
Time Series Analysis
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The historian is a prophet in reverse.

— Friedrich von Schlegel (1772–1829)
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Conditional Variance Models for Price Volatility

• Although a stationary model (see text for definition) has

constant variance, its conditional variance may vary.

• Take for example an AR(1) process Xt = aXt−1 + εt

with | a | < 1.

– Here, εt is a stationary, uncorrelated process with

zero mean and constant variance σ2.

• The conditional variance,

Var[ Xt |Xt−1, Xt−2, . . . ],

equals σ2, which is smaller than the unconditional

variance Var[ Xt ] = σ2/(1 − a2).
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Conditional Variance Models for Price Volatility
(continued)

• Past information thus has no effects on the variance of

prediction.

• To address this drawback, consider models for returns

Xt consistent with a changing conditional variance:

Xt − µ = VtUt.

– Ut has zero mean and unit variance for all t.

– E[ Xt ] = µ for all t.

– Var[ Xt |Vt = vt ] = v2
t .
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Conditional Variance Models for Price Volatility
(continued)

• The process {V 2
t } models the conditional variance.

• Suppose {Ut } and {Vt } are independent of each

other, which means {U1, U2, . . . , Un } and

{V1, V2, . . . , Vn } are independent for all n.

• Then {Xt } is uncorrelated because

Cov[ Xt, Xt+τ ] = 0 (77)

for τ > 0 (see text for proof).
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Conditional Variance Models for Price Volatility
(continued)

• If, furthermore, {Vt } is stationary, then {Xt } has

constant variance because

E
[

(Xt − µ)2
]

= E
[

V 2
t U2

t

]

= E
[

V 2
t

]

E
[

U2
t

]

= E
[

V 2
t

]

.

• This makes {Xt } stationary.
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Conditional Variance Models for Price Volatility
(concluded)

• In the lognormal model, the conditional variance evolves

independently of past returns.

• Suppose we assume that conditional variances are

deterministic functions of past returns:

Vt = f(Xt−1, Xt−2, . . . )

for some function f .

• Then Vt can be computed given the information set of

past returns:

It−1 ≡ {Xt−1, Xt−2, . . . }.
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ARCH Modelsa

• An influential model in this direction is the

autoregressive conditional heteroskedastic (ARCH)

model.

• Assume Ut is independent of Vt, Ut−1, Vt−1, Ut−2, . . .

for all t.

• Consequently {Xt } is uncorrelated by Eq. (77) on

p. 712.

• Assume furthermore that {Ut } is a Gaussian

stationary, uncorrelated process.

• Then Xt | It−1 ∼ N(µ, V 2
t ).

aEngle (1982), co-winner of the 2003 Nobel Prize in Economic Sci-

ences.
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ARCH Models (continued)

• The ARCH(p) process is defined by

Xt − µ =

(

a0 +

p
∑

i=1

ai(Xt−i − µ)2

)1/2

Ut,

where a1, . . . , ap ≥ 0 and a0 > 0.

• The variance V 2
t thus satisfies

V 2
t = a0 +

p
∑

i=1

ai(Xt−i − µ)2.

• The volatility at time t as estimated at time t − 1

depends on the p most recent observations on squared

returns.
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ARCH Models (concluded)

• The ARCH(1) process

Xt − µ = (a0 + a1(Xt−1 − µ)2)1/2Ut

is the simplest.

• For it,

Var[ Xt |Xt−1 = xt−1 ] = a0 + a1(xt−1 − µ)2.

• The process {Xt } is stationary with finite variance if

and only if a1 < 1, in which case Var[ Xt ] = a0/(1− a1).

• The parameters can be estimated by statistical

techniques.

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 717

GARCH Modelsa

• A very popular extension of the ARCH model is the

generalized autoregressive conditional heteroskedastic

(GARCH) process.

• The simplest GARCH(1, 1) process adds a2V
2
t−1 to the

ARCH(1) process, resulting in

V 2
t = a0 + a1(Xt−1 − µ)2 + a2V

2
t−1.

• The volatility at time t as estimated at time t − 1

depends on the squared return and the estimated

volatility at time t − 1.

aBollerslev (1986) and Taylor (1986).
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GARCH Models (concluded)

• The estimate of volatility averages past squared returns

by giving heavier weights to recent squared returns (see

text).

• It is usually assumed that a1 + a2 < 1 and a0 > 0, in

which case the unconditional, long-run variance is given

by a0/(1 − a1 − a2).

• A popular special case of GARCH(1, 1) is the

exponentially weighted moving average process, which

sets a0 to zero and a2 to 1 − a1.

