
Stochastic Processes and Brownian Motion
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Of all the intellectual hurdles which the human mind

has confronted and has overcome in the last

fifteen hundred years, the one which seems to me

to have been the most amazing in character and

the most stupendous in the scope of its

consequences is the one relating to

the problem of motion.

— Herbert Butterfield (1900–1979)
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Stochastic Processes

• A stochastic process

X = {X(t) }

is a time series of random variables.

• X(t) (or Xt) is a random variable for each time t and

is usually called the state of the process at time t.

• A realization of X is called a sample path.

• A sample path defines an ordinary function of t.
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Stochastic Processes (concluded)

• If the times t form a countable set, X is called a

discrete-time stochastic process or a time series.

• In this case, subscripts rather than parentheses are

usually employed, as in

X = {Xn }.

• If the times form a continuum, X is called a

continuous-time stochastic process.
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Random Walks

• The binomial model is a random walk in disguise.

• Consider a particle on the integer line, 0,±1,±2, . . . .

• In each time step, it can make one move to the right

with probability p or one move to the left with

probability 1 − p.

– This random walk is symmetric when p = 1/2.

• Connection with the BOPM: The particle’s position

denotes the cumulative number of up moves minus that

of down moves.
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Random Walk with Drift

Xn = µ + Xn−1 + ξn.

• ξn are independent and identically distributed with zero

mean.

• Drift µ is the expected change per period.

• Note that this process is continuous in space.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 402

Martingalesa

• {X(t), t ≥ 0 } is a martingale if E[ |X(t) | ] < ∞ for

t ≥ 0 and

E[ X(t) |X(u), 0 ≤ u ≤ s ] = X(s), s ≤ t. (39)

• In the discrete-time setting, a martingale means

E[ Xn+1 |X1, X2, . . . , Xn ] = Xn. (40)

• Xn can be interpreted as a gambler’s fortune after the

nth gamble.

• Identity (40) then says the expected fortune after the

(n + 1)th gamble equals the fortune after the nth

gamble regardless of what may have occurred before.
aThe origin of the name is somewhat obscure.
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Martingales (concluded)

• A martingale is therefore a notion of fair games.

• Apply the law of iterated conditional expectations to

both sides of Eq. (40) on p. 403 to yield

E[ Xn ] = E[ X1 ] (41)

for all n.

• Similarly, E[ X(t) ] = E[ X(0) ] in the continuous-time

case.
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Still a Martingale?

• Suppose we replace Eq. (40) on p. 403 with

E[ Xn+1 |Xn ] = Xn.

• It also says past history cannot affect the future.

• But is it equivalent to the original definition?a

aContributed by Mr. Hsieh, Chicheng (M9007304) on April 13, 2005.
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Still a Martingale? (continued)

• Well, no.a

• Consider this random walk with drift:

Xi =





Xi−1 + ξi, if i is even,

Xi−2, otherwise.

• Above, ξn are random variables with zero mean.

aContributed by Mr. Zhang, Ann-Sheng (B89201033) on April 13,

2005.
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Still a Martingale? (concluded)

• It is not hard to see that

E[ Xi |Xi−1 ] =





Xi−1, if i is even,

Xi−1, otherwise.

• Hence it is a martingale by the “new” definition.

• But

E[ Xi | . . . , Xi−2, Xi−1 ] =





Xi−1, if i is even,

Xi−2, otherwise.

• Hence it is not a martingale by the original definition.
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Example

• Consider the stochastic process

{Zn ≡
n∑

i=1

Xi, n ≥ 1 },

where Xi are independent random variables with zero

mean.

• This process is a martingale because

E[ Zn+1 |Z1, Z2, . . . , Zn ]

= E[ Zn + Xn+1 |Z1, Z2, . . . , Zn ]

= E[ Zn |Z1, Z2, . . . , Zn ] + E[ Xn+1 |Z1, Z2, . . . , Zn ]

= Zn + E[ Xn+1 ] = Zn.
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Probability Measure

• A martingale is defined with respect to a probability

measure, under which the expectation is taken.

– A probability measure assigns probabilities to states

of the world.

• A martingale is also defined with respect to an

information set.

– In the characterizations (39)–(40) on p. 403, the

information set contains the current and past values

of X by default.

– But it needs not be so.
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Probability Measure (continued)

• A stochastic process {X(t), t ≥ 0 } is a martingale with

respect to information sets { It } if, for all t ≥ 0,

E[ |X(t) | ] < ∞ and

E[ X(u) | It ] = X(t)

for all u > t.

