage profits.

– “Consistent” with the observed term structures.

• The unbiased expectations theory, the liquidity

preference theory, and the market segmentation theory

can all be made consistent with the model.
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History

• Methodology founded by Merton (1970).

• Modern interest rate modeling is often traced to 1977

when Vasicek and Cox, Ingersoll, and Ross developed

simultaneously their influential models.

• Early models have fitting problems because they may

not price today’s benchmark bonds correctly.

• An alternative approach pioneered by Ho and Lee (1986)

makes fitting the market yield curve mandatory.

• Models based on such a paradigm are called (somewhat

misleadingly) arbitrage-free or no-arbitrage models.
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Binomial Interest Rate Tree

• Goal is to construct a no-arbitrage interest rate tree

consistent with the yields and/or yield volatilities of

zero-coupon bonds of all maturities.

– This procedure is called calibration.

• Pick a binomial tree model in which the logarithm of the

future short rate obeys the binomial distribution.

– Exactly like the CRR tree.

• The limiting distribution of the short rate at any future

time is hence lognormal.
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Binomial Interest Rate Tree (continued)

• A binomial tree of future short rates is constructed.

• Every short rate is followed by two short rates in the

following period (see next page).

• In the figure on p. 696 node A coincides with the start of

period j during which the short rate r is in effect.
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Binomial Interest Rate Tree (continued)

• At the conclusion of period j, a new short rate goes into

effect for period j + 1.

• This may take one of two possible values:

– rℓ: the “low” short-rate outcome at node B.

– rh: the “high” short-rate outcome at node C.

• Each branch has a fifty percent chance of occurring in a

risk-neutral economy.
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Binomial Interest Rate Tree (continued)

• We shall require that the paths combine as the binomial

process unfolds.

• The short rate r can go to rh and rℓ with equal

risk-neutral probability 1/2 in a period of length ∆t.

• Hence the volatility of ln r after ∆t time is

σ =
1

2

1√
∆t

ln

(

rh

rℓ

)

(see Exercise 23.2.3 in text).

• Above, σ is annualized, whereas rℓ and rh are period

based.
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Binomial Interest Rate Tree (continued)

• Note that
rh

rℓ
= e2σ

√
∆t.

• Thus greater volatility, hence uncertainty, leads to larger

rh/rℓ and wider ranges of possible short rates.

• The ratio rh/rℓ may depend on time if the volatility is a

function of time.

• Note that rh/rℓ has nothing to do with the current

short rate r if σ is independent of r.
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Binomial Interest Rate Tree (continued)

• In general there are j possible rates in period j,

rj , rjvj , rjv
2
j , . . . , rjv

j−1
j ,

where

vj ≡ e2σj

√
∆t (77)

is the multiplicative ratio for the rates in period j (see

figure on next page).

• We shall call rj the baseline rates.

• The subscript j in σj is meant to emphasize that the

short rate volatility may be time dependent.
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Binomial Interest Rate Tree (concluded)

• In the limit, the short rate follows the following process,

r(t) = µ(t) eσ(t) W (t), (78)

in which the (percent) short rate volatility σ(t) is a

deterministic function of time.

• As the expected value of r(t) equals µ(t) eσ(t)2t/2, a

declining short rate volatility is usually imposed to

preclude the short rate from assuming implausibly high

values.

• Incidentally, this is how the binomial interest rate tree

achieves mean reversion.
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Memory Issues

• Path independency: The term structure at any node is

independent of the path taken to reach it.

• So only the baseline rates ri and the multiplicative

ratios vi need to be stored in computer memory.

• This takes up only O(n) space.a

• Storing the whole tree would have taken up O(n2)

space.

– Daily interest rate movements for 30 years require

roughly (30 × 365)2/2 ≈ 6 × 107 double-precision

floating-point numbers (half a gigabyte!).

aThroughout this chapter, n denotes the depth of the tree.
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Set Things in Motion

• The abstract process is now in place.

• Now need the annualized rates of return associated with

the various riskless bonds that make up the benchmark

yield curve and their volatilities.

