
Correlated Trinomial Modela

• Two risky assets S1 and S2 follow

dSi/Si = r dt + σi dWi in a risk-neutral economy,

i = 1, 2.

• Let

Mi ≡ er∆t,

Vi ≡ M2
i (eσ2

i ∆t − 1).

– SiMi is the mean of Si at time ∆t.

– S2
i Vi the variance of Si at time ∆t.

aBoyle, Evnine, and Gibbs (1989).
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Correlated Trinomial Model (continued)

• The value of S1S2 at time ∆t has a joint lognormal

distribution with mean S1S2M1M2e
ρσ1σ2∆t, where ρ is

the correlation between dW1 and dW2.

• Next match the 1st and 2nd moments of the

approximating discrete distribution to those of the

continuous counterpart.

• At time ∆t from now, there are five distinct outcomes.
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Correlated Trinomial Model (continued)

• The five-point probability distribution of the asset prices

is (as usual, we impose uidi = 1)

Probability Asset 1 Asset 2

p1 S1u1 S2u2

p2 S1u1 S2d2

p3 S1d1 S2d2

p4 S1d1 S2u2

p5 S1 S2
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Correlated Trinomial Model (continued)

• The probabilities must sum to one, and the means must

be matched:

1 = p1 + p2 + p3 + p4 + p5,

S1M1 = (p1 + p2) S1u1 + p5S1 + (p3 + p4) S1d1,

S2M2 = (p1 + p4) S2u2 + p5S2 + (p2 + p3) S2d2.
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Correlated Trinomial Model (concluded)

• Let R ≡ M1M2e
ρσ1σ2∆t.

• Match the variances and covariance:

S
2
1V1 = (p1 + p2)((S1u1)

2 − (S1M1)
2
) + p5(S

2
1 − (S1M1)

2
)

+(p3 + p4)((S1d1)
2 − (S1M1)

2
),

S
2
2V2 = (p1 + p4)((S2u2)

2 − (S2M2)
2
) + p5(S

2
2 − (S2M2)

2
)

+(p2 + p3)((S2d2)
2 − (S2M2)

2
),

S1S2R = (p1u1u2 + p2u1d2 + p3d1d2 + p4d1u2 + p5) S1S2.

• The solutions are complex (see text).
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Correlated Trinomial Model Simplifieda

• Let µ′
i ≡ r − σ2

i /2 and ui ≡ eλσi

√
∆t for i = 1, 2.

• The following simpler scheme is good enough:

p1 =
1

4

"

1

λ2
+

√
∆t

λ

 

µ′
1

σ1

+
µ′
2

σ2

!

+
ρ

λ2

#

,

p2 =
1

4

"

1

λ2
+

√
∆t

λ

 

µ′
1

σ1

−
µ′
2

σ2

!

−
ρ

λ2

#

,

p3 =
1

4

"

1

λ2
+

√
∆t

λ

 

−
µ′
1

σ1

−
µ′
2

σ2

!

+
ρ

λ2

#

,

p4 =
1

4

"

1

λ2
+

√
∆t

λ

 

−
µ′
1

σ1

+
µ′
2

σ2

!

−
ρ

λ2

#

,

p5 = 1 −
1

λ2
.

• It cannot price 2-asset 2-barrier options accurately.b

aMadan, Milne, and Shefrin (1989).
bSee Chang, Hsu, and Lyuu (2006) for a solution.
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Extrapolation

• It is a method to speed up numerical convergence.

• Say f(n) converges to an unknown limit f at rate of

1/n:

f(n) = f +
c

n
+ o

(

1

n

)

. (57)

• Assume c is an unknown constant independent of n.

– Convergence is basically monotonic and smooth.
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Extrapolation (concluded)

• From two approximations f(n1) and f(n2) and by

ignoring the smaller terms,

f(n1) = f +
c

n1
,

f(n2) = f +
c

n2
.

• A better approximation to the desired f is

f =
n1f(n1) − n2f(n2)

n1 − n2
. (58)

• This estimate should converge faster than 1/n.