• The discrete-time version: For all n > 0,

E[ Xn+1 | In ] = Xn,

given the information sets { In }.
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Probability Measure (concluded)

• The above implies E[ Xn+m | In ] = Xn for any m > 0

by Eq. (15) on p. 137.

– A typical In is the price information up to time n.

– Then the above identity says the FVs of X will not

deviate systematically from today’s value given the

price history.
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Example

• Consider the stochastic process {Zn − nµ, n ≥ 1 }.
– Zn ≡ ∑n

i=1 Xi.

– X1, X2, . . . are independent random variables with

mean µ.

• Now,

E[ Zn+1 − (n + 1) µ |X1, X2, . . . , Xn ]

= E[ Zn+1 |X1, X2, . . . , Xn ] − (n + 1) µ

= Zn + µ − (n + 1) µ

= Zn − nµ.
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Example (concluded)

• Define

In ≡ {X1, X2, . . . , Xn }.

• Then

{Zn − nµ, n ≥ 1 }
is a martingale with respect to { In }.
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Martingale Pricing

• Recall that the price of a European option is the

expected discounted future payoff at expiration in a

risk-neutral economy.

• This principle can be generalized using the concept of

martingale.

• Recall the recursive valuation of European option via

C = [ pCu + (1 − p) Cd ]/R.

– p is the risk-neutral probability.

– $1 grows to $R in a period.
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Martingale Pricing (continued)

• Let C(i) denote the value of the option at time i.

• Consider the discount process

{C(i)/Ri, i = 0, 1, . . . , n }.

• Then,

E

[
C(i + 1)

Ri+1

∣∣∣∣ C(i) = C

]
=

pCu + (1 − p) Cd

Ri+1
=

C

Ri
.
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Martingale Pricing (continued)

• It is easy to show that

E

[
C(k)

Rk

∣∣∣∣ C(i) = C

]
=

C

Ri
, i ≤ k. (42)

• This formulation assumes:a

1. The model is Markovian in that the distribution of

the future is determined by the present (time i ) and

not the past.

2. The payoff depends only on the terminal price of the

underlying asset (Asian options do not qualify).

aContributed by Mr. Wang, Liang-Kai (Ph.D. student, ECE, Univer-

sity of Wisconsin-Madison) and Mr. Hsiao, Huan-Wen (B90902081) on

May 3, 2006.
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Martingale Pricing (continued)

• In general, the discount process is a martingale in that

Eπ
i

[
C(k)

Rk

]
=

C(i)

Ri
, i ≤ k. (43)

– Eπ
i is taken under the risk-neutral probability

conditional on the price information up to time i.

• This risk-neutral probability is also called the EMM, or

the equivalent martingale (probability) measure.
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Martingale Pricing (continued)

• Equation (43) holds for all assets, not just options.

• When interest rates are stochastic, the equation becomes

C(i)

M(i)
= Eπ

i

[
C(k)

M(k)

]
, i ≤ k. (44)

– M(j) is the balance in the money market account at

time j using the rollover strategy with an initial

investment of $1.

– So it is called the bank account process.

• It says the discount process is a martingale under π.
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Martingale Pricing (concluded)

• If interest rates are stochastic, then M(j) is a random

variable.

– M(0) = 1.

– M(j) is known at time j − 1.

• Identity (44) on p. 418 is the general formulation of

risk-neutral valuation.

Theorem 14 A discrete-time model is arbitrage-free if and

only if there exists a probability measure such that the

discount process is a martingale. This probability measure is

called the risk-neutral probability measure.
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Futures Price under the BOPM

• Futures prices form a martingale under the risk-neutral

probability.

– The expected futures price in the next period is

pfFu + (1 − pf) Fd = F

(
1 − d

u − d
u +

u − 1

u − d
d

)
= F

(p. 380).

• Can be generalized to

Fi = Eπ
i [ Fk ], i ≤ k,

where Fi is the futures price at time i.

• It holds under stochastic interest rates.
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Martingale Pricing and Numeraire

• The martingale pricing formula (44) on p. 418 uses the

money market account as numeraire.a

– It expresses the price of any asset relative to the

money market account.

• The money market account is not the only choice for

numeraire.

• Suppose asset S’s value is positive at all times.

aLeon Walras (1834–1910).
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Martingale Pricing and Numeraire (concluded)

• Choose S as numeraire.