• This model is used in J.P. Morgan’s RiskMetricsTM.
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GARCH Option Pricing

• Options can be priced when the underlying asset’s

return follows a GARCH process.

• Let St denote the asset price at date t.

• Let h2
t be the conditional variance of the return over

the period [ t, t + 1 ] given the information at date t.

– “One day” is merely a convenient term for any

elapsed time ∆t.
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GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for the price

dynamics:a

ln
St+1

St
= r − h2

t

2
+ htεt+1, (78)

where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (εt+1 − c)2, (79)

εt+1 ∼ N(0, 1) given information at date t,

r = daily riskless return,

c ≥ 0.

aDuan (1995).
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GARCH Option Pricing (continued)

• The five unknown parameters of the model are c, h0, β0,

β1, and β2.

• It is postulated that β0, β1, β2 ≥ 0 to make the

conditional variance positive.

• The above process, called the nonlinear asymmetric

GARCH model, generalizes the GARCH(1, 1) model (see

text).
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GARCH Option Pricing (concluded)

• With yt ≡ lnSt denoting the logarithmic price, the

model becomes

yt+1 = yt + r − h2
t

2
+ htεt+1. (80)

• The pair (yt, h
2
t ) completely describes the current state.

• The conditional mean and variance of yt+1 are clearly

E[ yt+1 | yt, h
2
t ] = yt + r − h2

t

2
, (81)

Var[ yt+1 | yt, h
2
t ] = h2

t . (82)
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The Ritchken-Trevor (RT) Algorithma

• The GARCH model is a continuous-state model.

• To approximate it, we turn to trees with discrete states.

• Path dependence in GARCH makes the tree for asset

prices explode exponentially.

• We need to mitigate this combinatorial explosion

somewhat.

aRitchken and Trevor (1999).
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The Ritchken-Trevor Algorithm (continued)

• Partition a day into n periods.

• Three states follow each state (yt, h
2
t ) after a period.

• As the trinomial model combines, 2n + 1 states at date

t + 1 follow each state at date t (recall p. 550).

• These 2n + 1 values must approximate the distribution

of (yt+1, h
2
t+1).

• So the conditional moments (81)–(82) at date t + 1 on

p. 723 must be matched by the trinomial model to

guarantee convergence to the continuous-state model.
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The Ritchken-Trevor Algorithm (continued)

• It remains to pick the jump size and the three branching

probabilities.

• The role of σ in the Black-Scholes option pricing model

is played by ht in the GARCH model.

• As a jump size proportional to σ/
√

n is picked in the

BOPM, a comparable magnitude will be chosen here.

• Define γ ≡ h0, though other multiples of h0 are

possible, and

γn ≡ γ√
n

.

• The jump size will be some integer multiple η of γn.

• We call η the jump parameter (p. 727).
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(0, 0)
yt

(1, 1)

(1, 0)

(1,−1)

6
?
ηγn

-� 1 day

The seven values on the right approximate the distribution

of logarithmic price yt+1.
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The Ritchken-Trevor Algorithm (continued)

• The middle branch does not change the underlying

asset’s price.

• The probabilities for the up, middle, and down branches

are

pu =
h2

t

2η2γ2
+

r − (h2
t /2)

2ηγ
√

n
, (83)

pm = 1 − h2
t

η2γ2
, (84)

pd =
h2

t

2η2γ2
− r − (h2

t /2)

2ηγ
√

n
. (85)
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The Ritchken-Trevor Algorithm (continued)

• It can be shown that:

– The trinomial model takes on 2n + 1 values at date

t + 1 for yt+1 .

– These values have a matching mean for yt+1 .

– These values have an asymptotically matching

variance for yt+1 .

• The central limit theorem thus guarantees the desired

convergence as n increases.
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The Ritchken-Trevor Algorithm (continued)

• We can dispense with the intermediate nodes between

dates to create a (2n + 1)-nomial tree (p. 731).

• The resulting model is multinomial with 2n + 1

branches from any state (yt, h
2
t ).

• There are two reasons behind this manipulation.

– Interdate nodes are created merely to approximate

the continuous-state model after one day.

– Keeping the interdate nodes results in a tree that is

n times as large.
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yt

6
?
ηγn

-� 1 day

This heptanomial tree is the outcome of the trinomial tree

on p. 727 after its intermediate nodes are removed.
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The Ritchken-Trevor Algorithm (continued)

• A node with logarithmic price yt + `ηγn at date t + 1

follows the current node at date t with price yt for

some −n ≤ ` ≤ n.

• To reach that price in n periods, the number of up

moves must exceed that of down moves by exactly `.