• The Richardson extrapolation uses n2 = 2n1.
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Improving BOPM with Extrapolation

• Consider standard European options.

• Denote the option value under BOPM using n time

periods by f(n).

• It is known that BOPM convergences at the rate of 1/n,

consistent with Eq. (57) on p. 535.

• But the plots on p. 242 (redrawn on next page)

demonstrate that convergence to the true option value

oscillates with n.

• Extrapolation is inapplicable at this stage.
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Improving BOPM with Extrapolation (concluded)

• Take the at-the-money option in the left plot on p. 538.

• The sequence with odd n turns out to be monotonic

and smooth (see the left plot on p. 540).

• Apply extrapolation (58) on p. 536 with n2 = n1 + 2,

where n1 is odd.

• Result is shown in the right plot on p. 540.

• The convergence rate is amazing.

• See Exercise 9.3.8 of the textbook (p. 111) for ideas in

the general case.
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Numerical Methods
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All science is dominated

by the idea of approximation.

— Bertrand Russell
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Finite-Difference Methods

• Place a grid of points on the space over which the

desired function takes value.

• Then approximate the function value at each of these

points (p. 544).

• Solve the equation numerically by introducing difference

equations in place of derivatives.
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Example: Poisson’s Equation

• It is ∂2θ/∂x2 + ∂2θ/∂y2 = −ρ(x, y).

• Replace second derivatives with finite differences

through central difference.

• Introduce evenly spaced grid points with distance of ∆x

along the x axis and ∆y along the y axis.

• The finite difference form is

−ρ(xi, yj) =
θ(xi+1, yj) − 2θ(xi, yj) + θ(xi−1, yj)

(∆x)2

+
θ(xi, yj+1) − 2θ(xi, yj) + θ(xi, yj−1)

(∆y)2
.
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Example: Poisson’s Equation (concluded)

• In the above, ∆x ≡ xi − xi−1 and ∆y ≡ yj − yj−1 for

i, j = 1, 2, . . . .

• When the grid points are evenly spaced in both axes so

that ∆x = ∆y = h, the difference equation becomes

−h2ρ(xi, yj) = θ(xi+1, yj) + θ(xi−1, yj)

+θ(xi, yj+1) + θ(xi, yj−1) − 4θ(xi, yj).

• Given boundary values, we can solve for the xis and the

yjs within the square [±L,±L ].

• From now on, θi,j will denote the finite-difference

approximation to the exact θ(xi, yj).
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Explicit Methods

• Consider the diffusion equation

D(∂2θ/∂x2) − (∂θ/∂t) = 0.

• Use evenly spaced grid points (xi, tj) with distances

∆x and ∆t, where ∆x ≡ xi+1 − xi and ∆t ≡ tj+1 − tj .

• Employ central difference for the second derivative and

forward difference for the time derivative to obtain

∂θ(x, t)

∂t

˛

˛

˛

˛

t=tj

=
θ(x, tj+1) − θ(x, tj)

∆t
+ · · · , (59)

∂2θ(x, t)

∂x2

˛

˛

˛

˛

x=xi

=
θ(xi+1, t) − 2θ(xi, t) + θ(xi−1, t)

(∆x)2
+ · · · . (60)
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Explicit Methods (continued)

• To assemble Eqs. (59) and (60) into a single equation at

(xi, tj), need to decide how to evaluate x in the first

equation and t in the second.

• Since central difference around xi is used in Eq. (60),

we might as well use xi for x in Eq. (59).

• Two choices are possible for t in Eq. (60).

• The first choice uses t = tj to yield the following

finite-difference equation,

θi,j+1 − θi,j

∆t
= D

θi+1,j − 2θi,j + θi−1,j

(∆x)2
. (61)
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Explicit Methods (concluded)

• The stencil of grid points involves four values, θi,j+1,

θi,j , θi+1,j, and θi−1,j.

• We can calculate θi,j+1 from θi,j , θi+1,j, θi−1,j, at the

previous time tj (see figure (a) on next page).