• Martingale pricing says there exists a risk-neutral

probability π under which the relative price of any asset

C is a martingale:

C(i)

S(i)
= Eπ

i

[
C(k)

S(k)

]
, i ≤ k.

– S(j) denotes the price of S at time j.

• So the discount process remains a martingale.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 422

Example

• Take the binomial model with two assets.

• In a period, asset one’s price can go from S to S1 or

S2.

• In a period, asset two’s price can go from P to P1 or

P2.

• Assume
S1

P1
<

S

P
<

S2

P2

to rule out arbitrage opportunities.
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Example (continued)

• For any derivative security, let C1 be its price at time

one if asset one’s price moves to S1.

• Let C2 be its price at time one if asset one’s price

moves to S2.

• Replicate the derivative by solving

αS1 + βP1 = C1,

αS2 + βP2 = C2,

using α units of asset one and β units of asset two.
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Example (continued)

• This yields

α =
P2C1 − P1C2

P2S1 − P1S2
and β =

S2C1 − S1C2

S2P1 − S1P2
.

• The derivative costs

C = αS + βP

=
P2S − PS2

P2S1 − P1S2
C1 +

PS1 − P1S

P2S1 − P1S2
C2.
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Example (concluded)

• It is easy to verify that

C

P
= p

C1

P1
+ (1 − p)

C2

P2
.

– Above,

p ≡ (S/P ) − (S2/P2)

(S1/P1) − (S2/P2)
.

• The derivative’s price using asset two as numeraire is

thus a martingale under the risk-neutral probability p.

• The expected returns of the two assets are irrelevant.
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Brownian Motiona

• Brownian motion is a stochastic process {X(t), t ≥ 0 }
with the following properties.

1. X(0) = 0, unless stated otherwise.

2. for any 0 ≤ t0 < t1 < · · · < tn, the random variables

X(tk) − X(tk−1)

for 1 ≤ k ≤ n are independent.b

3. for 0 ≤ s < t, X(t) − X(s) is normally distributed

with mean µ(t − s) and variance σ2(t − s), where µ

and σ 6= 0 are real numbers.

aRobert Brown (1773–1858).
bSo X(t) − X(s) is independent of X(r) for r ≤ s < t.
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Brownian Motion (concluded)

• Such a process will be called a (µ, σ) Brownian motion

with drift µ and variance σ2.

• The existence and uniqueness of such a process is

guaranteed by Wiener’s theorem.a

• Although Brownian motion is a continuous function of t

with probability one, it is almost nowhere differentiable.

• The (0, 1) Brownian motion is also called the Wiener

process.

aNorbert Wiener (1894–1964).
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Example

• If {X(t), t ≥ 0 } is the Wiener process, then

X(t) − X(s) ∼ N(0, t − s).

• A (µ, σ) Brownian motion Y = {Y (t), t ≥ 0 } can be

expressed in terms of the Wiener process:

Y (t) = µt + σX(t). (45)

• Note that Y (t + s) − Y (t) ∼ N(µs, σ2s).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 429

Brownian Motion Is a Random Walk in Continuous
Time

Claim 1 A (µ, σ) Brownian motion is the limiting case of

random walk.

• A particle moves ∆x to the left with probability 1 − p.

• It moves to the right with probability p after ∆t time.

• Assume n ≡ t/∆t is an integer.

• Its position at time t is

Y (t) ≡ ∆x (X1 + X2 + · · · + Xn) .
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Brownian Motion as Limit of Random Walk
(continued)

• (continued)

– Here

Xi ≡





+1 if the ith move is to the right,

−1 if the ith move is to the left.

– Xi are independent with

Prob[ Xi = 1 ] = p = 1 − Prob[ Xi = −1 ].

• Recall E[ Xi ] = 2p − 1 and Var[ Xi ] = 1 − (2p − 1)2.
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Brownian Motion as Limit of Random Walk
(continued)

• Therefore,

E[ Y (t) ] = n(∆x)(2p − 1),

Var[ Y (t) ] = n(∆x)2
[
1 − (2p − 1)2

]
.

• With ∆x ≡ σ
√

∆t and p ≡ [ 1 + (µ/σ)
√

∆t ]/2,

E[ Y (t) ] = nσ
√

∆t (µ/σ)
√

∆t = µt,

Var[ Y (t) ] = nσ2∆t
[
1 − (µ/σ)2∆t

]
→ σ2t,

as ∆t → 0.
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Brownian Motion as Limit of Random Walk
(concluded)

• Thus, {Y (t), t ≥ 0 } converges to a (µ, σ) Brownian

motion by the central limit theorem.

• Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing µ = 0.

• Note that

Var[ Y (t + ∆t) − Y (t) ]

=Var[ ∆xXn+1 ] = (∆x)2 × Var[ Xn+1 ] → σ2∆t.

• Similarity to the the BOPM: The p is identical to the

probability in Eq. (23) on p. 235 and ∆x = lnu.
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Geometric Brownian Motion

• Let X ≡ {X(t), t ≥ 0 } be a Brownian motion process.

• The process

{Y (t) ≡ eX(t), t ≥ 0 },
is called geometric Brownian motion.

• Suppose further that X is a (µ, σ) Brownian motion.

• X(t) ∼ N(µt, σ2t) with moment generating function

E
[
esX(t)

]
= E [ Y (t)s ] = eµts+(σ2ts2/2)

from Eq. (16) on p 139.
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Geometric Brownian Motion (continued)

• In particular,

E[ Y (t) ] = eµt+(σ2t/2),

Var[ Y (t) ] = E
[
Y (t)2

]
− E[ Y (t) ]2

= e2µt+σ2t
(
eσ2t − 1

)
.
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Geometric Brownian Motion (continued)

• It is useful for situations in which percentage changes

are independent and identically distributed.

• Let Yn denote the stock price at time n and Y0 = 1.

• Assume relative returns

Xi ≡
Yi

Yi−1

are independent and identically distributed.
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Geometric Brownian Motion (concluded)

• Then

ln Yn =
n∑

i=1

lnXi

is a sum of independent, identically distributed random

variables.

• Thus { lnYn, n ≥ 0 } is approximately Brownian motion.

– And {Yn, n ≥ 0 } is approximately geometric

Brownian motion.
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.

— Mark Kac (1914–1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861–1947),

Science and the Modern World
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Stochastic Integrals

• Use W ≡ {W (t), t ≥ 0 } to denote the Wiener process.

• The goal is to develop integrals of X from a class of

stochastic processes,a

It(X) ≡
∫ t

0

X dW, t ≥ 0.

• It(X) is a random variable called the stochastic integral

of X with respect to W .

• The stochastic process { It(X), t ≥ 0 } will be denoted

by
∫

X dW .

aIto (1915–).

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 441

Stochastic Integrals (concluded)

• Typical requirements for X in financial applications are:

– Prob[
∫ t

0
X2(s) ds < ∞ ] = 1 for all t ≥ 0 or the

stronger
∫ t

0
E[ X2(s) ] ds < ∞.

– The information set at time t includes the history of

X and W up to that point in time.

– But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).

– The future cannot influence the present.

• {X(s), 0 ≤ s ≤ t } is independent of

{W (t + u) − W (t), u > 0 }.

c©2006 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 442

Ito Integral

• A theory of stochastic integration.

• As with calculus, it starts with step functions.

• A stochastic process {X(t) } is simple if there exist

0 = t0 < t1 < · · · such that

X(t) = X(tk−1) for t ∈ [ tk−1, tk), k = 1, 2, . . .

for any realization (see figure next page).
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Ito Integral (continued)

• The Ito integral of a simple process is defined as

It(X) ≡
n−1∑

k=0

X(tk)[ W (tk+1) − W (tk) ], (46)

where tn = t.

– The integrand X is evaluated at tk, not tk+1.

• Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.
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Ito Integral (continued)

• Let X = {X(t), t ≥ 0 } be a general stochastic process.

• Then there exists a random variable It(X), unique

almost certainly, such that It(Xn) converges in

probability to It(X) for each sequence of simple

stochastic processes X1, X2, . . . such that Xn converges

in probability to X .

• If X is continuous with probability one, then It(Xn)

converges in probability to It(X) as

δn ≡ max1≤k≤n(tk − tk−1) goes to zero.
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Ito Integral (concluded)

• It is a fundamental fact that
∫

X dW is continuous

almost surely.

• The following theorem says the Ito integral is a

martingale.

• A corollary is the mean value formula

E

[∫ b

a

X dW

]
= 0.

Theorem 15 The Ito integral
∫

X dW is a martingale.
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Discrete Approximation

• Recall Eq. (46) on p. 445.

• The following simple stochastic process { X̂(t) } can be

used in place of X to approximate the stochastic

integral
∫ t

0
X dW ,

X̂(s) ≡ X(tk−1) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• Note the nonanticipating feature of X̂.

