
Continuous-Time Derivatives Pricing
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I have hardly met a mathematician

who was capable of reasoning.

— Plato (428 B.C.–347 B.C.)
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Toward the Black-Scholes Differential Equation

• The price of any derivative on a non-dividend-paying

stock must satisfy a partial differential equation.

• The key step is recognizing that the same random

process drives both securities.

• As their prices are perfectly correlated, we figure out the

amount of stock such that the gain from it offsets

exactly the loss from the derivative.

• The removal of uncertainty forces the portfolio’s return

to be the riskless rate.
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Assumptions

• The stock price follows dS = µS dt + σS dW .

• There are no dividends.

• Trading is continuous, and short selling is allowed.

• There are no transactions costs or taxes.

• All securities are infinitely divisible.

• The term structure of riskless rates is flat at r.

• There is unlimited riskless borrowing and lending.

• t is the current time, T is the expiration time, and

τ ≡ T − t.
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Black-Scholes Differential Equation

• Let C be the price of a derivative on S.

• From Ito’s lemma (p. 462),

dC =

(

µS
∂C

∂S
+

∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)

dt + σS
∂C

∂S
dW.

– The same W drives both C and S.

• Short one derivative and long ∂C/∂S shares of stock

(call it Π).

• By construction,

Π = −C + S(∂C/∂S).
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Black-Scholes Differential Equation (continued)

• The change in the value of the portfolio at time dt is

dΠ = −dC +
∂C

∂S
dS.

• Substitute the formulas for dC and dS into the partial

differential equation to yield

dΠ =

(

−
∂C

∂t
−

1

2
σ2S2 ∂2C

∂S2

)

dt.

• As this equation does not involve dW , the portfolio is

riskless during dt time: dΠ = rΠ dt.
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Black-Scholes Differential Equation (concluded)

• So
(

∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)

dt = r

(

C − S
∂C

∂S

)

dt.

• Equate the terms to finally obtain

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC.

• When there is a dividend yield q,

∂C

∂t
+ (r − q) S

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC.
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Rephrase

• The Black-Scholes differential equation can be expressed

in terms of sensitivity numbers,

Θ + rS∆ +
1

2
σ2S2Γ = rC. (53)

• Identity (53) leads to an alternative way of computing

Θ numerically from ∆ and Γ.

• When a portfolio is delta-neutral,

Θ +
1

2
σ2S2Γ = rC.

– A definite relation thus exists between Γ and Θ.
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PDEs for Asian Options

• Add the new variable A(t) ≡
∫ t

0
S(u) du.

• Then the value V of the Asian option satisfies this

two-dimensional PDE:a

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
+ S

∂V

∂A
= rV.

• The terminal conditions are

V (T, S, A) = max

(

A

T
− X, 0

)

for call,

V (T, S, A) = max

(

X −
A

T
, 0

)

for put.

aKemna and Vorst (1990).
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PDEs for Asian Options (continued)

• The two-dimensional PDE produces algorithms similar

to that on pp. 320ff.

• But one-dimensional PDEs are available for Asian

options.a

• For example, Večeř (2001) derives the following PDE for

Asian calls:

∂u

∂t
+ r

(

1 −
t

T
− z

)

∂u

∂z
+

(

1 − t
T − z

)2
σ2

2

∂2u

∂z2
= 0

with the terminal condition u(T, z) = max(z, 0).

aRogers and Shi (1995); Večeř (2001); Dubois and Lelièvre (2005).
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PDEs for Asian Options (concluded)

• For Asian puts:

∂u

∂t
+ r

(

t

T
− 1 − z

)

∂u

∂z
+

(

t
T − 1 − z

)2
σ2

2

∂2u

∂z2
= 0

with the same terminal condition.

• One-dimensional PDEs lead to highly efficient numerical

methods.
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Hedging
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Trees
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I love a tree more than a man.

— Ludwig van Beethoven (1770–1827)

And though the holes were rather small,

they had to count them all.

— The Beatles, A Day in the Life (1967)
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The Combinatorial Method

• The combinatorial method can often cut the running

time by an order of magnitude.

• The basic paradigm is to count the number of admissible

paths that lead from the root to any terminal node.

• We first used this method in the linear-time algorithm

for standard European option pricing on p. 228.