• Starting from the initial conditions at t0, that is,

θi,0 = θ(xi, t0), i = 1, 2, . . . , we calculate

θi,1, i = 1, 2, . . . ,

and then

θi,2, i = 1, 2, . . . ,

and so on.
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Stability

• The explicit method is numerically unstable unless

∆t ≤ (∆x)2/(2D).

– A numerical method is unstable if the solution is

highly sensitive to changes in initial conditions.

• The stability condition may lead to high running times

and memory requirements.

• For instance, halving ∆x would imply quadrupling

(∆t)−1, resulting in a running time eight times as much.
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Explicit Method and Trinomial Tree

• Rearrange Eq. (61) on p. 548 as

θi,j+1 =
D∆t

(∆x)2
θi+1,j +

„

1 −

2D∆t

(∆x)2

«

θi,j +
D∆t

(∆x)2
θi−1,j .

• When the stability condition is satisfied, the three

coefficients for θi+1,j, θi,j , and θi−1,j all lie between

zero and one and sum to one.

• They can therefore be interpreted as probabilities.

• So the finite-difference equation becomes identical to

backward induction on trinomial trees.

• The freedom in choosing ∆x corresponds to similar

freedom in the construction of the trinomial trees.
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Implicit Methods

• If we use t = tj+1 in Eq. (60) on p. 547 instead, the

finite-difference equation becomes

θi,j+1 − θi,j

∆t
= D

θi+1,j+1 − 2θi,j+1 + θi−1,j+1

(∆x)2
.

(62)

• The stencil involves θi,j , θi,j+1, θi+1,j+1, and θi−1,j+1.

• This method is implicit because the value of any one of

the three quantities at tj+1 cannot be calculated unless

the other two are known (see figure (b) on p. 550).
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Implicit Methods (continued)

• Equation (62) can be rearranged as

θi−1,j+1 − (2 + γ) θi,j+1 + θi+1,j+1 = −γθi,j,

where γ ≡ (∆x)2/(D∆t).

• This equation is unconditionally stable.

• Suppose the boundary conditions are given at x = x0

and x = xN+1.

• After θi,j has been calculated for i = 1, 2, . . . , N , the

values of θi,j+1 at time tj+1 can be computed as the

solution to the following tridiagonal linear system,
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Implicit Methods (continued)
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where a ≡ −2 − γ.
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Implicit Methods (concluded)

• Tridiagonal systems can be solved in O(N) time and

O(N) space.

• The matrix above is nonsingular when γ ≥ 0.

– A square matrix is nonsingular if its inverse exists.
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Crank-Nicolson Method
• Take the average of explicit method (61) on p. 548 and

implicit method (62) on p. 553:

θi,j+1 − θi,j

∆t

=
1

2

 

D
θi+1,j − 2θi,j + θi−1,j

(∆x)2
+ D

θi+1,j+1 − 2θi,j+1 + θi−1,j+1

(∆x)2

!

.

• After rearrangement,

γθi,j+1 −
θi+1,j+1 − 2θi,j+1 + θi−1,j+1

2
= γθi,j +

θi+1,j − 2θi,j + θi−1,j

2
.

• This is an unconditionally stable implicit method with

excellent rates of convergence.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 557

Stencil

t
j
 t
j
+1


x
i


x
i
+1


x
i
+1
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Numerically Solving the Black-Scholes PDE

• We focus on American puts.

• The technique can be applied to any derivative

satisfying the Black-Scholes PDE as only the initial and

the boundary conditions need to be changed.

• The Black-Scholes PDE for American puts is

1

2
σ2S2 ∂2P

∂S2
+ (r − q) S

∂P

∂S
− rP +

∂P

∂t
= 0

with P (S, T ) = max(X − S, 0) and

P (S, t) = max(P (S, t), X − S) for t < T .

• P denotes the option value at time t if it is not

exercised for the next instant of time.
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Numerically Solving the Black-Scholes PDE
(continued)

• After the change of variable V ≡ lnS, the option value

becomes U(V, t) ≡ P (eV , t) and

∂P

∂t
=

∂U

∂t
,

∂P

∂S
=

1

S

∂U

∂V
,
∂2P

∂2S
=

1

S2

∂2U

∂V 2
− 1

S2

∂U

∂V
.

