Variance Reduction

e The statistical efficiency of Monte Carlo simulation can
be measured by the variance of its output.

e If this variance can be lowered without changing the
expected value, fewer replications are needed.

e Methods that improve efficiency in this manner are
called variance-reduction techniques.

e Such techniques become practical when the added costs
are outweighed by the reduction in sampling.

Pricing American Options

e Standard Monte Carlo simulation is inappropriate for
American options because of early exercise.

e It is difficult to determine the early-exercise point based
on one single path.

e Monte Carlo simulation can be modified to price
American options with small biases (see p. 683).*

aLongstaff and Schwartz (2001).
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Monte Carlo Option Pricing

e For the pricing of European options on a
dividend-paying stock, we may proceed as follows.

e Stock prices Sp,.52,53,... at times At,2At, 3At, ...
can be generated via

Sj+1 _ Sie(u702/2) At+ovVAtL 5’ f'\’ ]\](07 1)

when dS/S = pdt+ odW.

e Non-dividend-paying stock prices in a risk-neutral
economy can be generated by setting u = r.

e Pricing Asian options is easy (see text).

Delta and Common Random Numbers

In estimating delta, it is natural to start with the
finite-difference estimate
i BLP(S+6)] — E[P(S — )]
2¢ '

— P(z) is the terminal payoff of the derivative security
when the underlying asset’s initial price equals x.

Use simulation to estimate E[P(S +¢)] first.

Use another simulation to estimate E[P(S — ¢)].

Finally, apply the formula to approximate the delta.
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Delta and Common Random Numbers (concluded)

e This method is not recommended because of its high

variance.

e A much better approach is to use common random
numbers to lower the variance:
P(S+¢) —P(S—¢)
2€

ek
e Here, the same random numbers are used for P(S + ¢)
and P(S —e).

e This holds for gamma and cross gammas (for

multivariate derivatives).

Variance Reduction: Antithetic Variates (continued)

e For each simulated sample path X, a second one is
obtained by reusing the random numbers on which the
first path is based.

e This yields a second sample path Y.

e Two estimates are then obtained: One based on X and
the other on Y.

e If N independent sample paths are generated, the
antithetic-variates estimator averages over 2N

estimates.
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Variance Reduction: Antithetic Variates

e We are interested in estimating F[g(X1, Xa2,...,X,)],
where Xi, Xs,...,X, are independent.

Let Y7 and Y5 be random variables with the same
distribution as g(X1, Xo,..., Xp).

e Then
Var [Yl +Y2:| _ Var[Yl] " COV[}/&,YQ]

2 2 2

— Var[Y;]/2 is the variance of the Monte Carlo
method with two (independent) replications.

The variance Var[ (Y7 + Y2)/2] is smaller than
Var[Y7]/2 when Y; and Y, are negatively correlated.

Variance Reduction: Antithetic Variates (continued)
e Consider process dX = a; dt + by\/dt €.

e Let g be a function of n samples X, Xo,...,X,, on
the sample path.

e We are interested in E[g(X1, Xo,...,X,)].

e Suppose one simulation run has realizations

£1,&,...,&, for the normally distributed fluctuation
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term &.
e This generates samples x1,3,...,%y.
e The estimate is then g(x), where @ = (21,22... ,2,).
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Variance Reduction: Antithetic Variates (concluded)

e We do not sample n more numbers from £ for the
second estimate.

e The antithetic-variates method computes g(a’) from
the sample path @’ = (2}, 25 ... ,2),) generated by
7517 7527 B 75n-

e We then output (g(z) + g(x'))/2.

e Repeat the above steps for as many times as required by

accuracy.
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Variance Reduction: Conditioning

e We are interested in estimating E[X |.

Suppose here is a random variable Z such that

E[X|Z = z] can be efficiently and precisely computed.

E[X]|=EFE[E[X]|Z]] by the law of iterated conditional

expectations.

e Hence the random variable F[X | Z] is also an unbiased
estimator of F[X |.
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Variance Reduction: Conditioning (concluded)

e As Var[E[X |Z]] < Var[X ], E[X | Z] has a smaller
variance than observing X directly.

e First obtain a random observation z on Z.

e Then calculate E[X | Z = z] as our estimate.
— There is no need to resort to simulation in computing

E[X|Z=2z]

e The procedure can be repeated a few times to reduce

the variance.
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Control Variates

e Use the analytic solution of a similar yet simpler

problem to improve the solution.

e Suppose we want to estimate E[X ] and there exists a

random variable Y with a known mean p = E[Y ].
e Then W =X + (Y — p1) can serve as a “controlled”
estimator of E[X ] for any constant (.

