Conditional Variance Models for Price Volatility

e Although a stationary model (see text for definition) has

constant variance, its conditional variance may vary.

e Take for example an AR(1) process X; = aX; 1+ &
with |a| < 1.

) ' ' — Here, ¢; is a stationary, uncorrelated process with

Time Series Analyszs zero mean and constant variance o2.

e The conditional variance,
Var[Xt | Xt—17 Xt—27 e ],

equals o2, which is smaller than the unconditional

variance Var[X;] = 0?/(1 — a?).
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Conditional Variance Models for Price Volatility
(continued)

e Past information thus has no effects on the variance of

prediction.

e To address this drawback, consider models for returns
The historian is a prophet in reverse. X, consistent with a changing conditional variance:

— Friedrich von Schlegel (1772-1829)
Xt — p=ViUs.

— U; has zero mean and unit variance for all ¢.
— E[X;]=p for all t.
— Var[ Xy | Vs = v ] = v}
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Conditional Variance Models for Price Volatility

Conditional Variance Models for Price Volatility (concluded)
(continued) e In the lognormal model, the conditional variance evolves

e The process {V;?} models the conditional variance. independently of past returns.

e Suppose {U;} and {V;} are independent of each e Suppose we assume that conditional variances are

other, which means {U;,Us,...,U, } and
{1, Va,...,V, } are independent for all n. Vi = f( X1, Xi_o,...)

deterministic functions of past returns:

e Then {X;} is uncorrelated because for some function f.

Cov[ X¢, Xiyr] =0 (77) e Then V; can be computed given the information set of

for 7 > 0 (see text for proof). past returns:

Iy 1= {Xt—laXt—Qa cee }
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ARCH Models?*

Conditional Variance Models for Price Volatility e An influential model in this direction is the
(continued) autoregressive conditional heteroskedastic (ARCH)
model.

e If, furthermore, { V; } is stationary, then { X;} has

. ° is i -
constant variance because Assume U, is independent of Vi, U;_1,V;_1,U;_o,

for all t.
A2
B[ (Xe—p)?] e Consequently {X;} is uncorrelated by Eq. (77) on
= E[VPU?] p. T12.
2 2
= B[V ]E[U/] e Assume furthermore that {U; } is a Gaussian
= F [Vf} . stationary, uncorrelated process.

e Then X;|I;_1 ~ N(pu,V2).
2Engle (1982), co-winner of the 2003 Nobel Prize in Economic Sci-

ences.

e This makes { X;} stationary.
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ARCH Models (continued) GARCH Models®
e The ARCH(p) process is defined by

P
X, —p= <ao + Zai(Xt—i

=1

e A very popular extension of the ARCH model is the

(GARCH) process.

1/2 generalized autoregressive conditional heteroskedastic
- :u) ) Uta

where ar,... ,ap >0 and ag > 0. e The simplest GARCH(I,'l) ?rocess adds a3V;2; to the
ARCH(1) process, resulting in

e The variance V;? thus satisfies ) ) )
Vi =ao+ a1(Xe—1 — p)” +a2ViZ ;.

P
2 _ A R

Vi =ao+ Z ai(Xe—i — p)" e The volatility at time ¢ as estimated at time t — 1

i=1

’ depends on the squared return and the estimated

e The volatility at time ¢ as estimated at time ¢ —1 volatility at time ¢ — 1.

depends on the p most recent observations on squared
aBollerslev (1986) and Taylor (1986).

returns.
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ARCH Models (concluded)
The ARCH(1) process

GARCH Models (concluded)

e The estimate of volatility averages past squared returns
X: —p=(ap+ a1 (X¢—1 — M)Q)I/QUt by giving heavier weights to recent squared returns (see

text).
is the simplest.
e It is usually assumed that a; +as <1 and ag > 0, in

For it . " . L
’ which case the unconditional, long-run variance is given

Var[ Xy | X; 1 =21 = ao + a1 (w1 — p)°. by ao/(1 — a1 — az).
e A popular special case of GARCH(1,1) is the

exponentially weighted moving average process, which

The process { X; } is stationary with finite variance if

and only if a; < 1, in which case Var[X;] = ao/(1 —a1). cots a to zero and ao to 1 —a
0 2 —ay.

