Terminology

e A period denotes a unit of elapsed time.

— Viewed at time ¢, the next time instant refers to time
t + dt in the continuous-time model and time ¢+ 1

) . in the discrete-time case.
Foundations of Term Structure Modeling
e Bonds will be assumed to have a par value of one unless

stated otherwise.

e The time unit for continuous-time models will usually be
measured by the year.
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Standard Notations

The following notation will be used throughout.

[Meriwether| scoring especially high marks L
. . .o . t: a point in time.
in mathematics — an indispensable subject

for a bond trader. r(t): the one-period riskless rate prevailing at time ¢ for
— Roger Lowenstein, repayment one period later (the instantaneous spot rate,
When Genius Failed or short rate, at time ¢).

P(¢,T): the present value at time t of one dollar at time T.
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Standard Notations (continued)

r(t,T): the (T — t)-period interest rate prevailing at time ¢
stated on a per-period basis and compounded once per
period—in other words, the (T — t)-period spot rate at

time ¢.
e The long rate is defined as r(t, 00).
F(t,T,M): the forward price at time ¢ of a forward

contract that delivers at time T a zero-coupon bond
maturing at time M > T.

Fundamental Relations

e The price of a zero-coupon bond equals

(1+rtT)"T=Y in discrete time,

P,T) = =1 (t.T)(T—1)

in continuous time.
e r(t,T) as a function of T' defines the spot rate curve at
time ¢.

e By definition,

r(t,t+1) in discrete time,
f(t.t) =

r(t, t) in continuous time.
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Standard Notations (concluded)

f(t,T,L): the L-period forward rate at time T implied at
time ¢ stated on a per-period basis and compounded
once per period.

f(t,T): the one-period or instantaneous forward rate at
time T as seen at time ¢ stated on a per period basis
and compounded once per period.

e Itis f(¢,7,1) in the discrete-time model and

f(t,T,dt) in the continuous-time model.

e Note that f(¢,t) equals the short rate r(t).
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Fundamental Relations (continued)

e Forward prices and zero-coupon bond prices are related:

P(t, M)
Fit,T,M)=—"~, T<M. 93
( ) ) ) P(t,T) ) — ( )
— The forward price equals the future value at time T
of the underlying asset (see text for proof).

e Equation (93) holds whether the model is discrete-time

or continuous-time, and it implies

F(t,T,M) = F(t,T,S)F(t,5,M), T <S8 <M.
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Fundamental Relations (continued)

e Forward rates and forward prices are related
definitionally by

(94)
in discrete time.
_ 1 P(t7T) iQ
— f(t,T, L) =1 (m — ].) is the analog to
Eq. (94) under simple compounding.
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Fundamental Relations (continued)

e In continuous time,

f(t,T,L) =

WFAT,T+L) W(PET)/PtT+L))

L L

by Eq. (93) on p. 845.

e Furthermore,

f&,T,At) = Y

OP(t,T)/OT
- PtT)

In(P(t,T)/P(t, T+ At) 9l P(t,T)

(95)

oT
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Fundamental Relations (continued)

e So

JT) = lim f(t.T,At) = _OP(t,T)/0T

* Because Eq. (96) is equivalent to
P(th) =e ftT f(t,s) ds7 (97)

the spot rate curve is

T
r(t,T) = %/t f(t,s)ds.
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Fundamental Relations (concluded)

e The discrete analog to Eq. (97) is

1

Pt.T) = (T r @)+ FEt+ 1) 1+ FET - )

)

e The short rate and the market discount function are

related by
P(t,T
T(t) E— M .
or |,
— This can be verified with Eq. (96) on p. 848 and the

observation that P(t,t) =1 and r(t) = f(¢,1).
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Risk-Neutral Pricing Risk-Neutral Pricing (continued)

e Under the local expectations theory, the expected rate of e Apply the above equality iteratively to obtain
return of any riskless bond over a single period equals

the prevailing one-period spot rate. P(t,T)

P(t+1,T
— Forall t+1<T, Ef{%i%él}

EJP(t+1,T)] Tr[ Ef L [P+2,T)] }
2 S S Rl A = E —_—
PULT) L+r(®). (99) Flasroasrer )
_ g ! 100
— Relation (99) in fact follows from the risk-neutral TP+ @) 4+ 1)L+ (T - 1) (100)
valuation principle, Theorem 14 (p. 412).
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Risk-Neutral Pricing (continued)

e The local expectations theory is thus a consequence of

Risk-Neutral Pricing (concluded)

the existence of a risk-neutral probability .