– In the U.S., for example, the on-the-run yield curve

obtained by the most recently issued Treasury

securities may be used as the benchmark curve.
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Set Things in Motion (concluded)

• The term structure of (yield) volatilitiesa can be

estimated from either the historical data (historical

volatility) or interest rate option prices such as cap

prices (implied volatility).

• The binomial tree should be consistent with both term

structures.

• Here we focus on the term structure of interest rates.

aOr simply the volatility (term) structure.
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Model Term Structures

• The model price is computed by backward induction.

• Refer back to the figure on p. 696.

• Given that the values at nodes B and C are PB and PC,

respectively, the value at node A is then

PB + PC

2(1 + r)
+ cash flow at node A.

• We compute the values column by column without

explicitly expanding the binomial interest rate tree (see

figure next page).

• This takes quadratic time and linear space.
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Term Structure Dynamics

• An n-period zero-coupon bond’s price can be computed

by assigning $1 to every node at period n and then

applying backward induction.

• Repeating this step for n = 1, 2, . . . , one obtains the

market discount function implied by the tree.

• The tree therefore determines a term structure.

• It also contains a term structure dynamics as taking any

node in the tree as the current state induces a binomial

interest rate tree and, again, a term structure.

• It defines how the term structure evolves over time.
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Sample Term Structure

• We shall construct interest rate trees consistent with the

sample term structure in the following table.

• Assume the short rate volatility is such that

v ≡ rh/rℓ = 1.5, independent of time.

Period 1 2 3

Spot rate (%) 4 4.2 4.3

One-period forward rate (%) 4 4.4 4.5

Discount factor 0.96154 0.92101 0.88135
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An Approximate Calibration Scheme

• Start with the implied one-period forward rates and

then equate the expected short rate with the forward

rate (see Exercise 5.6.6 in text).

• For the first period, the forward rate is today’s

one-period spot rate.

• In general, let fj denote the forward rate in period j.

• This forward rate can be derived from the market

discount function via fj = (d(j)/d(j + 1)) − 1 (see

Exercise 5.6.3 in text).
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An Approximate Calibration Scheme (continued)

• Since the ith short rate, 1 ≤ i ≤ j, occurs with

probability 2−(j−1)
(

j−1
i−1

)

, this means

j
∑

i=1

2−(j−1)

(

j − 1

i − 1

)

rjv
i−1
j = fj .

• Thus

rj =

(

2

1 + vj

)j−1

fj . (79)

• The binomial interest rate tree is trivial to set up.
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An Approximate Calibration Scheme (concluded)

• The ensuing tree for the sample term structure appears

in figure next page.

• For example, the price of the zero-coupon bond paying
$1 at the end of the third period is

1

4
×

1

1.04
×

( 1

1.0352
×

( 1

1.0288
+

1

1.0432

)

+
1

1.0528
×

( 1

1.0432
+

1

1.0648

))

or 0.88155, which exceeds discount factor 0.88135.

• The tree is thus not calibrated.

• Indeed, this bias is inherent (see text).
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Issues in Calibration

• The model prices generated by the binomial interest rate

tree should match the observed market prices.

• Perhaps the most crucial aspect of model building.

• Treat the backward induction for the model price of the

m-period zero-coupon bond as computing some function

of the unknown baseline rate rm called f(rm).

• A root-finding method is applied to solve f(rm) = P for

rm given the zero’s price P and r1, r2, . . . , rm−1.

• This procedure is carried out for m = 1, 2, . . . , n.

• Runs in cubic time, hopelessly slow.
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Binomial Interest Rate Tree Calibration

• Calibration can be accomplished in quadratic time by

the use of forward induction (Jamshidian, 1991).

• The scheme records how much $1 at a node contributes

to the model price.

• This number is called the state price.

– It stands for the price of a state contingent claim

that pays $1 at that particular node (state) and 0

elsewhere.

• The column of state prices will be established by moving

forward from time 1 to time n.
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Binomial Interest Rate Tree Calibration (continued)

• Suppose we are at time j and there are j + 1 nodes.

– The baseline rate for period j is r ≡ rj .

– The multiplicative ratio be v ≡ vj .