The parameters can be estimated by statistical ) ) ) ) )
. e This model is used in J.P. Morgan’s RiskMetrics™:.
techniques.
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GARCH Option Pricing

e Options can be priced when the underlying asset’s
return follows a GARCH process.

e Let S; denote the asset price at date t.

e Let h? be the conditional variance of the return over
the period [t,¢+ 1] given the information at date t.

— “One day” is merely a convenient term for any

elapsed time At.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University
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GARCH Option Pricing (continued)

e Adopt the following risk-neutral process for the price

et+1 ~ N(0,1) given information at date ¢,

r daily riskless return,

0.

Cc

v

2Duan (1995).

dynamics:®
S h?
In ;ftl =r— ?f + hi€pya, (78)
where
hiy1 = Po+ Bihi + Bahi(ersr — ), (79)

GARCH Option Pricing (continued)

e The five unknown parameters of the model are ¢, hg, So,

/817 and /82~
e It is postulated that (y, 81,82 > 0 to make the

conditional variance positive.

e The above process, called the nonlinear asymmetric
GARCH model, generalizes the GARCH(1, 1) model (see
text).
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GARCH Option Pricing (concluded)

e With y; =1nS; denoting the logarithmic price, the
model becomes

h2
Y41 =Yt +7 — é + hi€paq. (80)

e The pair (y;, h?) completely describes the current state.

e The conditional mean and variance of .41 are clearly
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h2
Elyit |y, by = yt+7"—7t7 (81)
Var[yy1 | yt, hf] = h?. (82)
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The Ritchken-Trevor Algorithm (continued)

e It remains to pick the jump size and the three branching
The Ritchken-Trevor (RT) Algorithm?® probabilities.

The GARCH model is a continuous-state model. e The role of ¢ in the Black-Scholes option pricing model

e To approximate it, we turn to trees with discrete states. is played by /iy in the GARCH model.

e As a jump size proportional to o//n is picked in the

Path dependence in GARCH makes the tree for asset

. . BOPM, a comparable magnitude will be chosen here.
prices explode exponentially.

e Define vy = hg, though other multiples of hg are

e We need to mitigate this combinatorial explosion .
possible, and
somewhat. oy
T = —
aRitchken and Trevor (1999). \/ﬁ

e The jump size will be some integer multiple n of ~,.

e We call n the jump parameter (p. 727).
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The Ritchken-Trevor Algorithm (continued)

e Partition a day into n periods.

e Three states follow each state (y;, h?) after a period.

e As the trinomial model combines, 2n + 1 states at date
t + 1 follow each state at date ¢ (recall p. 550).

e These 2n + 1 values must approximate the distribution

of (yis1, h?—i—l)'

e So the conditional moments (81)—(82) at date ¢+ 1 on

p. 723 must be matched by the trinomial model to ke 1 day !
The seven values on the right approximate the distribution

guarantee convergence to the continuous-state model.
of logarithmic price y441.
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The Ritchken-Trevor Algorithm (continued)

e The middle branch does not change the underlying
asset’s price.

e The probabilities for the up, middle, and down branches

are
h? — (h2/2
P L) (53)
2292 2myVn
hi
Pm = 1- W; (84)
h? — (h2/2
pd — 1 _ r ( t/ )' (85)
2292 2y
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The Ritchken-Trevor Algorithm (continued)

e It can be shown that:

— The trinomial model takes on 2n + 1 values at date
t+1 for yeyq.

— These values have a matching mean for y;y1 .

— These values have an asymptotically matching

variance for ysyq .

e The central limit theorem thus guarantees the desired

convergence as n increases.
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The Ritchken-Trevor Algorithm (continued)

e We can dispense with the intermediate nodes between
dates to create a (2n + 1)-nomial tree (p. 731).

e The resulting model is multinomial with 2n + 1
branches from any state (y;, h?).
e There are two reasons behind this manipulation.