• The probability that this happens is

P (`) ≡
∑

ju,jm,jd

n!

ju! jm! jd!
pju

u pjm

m pjd

d ,

with ju, jm, jd ≥ 0, n = ju + jm + jd, and ` = ju − jd.
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The Ritchken-Trevor Algorithm (continued)

• A particularly simple way to calculate the P (`)s starts

by noting that

(pux + pm + pdx
−1)n =

n
∑

`=−n

P (`) x`. (86)

• So we expand (pux + pm + pdx
−1)n and retrieve the

probabilities by reading off the coefficients.

• It can be computed in O(n2) time.
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The Ritchken-Trevor Algorithm (continued)

• The updating rule (79) on p. 721 must be modified to

account for the adoption of the discrete-state model.

• The logarithmic price yt + `ηγn at date t + 1 following

state (yt, h
2
t ) at date t has a variance equal to

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε

′

t+1 − c)2, (87)

– Above,

ε′t+1 =
`ηγn − (r − h2

t /2)

ht
, ` = 0,±1,±2, . . . ,±n,

is a discrete random variable with 2n + 1 values.
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The Ritchken-Trevor Algorithm (continued)

• Different conditional variances h2
t may require different

η so that the probabilities calculated by Eqs. (83)–(85)

on p. 728 lie between 0 and 1.

• This implies varying jump sizes.

• The necessary requirement pm ≥ 0 implies η ≥ ht/γ.

• Hence we try

η = dht/γ e, dht/γ e + 1, dht/γ e + 2, . . .

until valid probabilities are obtained or until their

nonexistence is confirmed.
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The Ritchken-Trevor Algorithm (continued)

• The sufficient and necessary condition for valid

probabilities to exist is

| r − (h2
t /2) |

2ηγ
√

n
≤ h2

t

2η2γ2
≤ min

(

1 − | r − (h2
t /2) |

2ηγ
√

n
,
1

2

)

.

• Obviously, the magnitude of η tends to grow with ht.

• The plot on p. 737 uses n = 1 to illustrate our points

for a 3-day model.

• For example, node (1, 1) of date 1 and node (2, 3) of

date 2 pick η = 2.
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y0

(1, 1)

(2, 3)

(2, 0)

(2,−1)

6
?

γn = γ1

-� 3 days
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The Ritchken-Trevor Algorithm (continued)

• The topology of the tree is not a standard combining

multinomial tree.

• For example, a few nodes on p. 737 such as nodes (2, 0)

and (2,−1) have multiple jump sizes.

• The reason is the path dependence of the model.

– Two paths can reach node (2, 0) from the root node,

each with a different variance for the node.

– One of the variances results in η = 1, whereas the

other results in η = 2.
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The Ritchken-Trevor Algorithm (concluded)

• The possible values of h2
t at a node are exponential

nature.

• To address this problem, we record only the maximum

and minimum h2
t at each node.a

• Therefore, each node on the tree contains only two

states (yt, h
2
max) and (yt, h

2
min).

• Each of (yt, h
2
max) and (yt, h

2
min) carries its own η and

set of 2n + 1 branching probabilities.

aCakici and Topyan (2000).
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Negative Aspects of the Ritchken-Trevor Algorithma

• A small n may yield inaccurate option prices.

• But the tree will grow exponentially if n is large enough.

– Specifically, n > (1 − β1)/β2 when r = c = 0.

• A large n has another serious problem: The tree cannot

grow beyond a certain date.

• Thus the choice of n may be limited in practice.

• The RT algorithm can be modified to be free of

exponential complexity and shortened maturity.b

aLyuu and Wu (2003).
bLyuu and Wu (2005).
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Numerical Examples

• Assume S0 = 100, y0 = lnS0 = 4.60517, r = 0,

h2
0 = 0.0001096, γ = h0 = 0.010469, n = 1,

γn = γ/
√

n = 0.010469, β0 = 0.000006575, β1 = 0.9,

β2 = 0.04, and c = 0.

• A daily variance of 0.0001096 corresponds to an annual

volatility of
√

365 × 0.0001096 ≈ 20%.

• Let h2(i, j) denote the variance at node (i, j).

• Initially, h2(0, 0) = h2
0 = 0.0001096.
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Numerical Examples (continued)

• Let h2
max(i, j) denote the maximum variance at node

(i, j).

• Let h2
min(i, j) denote the minimum variance at node

(i, j).

• Initially, h2
max(0, 0) = h2

min(0, 0) = h2
0.