— [ can scale the deviation Y — p to arrive at an
adjustment for X.

— However 3 is chosen, W remains an unbiased
estimator of E[X] as

E[W]=E[X]+BE[Y — u] = E[X].
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Control Variates (continued)

e Note that
Var[W] = Var[ X ] 4+ 8° Var[Y ] + 26 Cov[ X, Y],
(72)
e Hence W is less variable than X if and only if
B Var[Y ] + 28 Cov][ X, Y ] < 0. (73)

e The success of the scheme clearly depends on both 3
and the choice of Y.
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Control Variates (concluded)

e For example, arithmetic average-rate options can be
priced by choosing Y to be the otherwise identical
geometric average-rate option’s price and = —1.

e This approach is much more effective than the
antithetic-variates method.
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Choice of Y

e In general, the choice of Y is ad hoc, and experiments
must be performed to confirm the wisdom of the choice.

e Try to match calls with calls and puts with puts.?
e On many occasions, Y is a discretized version of the
derivative that gives pu.

— Discretely monitored geometric average-rate option
vs. the continuously monitored geometric

average-rate option given by formulas (31) on p. 314.

e For some choices, the discrepancy can be significant,
such as the lookback option.P

aContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
bContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
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Optimal Choice of (3
e Equation (72) on p. 642 is minimized when
B =—Cov[X,Y|/Var[Y],
which was called beta earlier in the book.

e For this specific 3,

~ Cov[X,Y]*

Var[W ] = Var[ X ] Var[v] (1-pXy) Var[ X ],

where pxy is the correlation between X and Y.

e The stronger X and Y are correlated, the greater the

reduction in variance.
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Optimal Choice of (3 (continued)

e For example, if this correlation is nearly perfect (1),
we could control X almost exactly, eliminating
practically all of its variance.

e Typically, neither Var[Y'] nor Cov[X,Y ] is known.

e Therefore, we cannot obtain the maximum reduction in

variance.

e We can guess these values and hope that the resulting
W' does indeed have a smaller variance than X.

e A second possibility is to use the simulated data to
estimate these quantities.

Problems with the Monte Carlo Method
The error bound is only probabilistic.

The probabilistic error bound of v N does not benefit
from regularity of the integrand function.

The requirement that the points be independent random
samples are wasteful because of clustering.

In reality, pseudorandom numbers generated by

completely deterministic means are used.

Monte Carlo simulation exhibits a great sensitivity on
the seed of the pseudorandom-number generator.
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Optimal Choice of 3 (concluded)

e Observe that —f3 has the same sign as the correlation
between X and Y.

e Hence, if X and Y are positively correlated, 8 < 0,
then X is adjusted downward whenever Y > p and
upward otherwise.

e The opposite is true when X and Y are negatively
correlated, in which case 3 > 0.

Quasi-Monte Carlo Methods

The low-discrepancy sequences (or quasi-random
sequences) address the above-mentioned problems.

It is a deterministic version of the Monte Carlo method
in that random samples are replaced by deterministic
quasi-random points.

If a smaller number of samples suffices as a result,

efficiency has been gained.

Aim is to select deterministic points for which the
deterministic error bound is smaller than Monte Carlo’s
probabilistic error bound.
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Assessment
e The results are somewhat mixed.

Problems with Quasi-Monte Carlo Methods

e The application of such methods in finance seems
e Their theories are valid for integration problems, but bp

. . . . promising.
may not be directly applicable to simulations because of
the correlations between points in a quasi-random e A speed-up as high as 1,000 over the Monte Carlo
sequence. method, for example, is reported.
e This problem may be overcome by writing the desired e The success of the quasi-Monte Carlo method when
result as an integral. compared with traditional variance-reduction techniques

is problem dependent.
e But the integral often has a very high dimension. P P

e For example, the antithetic-variates method outperforms
the quasi-Monte Carlo method in bond pricing.
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Problems with Quasi-Monte Carlo Methods
(concluded)

e The improved accuracy is generally lost for problems of
high dimension or problems in which the integrand is
not smooth. Matriz Computation