— Interdate nodes are created merely to approximate
the continuous-state model after one day.

— Keeping the interdate nodes results in a tree that is
n times as large.
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In%

Yt @

e 1 day !
This heptanomial tree is the outcome of the trinomial tree

on p. 727 after its intermediate nodes are removed.
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The Ritchken-Trevor Algorithm (continued)

e A node with logarithmic price y; + €1y, at date ¢+ 1
follows the current node at date ¢ with price y; for

some —n </ <n.

e To reach that price in n periods, the number of up

moves must exceed that of down moves by exactly £.

e The probability that this happens is
n! o
P(l) = ‘ Z m%”pfﬁ”pif’
JusImsJd

Wlth jlemmjd Z 07 n= ju +]m +jd7 and e = ju - jd'
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The Ritchken-Trevor Algorithm (continued)

e A particularly simple way to calculate the P({)s starts
by noting that

(Pu + pm +paz™ )" = Y P(f)a’. (86)
b=—n

e So we expand (p,T + pm + paz )™ and retrieve the
probabilities by reading off the coefficients.

e It can be computed in O(n?) time.
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The Ritchken-Trevor Algorithm (continued)

e The updating rule (79) on p. 721 must be modified to

account for the adoption of the discrete-state model.

e The logarithmic price y; + ¢ny, at date ¢+ 1 following

state (y;, h?) at date ¢ has a variance equal to

hii1 = Bo+ Buhi + Bahi(ef 1, — ©)?, (87)
— Above,
Iy, — (1 — h2/2
e, =1 (}Z /2 y_o 4142 4n

is a discrete random variable with 2n + 1 values.
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The Ritchken-Trevor Algorithm (continued)

e Different conditional variances h? may require different
n so that the probabilities calculated by Eqs. (83)—(85)
on p. 728 lie between 0 and 1.

e This implies varying jump sizes.
e The necessary requirement p,, > 0 implies 1 > h;/~.

e Hence we try

n="[he/v 1 The/v T+ 1L [he/vT+2,...

until valid probabilities are obtained or until their

nonexistence is confirmed.
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The Ritchken-Trevor Algorithm (continued)

e The sufficient and necessary condition for valid

probabilities to exist is

2p7vn T 22 297y 72

e The plot on p. 737 uses n =1 to illustrate our points
for a 3-day model.

e For example, node (1,1) of date 1 and node (2,3) of
date 2 pick n = 2.

= (03/2)| _ 1 gmm(l_'?"—(h?/?)l).

e Obviously, the magnitude of 7 tends to grow with h;.

The Ritchken-Trevor Algorithm (continued)

e The topology of the tree is not a standard combining

multinomial tree.

e For example, a few nodes on p. 737 such as nodes (2,0)
and (2, —1) have multiple jump sizes.
e The reason is the path dependence of the model.

— Two paths can reach node (2,0) from the root node,
each with a different variance for the node.

— One of the variances results in 1 = 1, whereas the

other results in n = 2.
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The Ritchken-Trevor Algorithm (concluded)

e The possible values of h? at a node are exponential

nature.

e To address this problem, we record only the maximum

and minimum h? at each node.?

e Therefore, each node on the tree contains only two
states (y¢, h2,.) and (ys, A2 ).

max min

e Each of (y;, h2

2 ) and (yg, h2. ) carries its own 7 and

set of 2n 4+ 1 branching probabilities.

aCakici and Topyan (2000).
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Negative Aspects of the Ritchken-Trevor Algorithm?

e A small n may yield inaccurate option prices.

: e Numerical Examples (continued)
e But the tree will grow exponentially if n is large enough.