• The resulting three-day tree is depicted on p. 743.
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A top (bottom) number inside a gray box refers to the

minimum (maximum, respectively) variance h2
min (h2

max,

respectively) for the node. Variances are multiplied by

100,000 for readability. A top (bottom) number inside a

white box refers to η corresponding to h2
min (h2

max,

respectively).
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Numerical Examples (continued)

• Let us see how the numbers are calculated.

• Start with the root node, node (0, 0).

• Try η = 1 in Eqs. (83)–(85) on p. 728 first to obtain

pu = 0.4974,

pm = 0,

pd = 0.5026.

• As they are valid probabilities, the three branches from

the root node use single jumps.
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Numerical Examples (continued)

• Move on to node (1, 1).

• It has one predecessor node—node (0, 0)—and it takes

an up move to reach the current node.

• So apply updating rule (87) on p. 734 with ` = 1 and

h2
t = h2(0, 0).

• The result is h2(1, 1) = 0.000109645.
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Numerical Examples (continued)

• Because bh(1, 1)/γ c = 2, we try η = 2 in

Eqs. (83)–(85) on p. 728 first to obtain

pu = 0.1237,

pm = 0.7499,

pd = 0.1264.

• As they are valid probabilities, the three branches from

node (1, 1) use double jumps.
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Numerical Examples (continued)

• Carry out similar calculations for node (1, 0) with

` = 0 in updating rule (87) on p. 734.

• Carry out similar calculations for node (1,−1) with

` = −1 in updating rule (87).

• Single jump η = 1 works in both nodes.

• The resulting variances are

h2(1, 0) = 0.000105215,

h2(1,−1) = 0.000109553.
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Numerical Examples (continued)

• Node (2, 0) has 2 predecessor nodes, (1, 0) and (1,−1).

• Both have to be considered in deriving the variances.

• Let us start with node (1, 0).

• Because it takes a middle move to reach the current

node, we apply updating rule (87) on p. 734 with ` = 0

and h2
t = h2(1, 0).

• The result is h2
t+1 = 0.000101269.
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Numerical Examples (continued)

• Now move on to the other predecessor node (1,−1).

• Because it takes an up move to reach the current node,

apply updating rule (87) on p. 734 with ` = 1 and

h2
t = h2(1,−1).

• The result is h2
t+1 = 0.000109603.

• We hence record

h2
min(2, 0) = 0.000101269,

h2
max(2, 0) = 0.000109603.
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Numerical Examples (continued)

• Consider state h2
max(2, 0) first.

• Because bhmax(2, 0)/γ c = 2, we first try η = 2 in

Eqs. (83)–(85) on p. 728 to obtain

pu = 0.1237,

pm = 0.7500,

pd = 0.1263.

• As they are valid probabilities, the three branches from

node (2, 0) with the maximum variance use double

jumps.
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Numerical Examples (continued)

• Now consider state h2
min(2, 0).

• Because bhmin(2, 0)/γ c = 1, we first try η = 1 in

Eqs. (83)–(85) on p. 728 to obtain

pu = 0.4596,

pm = 0.0760,

pd = 0.4644.

• As they are valid probabilities, the three branches from

node (2, 0) with the minimum variance use single jumps.
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Numerical Examples (continued)

• Node (2,−1) has 3 predecessor nodes.

• Start with node (1, 1).

• Because it takes a down move to reach the current node,

we apply updating rule (87) on p. 734 with ` = −1 and

h2
t = h2(1, 1).

• The result is h2
t+1 = 0.0001227.
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Numerical Examples (continued)

• Now move on to predecessor node (1, 0).

• Because it also takes a down move to reach the current

node, we apply updating rule (87) on p. 734 with

` = −1 and h2
t = h2(1, 0).

• The result is h2
t+1 = 0.000105609.
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Numerical Examples (continued)

• Finally, consider predecessor node (1,−1).

• Because it takes a middle move to reach the current

node, we apply updating rule (87) on p. 734 with ` = 0

and h2
t = h2(1,−1).

• The result is h2
t+1 = 0.000105173.

• We hence record

h2
min(2,−1) = 0.000105173,

h2
max(2,−1) = 0.0001227.
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Numerical Examples (continued)

• Consider state h2
max(2,−1).

• Because bhmax(2,−1)/γ c = 2, we first try η = 2 in

Eqs. (83)–(85) on p. 728 to obtain

pu = 0.1385,

pm = 0.7201,

pd = 0.1414.

• As they are valid probabilities, the three branches from

node (2,−1) with the maximum variance use double

jumps.
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Numerical Examples (continued)

• Next, consider state h2
min(2,−1).

• Because bhmin(2,−1)/γ c = 1, we first try η = 1 in

Eqs. (83)–(85) on p. 728 to obtain

pu = 0.4773,

pm = 0.0404,

pd = 0.4823.