• The Black-Scholes PDE is now transformed into

1

2
σ2 ∂2U

∂V 2
+

(

r − q − σ2

2

)

∂U

∂V
− rU +

∂U

∂t
= 0

subject to U(V, T ) = max(X − eV , 0) and

U(V, t) = max(U(V, t), X − eV ), t < T .
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Numerically Solving the Black-Scholes PDE
(concluded)

• Along the V axis, the grid will span from Vmin to

Vmin + N × ∆V at ∆V apart for some suitably small

Vmin.

• So boundary conditions at the lower (V = Vmin) and

upper (V = Vmin + N × ∆V ) boundaries will have to be

specified.

• S0 as usual denotes the current stock price.

• The details of the linear systems are in the text.
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Monte Carlo Simulationa

• Monte Carlo simulation is a sampling scheme.

• In many important applications within finance and

without, Monte Carlo is one of the few feasible tools.

• When the time evolution of a stochastic process is not

easy to describe analytically, Monte Carlo may very well

be the only strategy that succeeds consistently.

aA top 10 algorithm according to Dongarra and Sullivan (2000).
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The Big Idea

• Assume X1, X2, . . . , Xn have a joint distribution.

• θ ≡ E[ g(X1, X2, . . . , Xn) ] for some function g is

desired.

• We generate
(

x
(i)
1 , x

(i)
2 , . . . , x(i)

n

)

, 1 ≤ i ≤ N

independently with the same joint distribution as

(X1, X2, . . . , Xn) and set

Yi ≡ g
(

x
(i)
1 , x

(i)
2 , . . . , x(i)

n

)

.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 563

The Big Idea (concluded)

• Y1, Y2, . . . , YN are independent and identically

distributed random variables.

• Each Yi has the same distribution as

Y ≡ g(X1, X2, . . . , Xn).

• Since the average of these N random variables, Y ,

satisfies E[ Y ] = θ, it can be used to estimate θ.

• The strong law of large numbers says that this

procedure converges almost surely.

• The number of replications (or independent trials), N , is

called the sample size.
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Accuracy

• The Monte Carlo estimate and true value may differ

owing to two reasons:

1. Sampling variation.

2. The discreteness of the sample paths.a

• The first can be controlled by the number of replications.

• The second can be controlled by the number of

observations along the sample path.

aThis may not be an issue if the derivative only requires discrete

sampling along the time dimension.
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Accuracy and Number of Replications

• The statistical error of the sample mean Y of the

random variable Y grows as 1/
√

N .

– Because Var[ Y ] = Var[ Y ]/N .

• In fact, this convergence rate is asymptotically optimal

by the Berry-Esseen theorem.

• So the variance of the estimator Y can be reduced by a

factor of 1/N by doing N times as much work.

• This is amazing because the same order of convergence

holds independently of the dimension n.
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Accuracy and Number of Replications (concluded)

• In contrast, classic numerical integration schemes have

an error bound of O(N−c/n) for some constant c > 0.

– n is the dimension.

• The required number of evaluations thus grows

exponentially in n to achieve a given level of accuracy.

– The familiar curse of dimensionality.

• The Monte Carlo method, for example, is more efficient

than alternative procedures for securities depending on

more than one asset, the multivariate derivatives.
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Variance Reduction

• The statistical efficiency of Monte Carlo simulation can

be measured by the variance of its output.

• If this variance can be lowered without changing the

expected value, fewer replications are needed.

• Methods that improve efficiency in this manner are

called variance-reduction techniques.

• Such techniques become practical when the added costs

are outweighed by the reduction in sampling.
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Monte Carlo Option Pricing

• For the pricing of European options on a

dividend-paying stock, we may proceed as follows.

• Stock prices S1, S2, S3, . . . at times ∆t, 2∆t, 3∆t, . . .

can be generated via

Si+1 = Sie
(µ−σ2/2) ∆t+σ

√
∆t ξ, ξ ∼ N(0, 1)

(63)

when dS/S = µ dt + σ dW .