— Specifically, n > (1 — £1)/fs when r = ¢ = 0. Let h2 .. (i,j) denote the maximum variance at node

(4, 4)-

arow beyond a certain date Let h2 . (i,7) denote the minimum variance at node

(4, 4)-

e A large n has another serious problem: The tree cannot

e Thus the choice of n may be limited in practice.

e Initially, K2 (0,0) = k2, (0,0) = h3.
e The RT algorithm can be modified to be free of
exponential complexity and shortened maturity.” o The resulting three-day tree is depicted on p. 743.
2Lyuu and Wu (2003).
PLyuu and Wu (2005).
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Y

4.65752

Numerical Examples

4.64705

e Assume Sy = 100, yo = In Sy = 4.60517, r = 0,

hZ = 0.0001096, v = ho = 0.010469, n = 1, ‘;;jggj}
= v/y/n = 0.010469, B, = 0.000006575, 31 = 0.9,

B2 = 0.04, and ¢ = 0.

4.62611

[109645] 2 10.5256] 1

\
/
, \
e A daily variance of 0.0001096 corresponds to an annual oo {4'6’5“ /10.9645\ MIOSGW\
volatility of v/365 x 0.0001096 ~ 20%. v el \ %}23223 %?EZZ
e Let h2(i,j) denote the variance at node (i, j). 450470 ngzz;} \:22;32 )
e Initially, h%(0,0) = h2 = 0.0001096. 1095“\ 05155

438423 [109511] 1 [12.2662]
(s3] |
457376 lizaas] |
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A top (bottom) number inside a gray box refers to the
h2

max?’

minimum (maximum, respectively) variance h2; (

respectively) for the node. Variances are multiplied by
100,000 for readability. A top (bottom) number inside a
white box refers to n corresponding to hZ.. (h2,.,

respectively).
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Numerical Examples (continued)

e Let us see how the numbers are calculated.

e Start with the root node, node (0,0).

e Try n=1 in Egs. (83)—(85) on p. 728 first to obtain
e = 0.4974,
pm = 0,
pa = 0.5026.

the root node use single jumps.

As they are valid probabilities, the three branches from
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Numerical Examples (continued)
e Move on to node (1,1).

e It has one predecessor node—mnode (0,0)—and it takes
an up move to reach the current node.

e So apply updating rule (87) on p. 734 with £ =1 and
h? = h%(0,0).

e The result is A2%(1,1) = 0.000109645.
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Numerical Examples (continued)

e Because | h(1,1)/7y] =2, we try n =2 in
Egs. (83)—(85) on p. 728 first to obtain

pe = 0.1237,
pm = 0.7499,
py = 0.1264.

e As they are valid probabilities, the three branches from
node (1,1) use double jumps.
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Numerical Examples (continued)

e Carry out similar calculations for node (1,0) with
¢ =0 in updating rule (87) on p. 734.

e Carry out similar calculations for node (1,—1) with

¢ = —1 in updating rule (87).
e Single jump 7 =1 works in both nodes.
e The resulting variances are

h%*(1,0) = 0.000105215,
R%(1,-1) = 0.000109553.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Numerical Examples (continued)
e Now move on to the other predecessor node (1,—1).

e Because it takes an up move to reach the current node,
apply updating rule (87) on p. 734 with /=1 and
h? = h3(1,-1).

The result is A7, ; = 0.000109603.

e We hence record

(2,0) = 0.000101269,
0.000109603.

—~

N

o

=
\
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Numerical Examples (continued)
e Node (2,0) has 2 predecessor nodes, (1,0) and (1,-1).
e Both have to be considered in deriving the variances.
o Let us start with node (1,0).

e Because it takes a middle move to reach the current
node, we apply updating rule (87) on p. 734 with £ =10
and h? = h%(1,0).

e The result is h7,; = 0.000101269.
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Numerical Examples (continued)

e Consider state h2, (2,0) first.

e Because | Amax(2,0)/v] =2, we first try n =2 in
Egs. (83)—(85) on p. 728 to obtain

pe = 0.1237,
pm = 0.7500,
pa = 0.1263.

e As they are valid probabilities, the three branches from
node (2,0) with the maximum variance use double
jumps.
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Numerical Examples (continued)

e Now consider state h?

min

(2,0).

e Because | Amin(2,0)/v | =1, we first try n =1 in
Egs. (83)—(85) on p. 728 to obtain

pe = 0.4596,
pm = 0.0760,
pa = 0.4644.

e As they are valid probabilities, the three branches from

node (2,0) with the minimum variance use single jumps.
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Numerical Examples (continued)

Node (2,—1) has 3 predecessor nodes.