– The information up to time s,

{ X̂(t), W (t), 0 ≤ t ≤ s },

cannot determine the future evolution of X or W .
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Discrete Approximation (concluded)

• Suppose we defined the stochastic integral as

n−1∑

k=0

X(tk+1)[ W (tk+1) − W (tk) ].

• Then we would be using the following different simple

stochastic process in the approximation,

Ŷ (s) ≡ X(tk) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• This clearly anticipates the future evolution of X .
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Ito Process

• The stochastic process X = {Xt, t ≥ 0 } that solves

Xt = X0 +

∫ t

0

a(Xs, s) ds +

∫ t

0

b(Xs, s) dWs, t ≥ 0

is called an Ito process.

– X0 is a scalar starting point.

– { a(Xt, t) : t ≥ 0 } and { b(Xt, t) : t ≥ 0 } are

stochastic processes satisfying certain regularity

conditions.

• The terms a(Xt, t) and b(Xt, t) are the drift and the

diffusion, respectively.
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Ito Process (continued)

• A shorthanda is the following stochastic differential

equation for the Ito differential dXt,

dXt = a(Xt, t) dt + b(Xt, t) dWt. (47)

– Or simply dXt = at dt + bt dWt.

• This is Brownian motion with an instantaneous drift at

and an instantaneous variance b2
t .

• X is a martingale if the drift at is zero by Theorem 15

(p. 447).

aPaul Langevin (1904).
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Ito Process (concluded)

• dW is normally distributed with mean zero and

variance dt.

• An equivalent form to Eq. (47) is

dXt = at dt + bt

√
dt ξ, (48)

where ξ ∼ N(0, 1).

• This formulation makes it easy to derive Monte Carlo

simulation algorithms.
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Euler Approximation

• The following approximation follows from Eq. (48),

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn) ∆t + b(X̂(tn), tn) ∆W (tn),

(49)

where tn ≡ n∆t.

• It is called the Euler or Euler-Maruyama method.

• Under mild conditions, X̂(tn) converges to X(tn).

• Recall that ∆W (tn) should be interpreted as

W (tn+1) − W (tn) instead of W (tn) − W (tn−1).
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More Discrete Approximations

• Under fairly loose regularity conditions, approximation

(49) on p. 454 can be replaced by

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn) ∆t + b(X̂(tn), tn)
√

∆t Y (tn).

– Y (t0), Y (t1), . . . are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

• A simpler discrete approximation scheme:

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn) ∆t + b(X̂(tn), tn)
√

∆t ξ.

– Prob[ ξ = 1 ] = Prob[ ξ = −1 ] = 1/2.

– Note that E[ ξ ] = 0 and Var[ ξ ] = 1.

• This clearly defines a binomial model.

• As ∆t goes to zero, X̂ converges to X .
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Trading and the Ito Integral

• Consider an Ito process dSt = µt dt + σt dWt.

– St is the vector of security prices at time t.

• Let φt be a trading strategy denoting the quantity of

each type of security held at time t.

• Hence the stochastic process φtSt is the value of the

portfolio φt at time t.

• φt dSt ≡ φt(µt dt + σt dWt) represents the change in the

value from security price changes occurring at time t.
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Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

GT (φ) ≡
∫ T

0

φt dSt =

∫ T

0

φtµt dt +

∫ T

0

φtσt dWt,

measures the gains realized by the trading strategy over

the period [ 0, T ].
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Ito’s Lemma

A smooth function of an Ito process is itself an Ito process.

Theorem 16 Suppose f : R → R is twice continuously

differentiable and dX = at dt + bt dW . Then f(X) is the

Ito process,

f(Xt)

= f(X0) +

∫ t

0

f ′(Xs) as ds +

∫ t

0

f ′(Xs) bs dW

+
1

2

∫ t

0

f ′′(Xs) b2
s ds

for t ≥ 0.
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Ito’s Lemma (continued)

• In differential form, Ito’s lemma becomes

df(X) = f ′(X) a dt + f ′(X) b dW +
1

2
f ′′(X) b2 dt.

(50)

• Compared with calculus, the interesting part is the third

term on the right-hand side.

• A convenient formulation of Ito’s lemma is

df(X) = f ′(X) dX +
1

2
f ′′(X)(dX)2.
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Ito’s Lemma (continued)

• We are supposed to multiply out

(dX)2 = (a dt + b dW )2 symbolically according to

× dW dt

dW dt 0

dt 0 0

– The (dW )2 = dt entry is justified by a known result.