– It cannot apply to American options.

• We will now apply it to price barrier options.
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The Reflection Principlea

• Imagine a particle at position (0,−a) on the integral

lattice that is to reach (n,−b).

• Without loss of generality, assume a > 0 and b ≥ 0.

• This particle’s movement:

(i, j)
*(i + 1, j + 1) up move S → Su

j(i + 1, j − 1) down move S → Sd

• How many paths touch the x axis?

aAndré (1887).
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The Reflection Principle (continued)

• For a path from (0,−a) to (n,−b) that touches the x

axis, let J denote the first point this happens.

• Reflect the portion of the path from (0,−a) to J .

• A path from (0, a) to (n,−b) is constructed.

• It also hits the x axis at J for the first time (see figure

next page).

• The one-to-one mapping shows the number of paths

from (0,−a) to (n,−b) that touch the x axis equals

the number of paths from (0, a) to (n,−b).
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(0, a) (n, b)

(0, a)

J
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The Reflection Principle (concluded)

• A path of this kind has (n + b + a)/2 down moves and

(n − b − a)/2 up moves.

• Hence there are
(

n
n+a+b

2

)

(54)

such paths for even n + a + b.

– Convention:
(

n
k

)

= 0 for k < 0 or k > n.
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Pricing Barrier Options (Lyuu, 1998)

• Focus on the down-and-in call with barrier H < X .

• Assume H < S without loss of generality.

• Define

a ≡

‰

ln (X/ (Sdn))

ln(u/d)

ı

=

‰

ln(X/S)

2σ
√

∆t
+

n

2

ı

,

h ≡

—

ln (H/ (Sdn))

ln(u/d)

�

=

—

ln(H/S)

2σ
√

∆t
+

n

2

�

.

– h is such that H̃ ≡ Suhdn−h is the terminal price

that is closest to, but does not exceed H.

– a is such that X̃ ≡ Suadn−a is the terminal price

that is closest to, but is not exceeded by X .
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Pricing Barrier Options (continued)

• The true barrier is replaced by the effective barrier H̃

in the binomial model.

• A process with n moves hence ends up in the money if

and only if the number of up moves is at least a.

• The price Sukdn−k is at a distance of 2k from the

lowest possible price Sdn on the binomial tree.

–

Sukdn−k = Sd−kdn−k = Sdn−2k. (55)
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Pricing Barrier Options (continued)

• The number of paths from S to the terminal price

Sujdn−j is
(

n
j

)

, each with probability pj(1 − p)n−j .

• With reference to p. 498, the reflection principle can be

applied with a = n − 2h and b = 2j − 2h in Eq. (54)

on p. 495 by treating the S line as the x axis.

• Therefore,
(

n
n+(n−2h)+(2j−2h)

2

)

=

(

n

n − 2h + j

)

paths hit H̃ in the process for h ≤ n/2.
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Pricing Barrier Options (concluded)

• The terminal price Sujdn−j is reached by a path that

hits the effective barrier with probability
(

n

n − 2h + j

)

pj(1 − p)n−j .

• The option value equals
P2h

j=a

`

n

n−2h+j

´

pj(1 − p)n−j
`

Sujdn−j − X
´

Rn
. (56)

– R ≡ erτ/n is the riskless return per period.

• It implies a linear-time algorithm.
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Convergence of BOPM

• Equation (56) results in the sawtooth-like convergence

shown on p. 303.

• The reasons are not hard to see.

• The true barrier most likely does not equal the effective

barrier.

• The same holds for the strike price and the effective

strike price.

• The issue of the strike price is less critical.

• But the issue of the barrier is not negligible.
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Convergence of BOPM (continued)

• Convergence is actually good if we limit n to certain

values—191, for example.

• These values make the true barrier coincide with or

occur just above one of the stock price levels, that is,

H ≈ Sdj = Se−jσ
√

τ/n for some integer j.

• The preferred n’s are thus

n =

⌊

τ

(ln(S/H)/(jσ))
2

⌋

, j = 1, 2, 3, . . .

• There is only one minor technicality left.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 502

Convergence of BOPM (continued)

• We picked the effective barrier to be one of the n + 1

possible terminal stock prices.