• As they are valid probabilities, the three branches from

node (2,−1) with the minimum variance use single

jumps.
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Numerical Examples (concluded)

• Other nodes at dates 2 and 3 can be handled similarly.

• In general, if a node has k predecessor nodes, then 2k

variances will be calculated using the updating rule.

– This is because each predecessor node keeps two

variance numbers.

• But only the maximum and minimum variances will be

kept.
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Negative Aspects of the RT Algorithm Revisiteda

• Recall the problems mentioned on p. 740.

• In our case, combinatorial explosion occurs when

n >
1 − β1

β2

=
1 − 0.9

0.04
= 2.5.

• Suppose we are willing to accept the exponential

running time and pick n = 100 to seek accuracy.

• But the problem of shortened maturity forces the tree to

stop at date 9!

aLyuu and Wu (2003).
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25 50 75 100 125 150 175
Date

5000

10000

15000

20000

25000

Dotted line: n = 3; dashed line: n = 4; solid line: n = 5.
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Backward Induction on the RT Tree

• After the RT tree is constructed, it can be used to price

options by backward induction.

• Recall that each node keeps two variances h2
max and

h2
min.

• We now increase that number to K equally spaced

variances between h2
max and h2

min at each node.

• Besides the minimum and maximum variances, the other

K − 2 variances in between are linearly interpolated.a

aIn practice, log-linear interpolation works better; Lyuu and Wu

(2005). Log-cubic interpolation works even better; Liu (2005).
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Backward Induction on the RT Tree (continued)

• For example, if K = 3, then a variance of

10.5436 × 10−6 will be added between the maximum

and minimum variances at node (2, 0) on p. 743.

• In general, the kth variance at node (i, j) is

h2
min(i, j) + k

h2
max(i, j) − h2

min(i, j)

K − 1
,

k = 0, 1, . . . , K − 1.

• Each interpolated variance’s jump parameter and

branching probabilities can be computed as before.
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Backward Induction on the RT Tree (concluded)

• During backward induction, if a variance falls between

two of the K variances, linear interpolation of the

option prices corresponding to the two bracketing

variances will be used as the approximate option price.

• The above ideas are reminiscent of the ones on p. 319,

where we dealt with arithmetic average-rate options.
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Numerical Examples

• We next use the numerical example on p. 743 to price a

European call option with a strike price of 100 and

expiring at date 3.

• Recall that the riskless interest rate is zero.

• Assume K = 2; hence there are no interpolated

variances.

• The pricing tree is shown on p. 765 with a call price of

0.66346.

– The branching probabilities needed in backward

induction can be found on p. 766.
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Numerical Examples (continued)

• Let us derive some of the numbers on p. 765.

• The option price for a terminal node at date 3 equals

max(S3 − 100, 0), independent of the variance level.

• Now move on to nodes at date 2.

• The option price at node (2, 3) depends on those at

nodes (3, 5), (3, 3), and (3, 1).

• It therefore equals

0.1387 × 5.37392 + 0.7197 × 3.19054 + 0.1416 × 1.05240 = 3.19054.

• Option prices for other nodes at date 2 can be computed

similarly.
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Numerical Examples (continued)

• For node (1, 1), the option price for both variances is

0.1237 × 3.19054 + 0.7499 × 1.05240 + 0.1264 × 0.14573 = 1.20241.

• Node (1, 0) is most interesting.

• We knew that a down move from it gives a variance of

0.000105609.

• This number falls between the minimum variance

0.000105173 and the maximum variance 0.0001227 at

node (2,−1) on p. 743.
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Numerical Examples (continued)

• The option price corresponding to the minimum

variance is 0.

• The option price corresponding to the maximum

variance is 0.14573.

• The equation

x × 0.000105173 + (1 − x) × 0.0001227 = 0.000105609

is satisfied by x = 0.9751.

• So the option for the down state is approximated by

x × 0 + (1 − x) × 0.14573 = 0.00362.
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Numerical Examples (continued)

• The up move leads to the state with option price

1.05240.

• The middle move leads to the state with option price

0.48366.

• The option price at node (1, 0) is finally calculated as

0.4775 × 1.05240 + 0.0400 × 0.48366 + 0.4825 × 0.00362 = 0.52360.
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Numerical Examples (concluded)

• It is possible for some of the three variances following an

interpolated variance to exceed the maximum variance

or be exceeded by the minimum variance.

• When this happens, the option price corresponding to

the maximum or minimum variance will be used during

backward induction.

• An interpolated variance may choose a branch that goes

into a node that is not reached in the forward-induction

tree-building phase.a

aLyuu and Wu (2005).
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