• Non-dividend-paying stock prices in a risk-neutral

economy can be generated by setting µ = r.

• Pricing Asian options is easy (see text).
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Pricing American Options

• Standard Monte Carlo simulation is inappropriate for

American options because of early exercise.

• It is difficult to determine the early-exercise point based

on one single path.

• Monte Carlo simulation can be modified to price

American options with small biases (see p. 604).a

aLongstaff and Schwartz (2001).
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Delta and Common Random Numbers

• In estimating delta, it is natural to start with the

finite-difference estimate

e−rτ E[ P (S + ǫ) ] − E[ P (S − ǫ) ]

2ǫ
.

– P (x) is the terminal payoff of the derivative security

when the underlying asset’s initial price equals x.

• Use simulation to estimate E[ P (S + ǫ) ] first.

• Use another simulation to estimate E[ P (S − ǫ) ].

• Finally, apply the formula to approximate the delta.
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Delta and Common Random Numbers (concluded)

• This method is not recommended because of its high

variance.

• A much better approach is to use common random

numbers to lower the variance:

e−rτ E

[

P (S + ǫ) − P (S − ǫ)

2ǫ

]

.

• Here, the same random numbers are used for P (S + ǫ)

and P (S − ǫ).

• This holds for gamma and cross gammas (for

multivariate derivatives).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 572



Variance Reduction: Antithetic Variates

• We are interested in estimating E[ g(X1, X2, . . . , Xn) ],

where X1, X2, . . . , Xn are independent.

• Let Y1 and Y2 be random variables with the same

distribution as g(X1, X2, . . . , Xn).

• Then

Var

[

Y1 + Y2

2

]

=
Var[ Y1 ]

2
+

Cov[ Y1, Y2 ]

2
.

– Var[ Y1 ]/2 is the variance of the Monte Carlo

method with two (independent) replications.

• The variance Var[ (Y1 + Y2)/2 ] is smaller than

Var[ Y1 ]/2 when Y1 and Y2 are negatively correlated.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 573

Variance Reduction: Antithetic Variates (continued)

• For each simulated sample path X , a second one is

obtained by reusing the random numbers on which the

first path is based.

• This yields a second sample path Y .

• Two estimates are then obtained: One based on X and

the other on Y .

• If N independent sample paths are generated, the

antithetic-variates estimator averages over 2N

estimates.
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Variance Reduction: Antithetic Variates (continued)

• Consider process dX = at dt + bt

√
dt ξ.

• Let g be a function of n samples X1, X2, . . . , Xn on

the sample path.

• We are interested in E[ g(X1, X2, . . . , Xn) ].

• Suppose one simulation run has realizations

ξ1, ξ2, . . . , ξn for the normally distributed fluctuation

term ξ.

• This generates samples x1, x2, . . . , xn.

• The estimate is then g(x), where x ≡ (x1, x2 . . . , xn).
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Variance Reduction: Antithetic Variates (concluded)

• We do not sample n more numbers from ξ for the

second estimate.

• The antithetic-variates method computes g(x′) from

the sample path x
′ ≡ (x′

1, x
′
2 . . . , x′

n) generated by

−ξ1,−ξ2, . . . ,−ξn.

• We then output (g(x) + g(x′))/2.

• Repeat the above steps for as many times as required by

accuracy.
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Variance Reduction: Conditioning

• We are interested in estimating E[ X ].

• Suppose here is a random variable Z such that

E[ X |Z = z ] can be efficiently and precisely computed.

• E[ X ] = E[ E[ X |Z ] ] by the law of iterated conditional

expectations.

• Hence the random variable E[ X |Z ] is also an unbiased

estimator of E[ X ].
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Variance Reduction: Conditioning (concluded)

• As Var[ E[ X |Z ] ] ≤ Var[ X ], E[ X |Z ] has a smaller

variance than observing X directly.

• First obtain a random observation z on Z.

• Then calculate E[ X |Z = z ] as our estimate.

– There is no need to resort to simulation in computing

E[ X |Z = z ].

• The procedure can be repeated a few times to reduce

the variance.
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