• However, the effective barrier above, Sdj , corresponds to

a terminal stock price only when n − j is even by

Eq. (55) on p. 497.a

• To close this gap, we decrement n by one, if necessary,

to make n − j an even number.

aWe could have adopted the form Sdj (−n ≤ j ≤ n) for the effective

barrier.
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Convergence of BOPM (concluded)

• The preferred n’s are now

n =







ℓ if ℓ − j is even

ℓ − 1 otherwise
,

j = 1, 2, 3, . . . , where

ℓ ≡

⌊

τ

(ln(S/H)/(jσ))
2

⌋

.

• So evaluate pricing formula (56) on p. 500 only with the

n’s above.
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Practical Implications

• Now that barrier options can be efficiently priced, we

can afford to pick very large n’s (p. 507).

• This has profound consequences.

• For example, pricing is prohibitively time consuming

when S ≈ H because n ∼ 1/ ln2(S/H).

• This observation is indeed true of standard

quadratic-time binomial tree algorithms.

• But it no longer applies to linear-time algorithms

(p. 508).
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n Combinatorial method

Value Time (milliseconds)

21 5.507548 0.30

84 5.597597 0.90

191 5.635415 2.00

342 5.655812 3.60

533 5.652253 5.60

768 5.654609 8.00

1047 5.658622 11.10

1368 5.659711 15.00

1731 5.659416 19.40

2138 5.660511 24.70

2587 5.660592 30.20

3078 5.660099 36.70

3613 5.660498 43.70

4190 5.660388 44.10

4809 5.659955 51.60

5472 5.660122 68.70

6177 5.659981 76.70

6926 5.660263 86.90

7717 5.660272 97.20
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Barrier at 95.0 Barrier at 99.5 Barrier at 99.9

n Value Time n Value Time n Value Time

.

.

. 795 7.47761 8 19979 8.11304 253

2743 2.56095 31.1 3184 7.47626 38 79920 8.11297 1013

3040 2.56065 35.5 7163 7.47682 88 179819 8.11300 2200

3351 2.56098 40.1 12736 7.47661 166 319680 8.11299 4100

3678 2.56055 43.8 19899 7.47676 253 499499 8.11299 6300

4021 2.56152 48.1 28656 7.47667 368 719280 8.11299 8500

True 2.5615 7.4767 8.1130

(All times in milliseconds.)
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Trinomial Tree

• Set up a trinomial approximation to the geometric

Brownian motion dS/S = r dt + σ dW .a

• The three stock prices at time ∆t are S, Su, and Sd,

where ud = 1.

• Impose the matching of mean and that of variance:

1 = pu + pm + pd,

SM ≡ (puu + pm + (pd/u))S,

S2V ≡ pu(Su − SM)2 + pm(S − SM)2 + pd(Sd − SM)2.

aBoyle (1988).
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• Above,

M ≡ er∆t,

V ≡ M2(eσ2∆t − 1),

by Eqs. (17) on p. 145.
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Trinomial Tree (continued)

• Use linear algebra to verify that

pu =
u

(

V + M2 − M
)

− (M − 1)

(u − 1) (u2 − 1)
,

pd =
u2

(

V + M2 − M
)

− u3(M − 1)

(u − 1) (u2 − 1)
.

– In practice, must make sure the probabilities lie

between 0 and 1.

• Countless variations.
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Trinomial Tree (concluded)

• Use u = eλσ
√

∆t, where λ ≥ 1 is a tunable parameter.

• Then

pu →
1

2λ2
+

(

r + σ2
)
√

∆t

2λσ
,

pd →
1

2λ2
−

(

r − 2σ2
)√

∆t

2λσ
.

• A nice choice for λ is
√

π/2 .a

aOmberg (1988).
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Barrier Options Revisited

• BOPM introduces a specification error by replacing the

barrier with a nonidentical effective barrier.

• The trinomial model solves the problem by adjusting λ

so that the barrier is hit exactly.a

• It takes

h =
ln(S/H)

λσ
√

∆t

consecutive down moves to go from S to H if h is an

integer, which is easy to achieve by adjusting λ.

aRitchken (1995).
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Barrier Options Revisited (continued)

• Typically, we find the smallest λ ≥ 1 such that h is an

integer.