– P1, P2, . . . , Pj are the state prices a period prior,

corresponding to rates r, rv, . . . , rvj−1.

• By definition,
∑j

i=1 Pi is the price of the (j − 1)-period

zero-coupon bond.
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Binomial Interest Rate Tree Calibration (continued)

• One dollar at time j has a known market value of

1/[ 1 + S(j) ]j, where S(j) is the j-period spot rate.

• Alternatively, this dollar has a present value of

g(r) ≡ P1

(1 + r)
+

P2

(1 + rv)
+

P3

(1 + rv2)
+ · · ·+ Pj

(1 + rvj−1)
.

• So we solve

g(r) =
1

[ 1 + S(j) ]j
(80)

for r.
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Binomial Interest Rate Tree Calibration (continued)

• Given a decreasing market discount function, a unique

positive solution for r is guaranteed.

• The state prices at time j can now be calculated (see

figure (a) next page).

• We call a tree with these state prices a binomial state

price tree (see figure (b) next page).

• The calibrated tree is depicted in on p. 720.
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Binomial Interest Rate Tree Calibration (concluded)

• The Newton-Raphson method can be used to solve for

the r in Eq. (80) on p. 717 as g′(r) is easy to evaluate.

• The monotonicity and the convexity of g(r) also

facilitate root finding.

• The above idea is straightforward to implement.

• The total running time is O(Cn2), where C is the

maximum number of times the root-finding routine

iterates, each consuming O(n) work.

• With a good initial guess, the Newton-Raphson method

converges in only a few steps (see Lyuu (1999)).
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A Numerical Example

• One dollar at the end of the second period should have a

present value of 0.92101 by the sample term structure.

• The baseline rate for the second period, r2, satisfies

0.480769

1 + r2
+

0.480769

1 + 1.5 × r2
= 0.92101.

• The result is r2 = 3.526%.

• This is used to derive the next column of state prices

shown in figure (b) on p. 719 as 0.232197, 0.460505, and

0.228308.

• Their sum gives the correct market discount factor

0.92101.
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A Numerical Example (concluded)

• The baseline rate for the third period, r3, satisfies

0.232197

1 + r3
+

0.460505

1 + 1.5 × r3
+

0.228308

1 + (1.5)2 × r3
= 0.88135.

• The result is r3 = 2.895%.

• Now, redo the calculation on p. 712 using the new rates:

1

4
×

1

1.04
× [

1

1.03526
× (

1

1.02895
+

1

1.04343
) +

1

1.05289
× (

1

1.04343
+

1

1.06514
)],

which equals 0.88135, an exact match.

• The tree on p. 720 prices without bias the benchmark

securities.

• The term structure dynamics is shown on p. 724.
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ր ց
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[ 0.958378 ]

ց ր
[

0.949767
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]

ց
[ 0.938844 ]
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Spread of Nonbenchmark Bonds

• Model prices calculated by the calibrated tree as a rule

do not match market prices of nonbenchmark bonds.

• The incremental return over the benchmark bonds is

called spread.

• We look for the spread that, when added uniformly over

the short rates in the tree, makes the model price equal

the market price.

• We will apply the spread concept to option-free bonds

here.
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Spread of Nonbenchmark Bonds (continued)

• We illustrate the idea with an example.

• Start with the tree on p. 727.

• Consider a security with cash flow Ci at time i for

i = 1, 2, 3.

• Its model price is p(s), which is equal to

1

1.04 + s
×

[

C1 +
1

2
×

1

1.03526 + s
×

(

C2 +
1

2

(

C3

1.02895 + s
+

C3

1.04343 + s

))

+

1

2
×

1

1.05289 + s
×

(

C2 +
1

2

(

C3

1.04343 + s
+

C3

1.06514 + s

))]

.

• Given a market price of P , the spread is the s that

solves P = p(s).
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Spread of Nonbenchmark Bonds (continued)

• The model price p(s) is a monotonically decreasing,

convex function of s.

• We will employ the Newton-Raphson root-finding

method to solve p(s) − P = 0 for s.

• But a quick look at the equation above reveals that

evaluating p′(s) directly is infeasible.