Rewrite Eq. (99) e Equation (99) on p. 850 can also be expressed as
e Rewrite Eq. as
. EPt+1,T)] = F(t,t +1,T).
EJP@+LH]:PUT) [ Pt+1,T)]=F(tt+1,7)
1+7(t) T

e Hence the forward price for the next period is an

— It says the current spot rate curve equals the unbiased estimator of the expected bond price.

expected spot rate curve one period from now
discounted by the short rate.
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Continuous-Time Risk-Neutral Pricing Interest Rate Swaps (continued)

e In continuous time, the local expectations theory implies
’ P Y mp e The amount to be paid out at time ¢,y is (f; —¢) At

Pt,T)=E, [e‘ JEr(s) dS} . t<T. (101) for the floating-rate payer.

— Simple rates are adopted here.
T

e Note that efi "()4s ig the bank account process, which

e Hence f; satisfies
denotes the rolled-over money market account.

1
e When the local expectations theory holds, riskless P(ti,tiv1) = m .
K3
arbitrage opportunities are impossible.
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Interest Rate Swaps Interest Rate Swaps (continued)

e Consider an interest rate swap made at time ¢ with e The value of the swap at time ¢ is thus

payments to be exchanged at times t1,%o,... ,t,.

zn:Et” e I ras(f, g — o) ]
i=1

e The fixed rate is ¢ per annum.

The floating-rat t based on the fut < 1

e The floating-rate payments are a%se on the future _ ZEZF o= S r(s) ds (14 At
annual rates fo, f1,..., fn_1 at times tg,t1,... ,tph_1. — P(ti—1,t;)

e For simplicity, assume t;11 — t; is a fixed constant At =

= Z(P(t,ti_ﬁ — (1 + cAt) x P(t,t;))

=1

= P(t,ty) — P(t,ty) — cAt Y _P(t,1;).
=1

for all ¢, and the notional principal is one dollar.

If t < tg, we have a forward interest rate swap.

e The ordinary swap corresponds to t = tg.
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Interest Rate Swaps (concluded)
e So a swap can be replicated as a portfolio of bonds.

e In fact, it can be priced by simple present value
calculations.
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Swap Rate

e The swap rate, which gives the swap zero value, equals

P(t,to) — P(t,tn)

Sn(?) S Pt t) At

(102)

e The swap rate is the fixed rate that equates the present
values of the fixed payments and the floating payments.

e For an ordinary swap, P(t,to) = 1.
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The Binomial Model

e The analytical framework can be nicely illustrated with
the binomial model.

e Suppose the bond price P can move with probability ¢
to Pu and probability 1 —¢q to Pd, where u > d:

1=a_ p,
P<i:
Pu

q
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The Binomial Model (continued)
e Over the period, the bond’s expected rate of return is

qPu+ (1 —q) Pd

= 2 —l=qu+(1—-¢q)d—-1.
(103)
e The variance of that return rate is
~2 _ 2
o =q(1 —q)(u—d)=. (104)

e The bond whose maturity is only one period away will
move from a price of 1/(1+r) to its par value $1.

e This is the money market account modeled by the short
rate.
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Numerical Examples

The Binomial Model (continued) o Assume this spot rate curve:
Year 1 2

Spot rate 4% 5%

e The market price of risk is defined as A = (u —r)/0.

e The same arbitrage argument as in the continuous-time

case can be employed to show that A is independent of e Assume the one-year rate (short rate) can move up to

the maturity of the bond (see text). 8% or down to 2% after a year:

8%
4%<
2%
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The Binomial Model (concluded)

e Now change the probability from ¢ to

qu—Avq(l—Q)=%, (105)

which is independent of bond maturity and gq.