• That is, we find the largest integer j ≥ 1 that satisfies
ln(S/H)

jσ
√

∆t
≥ 1 and then let

λ =
ln(S/H)

jσ
√

∆t
.

– Such a λ may not exist for very small n’s.

– This is not hard to check.

• This done, one of the layers of the trinomial tree

coincides with the barrier.
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Barrier Options Revisited (concluded)

• The following probabilities may be used,

pu =
1

2λ2
+

µ′
√

∆t

2λσ
,

pm = 1 −
1

λ2
,

pd =
1

2λ2
−

µ′
√

∆t

2λσ
.

– µ′ ≡ r − σ2/2.
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Algorithms Comparisona

• So which algorithm is better, binomial or trinomial?

• Algorithms are often compared based on the n value at

which they converge.

– The one with the smallest n wins.

• So giraffes are faster than cheetahs because they take

fewer strides to travel the same distance!

• Performance must be based on actual running times.

aLyuu (1998).
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Algorithms Comparison (concluded)

• Pages 303 and 517 show the trinomial model converges

at a smaller n than BOPM.

• It is in this sense when people say trinomial models

converge faster than binomial ones.

• But is the trinomial model better then?

• The linear-time binomial tree algorithm actually

performs better than the trinomial one (see next page

expanded from p. 507).
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n Combinatorial method Trinomial tree algorithm

Value Time Value Time

21 5.507548 0.30

84 5.597597 0.90 5.634936 35.0

191 5.635415 2.00 5.655082 185.0

342 5.655812 3.60 5.658590 590.0

533 5.652253 5.60 5.659692 1440.0

768 5.654609 8.00 5.660137 3080.0

1047 5.658622 11.10 5.660338 5700.0

1368 5.659711 15.00 5.660432 9500.0

1731 5.659416 19.40 5.660474 15400.0

2138 5.660511 24.70 5.660491 23400.0

2587 5.660592 30.20 5.660493 34800.0

3078 5.660099 36.70 5.660488 48800.0

3613 5.660498 43.70 5.660478 67500.0

4190 5.660388 44.10 5.660466 92000.0

4809 5.659955 51.60 5.660454 130000.0

5472 5.660122 68.70

6177 5.659981 76.70

(All times in milliseconds.)
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Double-Barrier Options

• Double-barrier options are barrier options with two

barriers L < H.

• Assume L < S < H.

• The binomial model produces oscillating option values

(see plot next page).a

aChao (1999); Dai and Lyuu (2005);
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Double-Barrier Knock-Out Options

• We knew how to pick the λ so that one of the layers of

the trinomial tree coincides with one barrier, say H.

• This choice, however, does not guarantee that the other

barrier, L, is also hit.

• One way to handle this problem is to lower the layer of

the tree just above L to coincide with L.a

– More general ways to make the trinomial model hit

both barriers are possible.b

aRitchken (1995).
bHsu and Lyuu (2006). Dai and Lyuu (2006) even combine binomial

and trinomial trees to derive an O(n)-time algorithm for double-barrier

options!
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Double-Barrier Knock-Out Options (continued)

• The probabilities of the nodes on the layer above L

must be adjusted.

• Let ℓ be the positive integer such that

Sdℓ+1 < L < Sdℓ.

• Hence the layer of the tree just above L has price Sdℓ.
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Double-Barrier Knock-Out Options (concluded)

• Define γ > 1 as the number satisfying

L = Sdℓ−1e−γλσ
√

∆t.

– The prices between the barriers are

L, Sdℓ−1, . . . , Sd2, Sd, S, Su, Su2, . . . , Suh−1, Suh = H.

• The probabilities for the nodes with price equal to

Sdℓ−1 are

p′u =
b + aγ

1 + γ
, p′d =

b − a

γ + γ2
, and p′m = 1 − p′u − p′d,

where a ≡ µ′
√

∆t/(λσ) and b ≡ 1/λ2.
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Convergence: Binomial vs. Trinomial
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Multivariate Contingent Claims

• They depend on two or more underlying assets.

• The basket call on m assets has the terminal payoff

max(
∑m

i=1 αiSi(τ) − X, 0), where αi is the percentage

of asset i.

• Basket options are essentially options on a portfolio of

stocks or index options.

• Option on the best of two risky assets and cash has a

terminal payoff of max(S1(τ), S2(τ), X).
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