• This form is easy to remember because of its similarity

to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 17 (Higher-Dimensional Ito’s Lemma) Let

W1, W2, . . . , Wn be independent Wiener processes and

X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt +
∑n

j=1 bij dWj. Then

df(X) is an Ito process with the differential,

df(X) =
m∑

i=1

fi(X) dXi +
1

2

m∑

i=1

m∑

k=1

fik(X) dXi dXk,

where fi ≡ ∂f/∂xi and fik ≡ ∂2f/∂xi∂xk.
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Ito’s Lemma (continued)

• The multiplication table for Theorem 17 is

× dWi dt

dWk δik dt 0

dt 0 0

in which

δik =





1 if i = k,

0 otherwise.
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Ito’s Lemma (continued)

Theorem 18 (Alternative Ito’s Lemma) Let

W1, W2, . . . , Wm be Wiener processes and

X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt + bi dWi. Then df(X) is the

following Ito process,

df(X) =
m∑

i=1

fi(X) dXi +
1

2

m∑

i=1

m∑

k=1

fik(X) dXi dXk.
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Ito’s Lemma (concluded)

• The multiplication table for Theorem 18 is

× dWi dt

dWk ρik dt 0

dt 0 0

• Here, ρik denotes the correlation between dWi and

dWk.
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Geometric Brownian Motion

• Consider the geometric Brownian motion process

Y (t) ≡ eX(t)

– X(t) is a (µ, σ) Brownian motion.

– Hence dX = µ dt + σ dW by Eq. (45) on p. 429.

• As ∂Y/∂X = Y and ∂2Y/∂X2 = Y , Ito’s formula (50)

on p. 460 implies

dY = Y dX + (1/2) Y (dX)2

= Y (µ dt + σ dW ) + (1/2) Y (µ dt + σ dW )2

= Y (µ dt + σ dW ) + (1/2) Y σ2 dt.
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Geometric Brownian Motion (concluded)

• Hence
dY

Y
=

(
µ + σ2/2

)
dt + σ dW.

• The annualized instantaneous rate of return is µ + σ2/2

not µ.
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Product of Geometric Brownian Motion Processes

• Let

dY/Y = a dt + b dWY ,

dZ/Z = f dt + g dWZ .

• Consider the Ito process U ≡ Y Z.

• Apply Ito’s lemma (Theorem 18 on p. 464):

dU = Z dY + Y dZ + dY dZ

= ZY (a dt + b dWY ) + Y Z(f dt + g dWZ)

+Y Z(a dt + b dWY )(f dt + g dWZ)

= U(a + f + bgρ) dt + Ub dWY + Ug dWZ .
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Product of Geometric Brownian Motion Processes
(continued)

• The product of two (or more) correlated geometric

Brownian motion processes thus remains geometric

Brownian motion.

• Note that

Y = exp
[(

a − b2/2
)
dt + b dWY

]
,

Z = exp
[(

f − g2/2
)
dt + g dWZ

]
,

U = exp
[ (

a + f −
(
b2 + g2

)
/2

)
dt + b dWY + g dWZ

]
.
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Product of Geometric Brownian Motion Processes
(concluded)

• lnU is Brownian motion with a mean equal to the sum

of the means of ln Y and ln Z.

• This holds even if Y and Z are correlated.

• Finally, ln Y and ln Z have correlation ρ.
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Quotients of Geometric Brownian Motion Processes

• Suppose Y and Z are drawn from p. 468.

• Let U ≡ Y/Z.

• We now show that

dU

U
= (a − f + g2 − bgρ) dt + b dWY − g dWZ .

(51)

• Keep in mind that dWY and dWZ have correlation ρ.
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Quotients of Geometric Brownian Motion Processes
(concluded)

• The multidimensional Ito’s lemma (Theorem 18 on

p. 464) can be employed to show that

dU

= (1/Z) dY − (Y/Z2) dZ − (1/Z2) dY dZ + (Y/Z3) (dZ)2

= (1/Z)(aY dt + bY dWY ) − (Y/Z2)(fZ dt + gZ dWZ)

−(1/Z2)(bgY Zρ dt) + (Y/Z3)(g2Z2 dt)

= U(a dt + b dWY ) − U(f dt + g dWZ)

−U(bgρ dt) + U(g2 dt)

= U(a − f + g2 − bgρ) dt + Ub dWY − Ug dWZ .
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