— Recall the BOPM.

Numerical Examples (continued)
e No real-world probabilities are specified.

e The prices of one- and two-year zero-coupon bonds are,

respectively,
e The bond’s expected rate of return becomes 100/1.04 = 96.154, 100/(1.05)2 = 90.703
pPu+ (1 —p) Pd _
P —l=put+(1—-pld-1=r e They follow the binomial processes on p. 866.

e The local expectations theory hence holds under the
new probability measure p.
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Numerical Examples (continued)

Numerical Examples (concluded)

92.593 (= 100/1.08
( / ) 100 e Solving the equation leads to p = 0.319.
90.703 96.154

98.039 (= 100/1.02) 100 e Interest rate contingent claims can be priced under this
probability.
The price process of the two-year zero-coupon bond is on the

left; that of the one-year zero-coupon bond is on the right.
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Numerical Examples (continued)

e The pricing of derivatives can be simplified by assuming Numerical Examples: Fixed-Income Options

investors are risk-neutral.
e A one-year European call on the two-year zero with a

e Suppose all securities have the same expected one-period $95 strike price has the payoffs

rate of return, the riskless rate. 0.000
c <
* Then 3.039

92.593 98.039 1= 4%, e To solve for the option value C, we replicate the call by

1 2999 20109
(1=p) x 55703 TP * 50.703

where p denotes the risk-neutral probability of an up

a portfolio of x one-year and y two-year zeros.

move in rates.
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Numerical Examples: Fixed-Income Options
(continued)

e This leads to the simultaneous equations,

z x 1004+ 1y x 92.593 = 0.000,
z x 1004y x 98.039 = 3.039.

e They give = —0.5167 and y = 0.5580.
e Consequently,
C =2 x96.154 +y x 90.703 ~ 0.93

to prevent arbitrage.

Numerical Examples: Fixed-Income Options
(concluded)

e An equivalent method is to utilize risk-neutral pricing.

e The above call option is worth

(1—p)x0+px3.039

¢= 1.04

~ 0.93,

the same as before.

e This is not surprising, as arbitrage freedom and the

existence of a risk-neutral economy are equivalent.
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Numerical Examples: Fixed-Income Options
(continued)

e This price is derived without assuming any version of an

expectations theory.
e Instead, the arbitrage-free price is derived by replication.

e The price of an interest rate contingent claim does not
depend directly on the real-world probabilities.

e The dependence holds only indirectly via the current
bond prices.

Numerical Examples: Futures and Forward Prices
e A one-year futures contract on the one-year rate has a
payoff of 100 — r, where r is the one-year rate at
maturity, as shown below.
92 (=100 —8)
F <
98 (=100 — 2)
e As the futures price F' is the expected future payoff (see
text), FF'= (1 —p) x 92+ p x 98 = 93.914.

e On the other hand, the forward price for a one-year

forward contract on a one-year zero-coupon bond equals
90.703/96.154 = 94.331%.

e The forward price exceeds the futures price.
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Numerical Examples: Mortgage-Backed Securities

e Consider a 5%-coupon, two-year mortgage-backed
security without amortization, prepayments, and default
risk.

e Its cash flow and price process are illustrated on p. 875.

e Its fair price is

Numerical Examples: MBSs (continued)
e Suppose that the security can be prepaid at par.
e It will be prepaid only when its price is higher than par.

e Prepayment will hence occur only in the “down” state
when the security is worth 102.941 (excluding coupon).

e The price therefore follows the process,
102.222
M <
105
e The security is worth

(1—p) x 102.222 + p x 105
1.04

M = = 99.142.