Start with node (1,1).

Because it takes a down move to reach the current node,
we apply updating rule (87) on p. 734 with ¢ = —1 and
h? = h%(1,1).

The result is h?,; = 0.0001227.
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Numerical Examples (continued)
e Now move on to predecessor node (1,0).

e Because it also takes a down move to reach the current
node, we apply updating rule (87) on p. 734 with
¢=—1 and h? = h%(1,0).

e The result is h?,; = 0.000105609.
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Numerical Examples (continued)
e Finally, consider predecessor node (1,—1).

e Because it takes a middle move to reach the current
node, we apply updating rule (87) on p. 734 with £ =10
and h? = h?(1,-1).

e The result is h?,; = 0.000105173.

e We hence record

h2,.(2,—1) = 0.000105173,
h2..(2,—1) = 0.0001227.
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Numerical Examples (continued)
e Consider state h2,, (2,—1).

e Because | hmax(2,—1)/v] =2, we first try n =2 in
Egs. (83)—(85) on p. 728 to obtain

P = 0.1385,
pm = 0.7201,
ps = 0.1414.

e As they are valid probabilities, the three branches from
node (2,—1) with the maximum variance use double

jumps.
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Numerical Examples (continued)

e Next, consider state h2; (2,—1).

e Because | Amin(2,—1)/7 | =1, we first try n =1 in
Egs. (83)—(85) on p. 728 to obtain

e = 0.4773,
pm = 0.0404,
py = 0.4823.

e As they are valid probabilities, the three branches from
node (2,—1) with the minimum variance use single

jumps.
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Numerical Examples (concluded)
e Other nodes at dates 2 and 3 can be handled similarly.

e In general, if a node has k predecessor nodes, then 2k
variances will be calculated using the updating rule.

— This is because each predecessor node keeps two

variance numbers.

e But only the maximum and minimum variances will be
kept.
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Negative Aspects of the RT Algorithm Revisited®
e Recall the problems mentioned on p. 740.

e In our case, combinatorial explosion occurs when

1-8 1-09
> = = 2.5.
Bs 0.04

n

e Suppose we are willing to accept the exponential
running time and pick n = 100 to seek accuracy.

e But the problem of shortened maturity forces the tree to
stop at date 9!

aLyuu and Wu (2003).
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Backward Induction on the RT Tree (continued)

25000 , e For example, if K = 3, then a variance of
20000 ; 10.5436 x 1076 will be added between the maximum
' and minimum variances at node (2,0) on p. 743.
15000 /
e In general, the kth variance at node (,7) is
10000
h2 (’L ) + k h?nax(’é,j) B hilin(i7j)
5000 min »J K —1 )
5 50 75 100 125 160 175 2t © k=01,....,K~1

e Each interpolated variance’s jump parameter and

Dotted line: n = 3; dashed line: n = 4: solid line: n = 5. branching probabilities can be computed as before.
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Backward Induction on the RT Tree

e After the RT tree is constructed, it can be used to price

options by backward induction. Backward Induction on the RT Tree (concluded)
e Recall that each node keeps two variances hZ . and e During backward induction, if a variance falls between
h2. . two of the K variances, linear interpolation of the

e We now increase that number to K equally spaced option prices corresponding to the two bracketing

and hZ.  at each node. variances will be used as the approximate option price.

. . 2
variances between hy .. i

. .. . . e The above ideas are reminiscent of the ones on p. 319,
e Besides the minimum and maximum variances, the other

K — 2 variances in between are linearly interpolated.? where we dealt with arithmetic average-rate options.