• Fortunately, the tree can be used to evaluate both p(s)

and p′(s) during backward induction.
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Spread of Nonbenchmark Bonds (continued)

• Consider an arbitrary node A in the tree associated with

the short rate r.

• In the process of computing the model price p(s), a

price pA(s) is computed at A.

• Prices computed at A’s two successor nodes B and C are

discounted by r + s to obtain pA(s) as follows,

pA(s) = c +
pB(s) + pC(s)

2(1 + r + s)
,

where c denotes the cash flow at A.
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Spread of Nonbenchmark Bonds (continued)

• To compute p′A(s) as well, node A calculates

p′A(s) =
p′B(s) + p′C(s)

2(1 + r + s)
− pB(s) + pC(s)

2(1 + r + s)2
. (81)

• This is easy if p′B(s) and p′C(s) are also computed at

nodes B and C.

• Apply the above procedure inductively to yield p(s) and

p′(s) at the root (p. 731).

• This is called the differential tree method.a

aLyuu (1999).
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Spread of Nonbenchmark Bonds (continued)

• Let C represent the number of times the tree is

traversed, which takes O(n2) time.

• The total running time is O(Cn2).

• In practice C is a small constant.

• The memory requirement is O(n).
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Spread of Nonbenchmark Bonds (continued)

Number of Running Number of Number of Running Number of

partitions n time (s) iterations partitions time (s) iterations

500 7.850 5 10500 3503.410 5

1500 71.650 5 11500 4169.570 5

2500 198.770 5 12500 4912.680 5

3500 387.460 5 13500 5714.440 5

4500 641.400 5 14500 6589.360 5

5500 951.800 5 15500 7548.760 5

6500 1327.900 5 16500 8502.950 5

7500 1761.110 5 17500 9523.900 5

8500 2269.750 5 18500 10617.370 5

9500 2834.170 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

75MHz Sun SPARCstation 20.
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Spread of Nonbenchmark Bonds (concluded)

• Consider a three-year, 5% bond with a market price of

100.569.

• Assume the bond pays annual interest.

• The spread can be shown to be 50 basis points over the

tree (p. 735).

• Note that the idea of spread does not assume parallel

shifts in the term structure.

• It also differs from the yield spread and static spread of

the nonbenchmark bond over an otherwise identical

benchmark bond.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 734

4.50%
100.569

A

C

B

5 5 105Cash flows:

B

C

C

D

D

D

D4.026%

3.395%

5.789%

4.843%

7.014%

105

105

105

105

106.552

105.150

103.118

106.754

103.436

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 735

More Applications of the Differential Tree: Calibrating
Black-Derman-Toy (in seconds)

Number Running Number Running Number Running

of years time of years time of years time

3000 398.880 39000 8562.640 75000 26182.080

6000 1697.680 42000 9579.780 78000 28138.140

9000 2539.040 45000 10785.850 81000 30230.260

12000 2803.890 48000 11905.290 84000 32317.050

15000 3149.330 51000 13199.470 87000 34487.320

18000 3549.100 54000 14411.790 90000 36795.430

21000 3990.050 57000 15932.370 120000 63767.690

24000 4470.320 60000 17360.670 150000 98339.710

27000 5211.830 63000 19037.910 180000 140484.180

30000 5944.330 66000 20751.100 210000 190557.420

33000 6639.480 69000 22435.050 240000 249138.210

36000 7611.630 72000 24292.740 270000 313480.390

75MHz Sun SPARCstation 20, one period per year.
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More Applications of the Differential Tree: Calculating
Implied Volatility (in seconds)

American call American put

Number of Running Number of Number of Running Number of

partitions time iterations partitions time iterations

100 0.008210 2 100 0.013845 3

200 0.033310 2 200 0.036335 3

300 0.072940 2 300 0.120455 3

400 0.129180 2 400 0.214100 3

500 0.201850 2 500 0.333950 3

600 0.290480 2 600 0.323260 2

700 0.394090 2 700 0.435720 2

800 0.522040 2 800 0.569605 2

Intel 166MHz Pentium, running on Microsoft Windows 95.
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