1—p) x102.222 + p x 107.941
= 1=p) b = 100.045.
1.04
e Identical results could have been obtained via arbitrage
considerations.
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105
/
5
S/ N 102.222 (= 5 + (105/1.08))
105 S
0 M
105 N
A / 107.941 (= 5 + (105/1.02))
5
N
105

The left diagram depicts the cash flow; the right diagram
illustrates the price process.
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Numerical Examples: MBSs (continued)

e The cash flow of the principal-only (PO) strip comes
from the mortgage’s principal cash flow.

o The cash flow of the interest-only (IO) strip comes from
the interest cash flow (p. 878(a)).

e Their prices hence follow the processes on p. 878(b).

e The fair prices are

(1 —p) x92.593 4+ p x 100

PO = 104 = 91.304,
 (1-p)x9.630+px5
10 = 104 = 7.839.
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PO: 100 10: 5
e e FLT: 108 INV: 102
0 5 ~ ~
e N e N 4 6
100 5 e ~ s ~
Y 0 108 102
0 0 0 0
N e N e 0 0
100 5 N ~ N P
~ ~ 104 106
0 0 N N
(a) 0 0
92.593 9.630 (2
7 7 104 100.444
PO 10 / /
N ~N FLT INV
100 5 N N
(b) 104 106
(b)
The price 9.630 is derived from 5 + (5/1.08).
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Numerical Examples: MBSs (continued) Numerical Examples: MBSs (concluded)

e Suppose the mortgage is split into half floater and half e On p. 880, the floater’s price in the up node, 104, is

inverse floater. derived from 4 + (108/1.08).

e Let the floater (FLT) receive the one-year rate. e The inverse floater’s price 100.444 is derived from

e Then the inverse floater (INV) must have a coupon rate 6 + (102/1.08).

of e The current prices are

(10% — one-year rate)

1 104
to make the overall coupon rate 5%. FLT = 2 % 1.04 50,
e Their cash flows as percentages of par and values are INV = % X (L—p) x 10;).(4)1;14 +p x 106 = 49.142.

shown on p. 880.
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Introduction
e This chapter surveys equilibrium models.

e Since the spot rates satisfy
InP(t,T)
T—t "’
the discount function P(t,T') suffices to establish the

spot rate curve.

r(t,T) =
Equilibrium Term Structure Models

e All models to follow are short rate models.

e Unless stated otherwise, the processes are risk-neutral.
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The Vasicek Model®

e The short rate follows
dr = B(p—r)dt+ o dW.

e The short rate is pulled to the long-term mean level p

8. What’s your problem? Any moron at rate (3.
can understand bond pricing models. e Superimposed on this “pull” is a normally distributed
— Top Ten Lies Finance Professors stochastic term o dW.

Tell Their Students
e Since the process is an Ornstein-Uhlenbeck process,

E[r(T) |r(t) = r] = p+ (r —p) e 0T

from Eq. (53) on p. 467.
aVasicek (1977).
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The Vasicek Model (continued)

e The price of a zero-coupon bond paying one dollar at

maturity can be shown to be Yield
P(t,T) = A(t,T) e~ B&DIr®)] (106) 0.2 nor mal
where 0.15 hunped
_ 2, .2 52 )2 .
oxp [ BT Ohme _ taien] g g o
A(t,T) = . . i nverted
exp [7“ == ] if §=0. 0.05
Term
and s 2 4 6 8 10
1_6_r - .
= _— — if §#£0
B(t,T) = ’ ’
T—1t if =0.
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The Vasicek Model (concluded)

o If 5 =0, then P goes to infinity as T" — oco. The Vasicek Model: Options on Zeros?®

* Sensibly, P goes to zero as T'— oo if 5 0. e Consider a European call with strike price X expiring

e Even if 3 # 0, P may exceed one for a finite 7. at time T on a zero-coupon bond with par value $1 and

. . maturing at time s > T'.
e The spot rate volatility structure is the curve &

(Or(t,T)/0r)o =oB(t,T)/(T —t). e Its price is given by

e When 3 > 0, the curve tends to decline with maturity. P(t,s) N(z) — XP(t,T) N(z — 0y).

e The speed of mean reversion, (3, controls the shape of aJamshidian (1989).