2In practice, log-linear interpolation works better; Lyuu and Wu
(2005). Log-cubic interpolation works even better; Liu (2005).
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. ni21 J
Numerical Examples T > \
e We next use the numerical example on p. 743 to price a Ol AL 21 b3 . 2
. . . . 0 -1 -2 -3 2 1
European call option with a strike price of 100 and ‘ 0 : 3 s O] B N
o . 1 1 1
expiring at date 3. B0 | | 2 |0
RII0] 13.4809 5 1 1 »
. . . P 13.4809 - 1 2
e Recall that the riskless interest rate is zero. Uiyl .
P20 4 L ]2
I . M 12.2883 11.7170
e Assume K = 2; hence there are no interpolated s ol 3 T,
. 10.5733 LG101[1] ainiesie 0.1387 0.1387
variances. R osas| 2 Zlilllll(llll)] ;:I:']U][III(II oron oisr |3
10.9645 10.5256 10.1305 . UL pAVILIECL )
. e . : : RO 10.9645 10.5697 13.4644 pLILICIC]
e The pricing tree is shown on p. 765 with a call price of S — — - . e aconl
10.9600 10.5215 10.9603 10.6042 plOICICIN] 0.1264  0.1264 ()4&27 04;{47
0.66346. 10.9553 105173 10.1231 21| Goo om0 | oom oo | oo ora0 | O
. 1oy . 10.9553 12.2700 11.7005 0.5026 0.5026 0.4825  0.4825 04644 0.1263
— The branching probabilities needed in backward 109511 105133 ) D7 ogm | o 0w |
. . 10.9511 12.2662 05024 0.5024 04823 0.1414 -
induction can be found on p. 766. o Gaor 097
-3 0.0008  0.0008 =2
13.4438 05022 0.5022
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5 Numerical Examples (continued)
105.37392
e Let us derive some of the numbers on p. 765.
104.27652
e The option price for a terminal node at date 3 equals
3.19054| 2 3.19054 . .
103.19054 ‘3.19054}2 }3,19054} } max(S3 — 100, 0), independent of the variance level.
I ] 2.11587] |
102.11587 ‘ H ‘ e Now move on to nodes at date 2.

2.11587]

[120241] 2 1.05240] 1

101.05240 120241] 2 1.05240] 1
[0.66346] I [0.52360[ 1 0.48366] |

1000000015 634 1 [052360] 1 026172] 2
0.13012[ 1 0.00000] 1

9895856 lo13012[ 1 Yo.14573] 2
0.00000] 1

9792797 [0.00000] 1

e The option price at node (2,3) depends on those at
nodes (3,5), (3,3), and (3,1).

e It therefore equals

0.1387 x 5.37392 4 0.7197 x 3.19054 4 0.1416 x 1.05240 = 3.19054.

e Option prices for other nodes at date 2 can be computed

96.90811

similarly.
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Numerical Examples (continued)
e For node (1,1), the option price for both variances is

0.1237 x 3.19054 + 0.7499 x 1.05240 + 0.1264 x 0.14573 = 1.20241.

e Node (1,0) is most interesting.

e We knew that a down move from it gives a variance of
0.000105609.

e This number falls between the minimum variance
0.000105173 and the maximum variance 0.0001227 at
node (2,—1) on p. 743.

Numerical Examples (continued)

e The up move leads to the state with option price
1.05240.

e The middle move leads to the state with option price
0.48366.
e The option price at node (1,0) is finally calculated as

0.4775 x 1.05240 + 0.0400 x 0.48366 + 0.4825 x 0.00362 = 0.52360.
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Numerical Examples (continued)

e The option price corresponding to the minimum

variance is 0.

e The option price corresponding to the maximum

variance is 0.14573.

e The equation
x x 0.000105173 + (1 — ) x 0.0001227 = 0.000105609
is satisfied by = = 0.9751.
e So the option for the down state is approximated by

zx 04 (1— ) x 0.14573 = 0.00362.

Numerical Examples (concluded)

e It is possible for some of the three variances following an
interpolated variance to exceed the maximum variance

or be exceeded by the minimum variance.

e When this happens, the option price corresponding to
the maximum or minimum variance will be used during

backward induction.

e An interpolated variance may choose a branch that goes
into a node that is not reached in the forward-induction

tree-building phase.?

aLyuu and Wu (2005).
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