the curve; indeed, higher ( leads to greater attenuation
of volatility with maturity.
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The Vasicek Model: Options on Zeros (concluded)

e Above
B P(t,s) O
= on(pamx)t S
Oy = (t7 )B( )
4 [1 e 28(T— f)] f 0
v(t,T)? = — 2w ! p#
o2 (T —t), it =0

e By the put-call parity, the price of a European put is

XP(t, T)N(—z+o0,) — P(t,s) N(—z).
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Binomial Vasicek

e Consider a binomial model for the short rate in the time
interval [0,7"] divided into n identical pieces.

e Let At =T/n and
4 Blu—r) VAL

1
p(r) 2 20

e The following binomial model converges to the Vasicek

model,®

r(k+1) =r(k) + oVAL (), 0<k<n.

aNelson and Ramaswamy (1990).
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Binomial Vasicek (continued)
e Above, (k) = +1 with
p(r(k)) if 0<p(r(k)) <1
Prob[{(k)=1]=<2 0 if p(r(k)) <0
1 if 1 <p(rk))
e Observe that the probability of an up move, p, is a
decreasing function of the interest rate r.

e This is consistent with mean reversion.
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Binomial Vasicek (concluded)

e The rate is the same whether it is the result of an up
move followed by a down move or a down move followed

by an up move.
e The binomial tree combines.

e The key feature of the model that makes it happen is its
constant volatility, o

e For a general process Y with nonconstant volatility, the

resulting binomial tree may not combine.
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The Cox-Ingersoll-Ross Model* Binomial CIR (continued)

e It is the following square-root short rate model: e Instead, consider the transformed process
dr = B(u—r)dt + o/rdW. (107) z(r) = 2v/r/o.
e The diffusion differs from the Vasicek model by a e It follows
multiplicative factor /7. dz = m(x)dt + dW,
e The parameter § determines the speed of adjustment. where
e The short rate can reach zero only if 28y < o2. m(z) = 28u/(0?x) — (Bx/2) — 1/(2x).

* See text for the bond pricing formula. e Since this new process has a constant volatility, its

2Cox, Ingersoll, and Ross (1985). associated binomial tree combines.
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Binomial CIR
e We want to approximate the short rate process in the Binomial CIR (Contmued)
time interval [0,7']. e Construct the combining tree for r as follows.
e Divide it into n periods of duration At =T/n. e Tirst, construct a tree for x.
e Assume p,3 > 0. e Then transform each node of the tree into one for r via
. . _ _ 2 2
e A direct discretization of the process is problematic the inverse transformation 7 = f(z) = 2%0%/4 (p. 898).
because the resulting binomial tree will not combine.
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z + 2VAL f(z + 2VATL)
e e
z + VAt f(z + VAL)
e N e N
x x f(=z) f (=)
N e N e
z — VAt f(z — VAYT)
N N
z — 2VAt f(z — 2VAY)
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Binomial CIR (concluded)

p(r) = e —

from r.

e The probability of an up move at each node r is

Blp—r)At+r—1"
— rt = f(z + VAt) denotes the result of an up move

— r~ = f(z — VAt) the result of a down move.

e Finally, set the probability p(r) to one as r goes to zero
to make the probability stay between zero and one.

(108)
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Numerical Examples
e Consider the process,

0.2(0.04 — r) dt + 0.1/r dW,

for the time interval [0,1] given the initial rate
r(0) = 0.04.

e We shall use At = 0.2 (year) for the binomial

approximation.

with the up-move probabilities in parentheses.

e See p. 901(a) for the resulting binomial short rate tree
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A General Method for Constructing Binomial Models®

e We are given a continuous-time process

. . dy = ,t)dt + ) dW.
Numerical Examples (continued) y=olyt) o)
e Make sure the binomial model’s drift and diffusion

i h hich is th It of . -
¢ Consider the node which is the result of an up move converge to the above process by setting the probability

from the root.
of an up move to

e Since the root has x = 24/7(0)/0 = 4, this particular aly,t) At+y—y
node’s = value equals 4 + v At = 4.4472135955. Yo — Yd :
e Use the inverse transformation to obtain the short rate o Here yo =y + oy, )VAE and yq = y — o(y, )VAL

2 2/4 Ay
2° % (0.1)%/4 ~ 0.0494442719102. represent the two rates that follow the current rate y.

e The displacements are identical, at o(y, )V At.

aNelson and Ramaswamy (1990).
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A General Method (continued)

e But the binomial tree may not combine:

Numerical Examples (concluded) (s )AL — 0 (g VAL £ —0(y, VAL + (ya, H)VAL

e Once the short rates are in place, computing the .
in general.

probabilities is easy.
e When o(y,t) is a constant independent of y, equality

Note that the up-move probability decreases as interest holds and the tree combines.

rates increase and decreases as interest rates decline.
e To achieve this, define the transformation

This phenomenon agrees with mean reversion.

y
_ —1
e Convergence is quite good (see text). x(y,t) = / o(z,1)"" dz.

e Then z follows dx = m(y,t)dt +dW for some m(y,t)
(see text).
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A General Method (continued)

the binomial tree for & combines.

e The probability of an up move remains

O‘(y(l" t)v t) At + y(l‘a t) - yd('ra t)
yu(x7 t) - yd(xvt)

)

where y(x,t) is the inverse transformation of x(y,t)

from x back to y.

e Note that y,(z,t) = y(z + VALt + At) and
ya(z,t) = y(z — VALt + At).

e The key is that the diffusion term is now a constant, and
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A General Method (concluded)
e The transformation is
T
/ (ov/2)"tdz =2v/r/o
for the CIR model.
e The transformation is
S
/ (02)"Vdz = (1/0)In S
for the Black-Scholes model.
e The familiar binomial option pricing model in fact
discretizes InS not S.
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On One-Factor Short Rate Models

e By using only the short rate, they ignore other rates on
the yield curve.

e Such models also restrict the volatility to be a function
of interest rate levels only.

e The prices of all bonds move in the same direction at
the same time (their magnitudes may differ).

e The returns on all bonds thus become highly correlated.

e In reality, there seems to be a certain amount of
independence between short- and long-term rates.
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On One-Factor Short Rate Models (continued)

e One-factor models therefore cannot accommodate

nondegenerate correlation structures across maturities.

e Derivatives whose values depend on the correlation
structure will be mispriced.

e The calibrated models may not generate term structures
as concave as the data suggest.

e The term structure empirically changes in slope and

curvature as well as makes parallel moves.

e This is inconsistent with the restriction that all
segments of the term structure be perfectly correlated.
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Options on Coupon Bonds (continued)
On One-Factor Short Rate Models (concluded)

e Multi-factor models lead to families of yield curves that renders the coupon bond’s price equal the strike price

can take a greater variety of shapes and can better X.

e At time T, there is a unique value r* for r(T) that

represent reality. e This 7* can be obtained by solving

e But they are much harder to think about and work with. X =" ¢P(r,T,t;) numerically for r.
e They also take much more computer time—the curse of e The solution is also unique for one-factor models whose
dimensionality. bond price is a monotonically decreasing function of r.
e These practical concerns limit the use of multifactor o Let X; = P(r*,T,t;), the value at time T of a
models to two-factor ones. zero-coupon bond with par value $1 and maturing at

time t; if r(T) = r*.
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Options on Coupon Bonds®

e The price of a European option on a coupon bond can

be calculated from those on zero-coupon bonds. Options on Coupon Bonds (concluded)

° C.ons1der a European call expiring at time 7" on a bond o Note that P(r(T),T,t) > X; if and only if r(T) < r*.
with par value $1.
e Let X denote the strike price. * As X' =) ¢iXi, the option’s payoff equals

e The bond has cash flows c¢q,c¢o,...,c, at times ic' x max(P(r(T), T, t:) — X;,0)
ti,ta, ..., t,, where t; > T for all 7. =1 Y ’
e The payoff for the option is e Thus the call is a package of n options on the
n underlying zero-coupon bond.
max (Z ¢ P(r(T),T,t;) — X, 0) .
i=1

aJamshidian (1989).

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 911 ©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 913