e No theoretical basis for empirical estimates of their
accuracy, a role played by the central limit theorem in
the Monte Carlo method.
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Definitions and Basic Results (continued)
e A square matrix A is said to be symmetric if AT = A.
e Areal n xn matrix A= [a;;l;; is diagonally
dominant if |a; [ > 2, |a;;| for 1 <i<mn.
To set up a philosophy against physics is rash; — Such matrices are nonsingular.
philosophers who have done so A di . d d
have always ended in disaster. o dla'mgonal m x n matrix D = [d;;]i; .may be denote
" Bertrand Russell by diag[ D1, D, ..., D], where ¢ = min(m,n) and
Dz:d” for 1§z§q
e The identity matrix is the square matrix
I =diag[1,1,...,1].
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Definitions and Basic Results
e Let A=a;jli<i<m,1<j<n, or simply A € R™*"
denote an m x n matrix. Diagonal Matrices
e It can also be represented as [ay,as, ... ,a,] where - -
m X 0 0
a; € R™ are vectors.
— Vectors are column vectors unless stated otherwise. x 0000 x 00 0 x 0
. ) 0 x 0 0 0 0 x 0 0 0 x
e A is a square matrix when m = n.
0 0 x 0 0 0 0 x 0 0 O
e The rank of a matrix is the largest number of linearly 0 0 o0
independent columns. - -
e An m X n matrix is rank deficient if its rank is less than
min(m, n); otherwise, it has full rank.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 655 ©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 657



Banded Linear Systems

Definitions and Basic Results (concluded) e Matrix A is banded if all the nonzero elements are
e A matrix has full column rank if its columns are linearly placed near the diagonal of the matrix.
independent. e Wesay A =[aj;]i; has upper bandwidth u if a;; =0
e A real symmetric matrix A is positive definite if for j —i>w and lower bandwidth [ if a;; =0 for

zTAz =}, sajjziz; > 0 for any nonzero vector z. i—g>L

e It is known that a matrix A is positive definite if and — A tridiagonal matrix, for instance, has upper

only if there exists a matrix W such that A = W*™W
and W has full column rank. e For banded matrices, Gaussian elimination can be easily

bandwidth one and lower bandwidth one.

modified to run in O(nul) time.
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Gaussian Elimination®

>
XX
XX
XXX
XX
XXX
>

e Gaussian elimination is a standard method for solving a
linear system Az = b, where A € R™*".

e The total running time is O(n?).

e The space complexity is O(n?). O
aCarl Friedrich Gauss (1777-1855) in 1809.
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Decompositions . o o
Generation of Multivariate Normal Distribution

e Gaussian elimination can be used to factor any square

matrix all of whose leading principal submatrices are o Let @ =[z1,22,... ,2,]" be a vector random variable

nonsingular into a product of a lower triangular matrix with a positive definite covariance matrix C.

L and an upper triangular matrix U: e As usual, assume E[z]=0.

A= LU e This distribution can be generated by Py.

e This is called the LU decomposition. — C' = PP7" is the Cholesky decomposition of C.
e The conditions are satisfied by positive definite matrices — Y =[y1,¥2,...,yn]" is a vector random variable

and diagonally dominant matrices. with a covariance matrix equal to the identity matrix.
e Positive definite matrices can in fact be factored as e Reason (see text):

A=LL", (74) Cov[Py] = PCov[y] P" = PP" =C.
called the Cholesky decomposition.
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Orthogonal and Orthonormal Matrices

o A vector set {125, ’”B”,} is orthogonal if all its Generation of Multivariate Normal Distribution

vectors are nonzero and the inner products x7x; equal

o : (concluded)
zero for i # j.
) ) e Suppose we want to generate the multivariate normal

e [t is orthonormal if, furthermore,

distribution with a covariance matrix C = PP".

= 1 ifi=j e We start with independent standard normal
J= e
0 otherwise distributions vy1,¥s2,... ,Yn-

" . .
e A real square matrix @ is orthogonal if QTQ = I. e Then P[y1,¥y2,--.,yn|" has the desired distribution.

For such matrices, Q' = Q™ and QQ~ = I.
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Multivariate Derivatives Pricing

e Generating the multivariate normal distribution is
essential for the Monte Carlo pricing of multivariate
derivatives (p. 567).

e For example, the rainbow option on k assets has payoff
max(max(S1, Sz, ... ,S¢) — X,0)
at maturity.

e The closed-form formula is a multi-dimensional integral.®

aJohnson (1987).

Least-Squares Problems

e The least-squares (LS) problem is concerned with
mingepn || Az —b ||, where A€ R™*", be R™, m > n.

e The LS problem is called regression analysis in statistics

and is equivalent to minimizing the mean-square error.

e Often stated as Ax = b, the LS problem is
overdetermined when there are more equations than

unknowns (m > n).
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Multivariate Derivatives Pricing (concluded)

Suppose dS;/S; =rdt+o;dW;, 1 < j <n, where C is
the correlation matrix for dWy,dWs, ..., dW.

Let C = PP".

Let £ consist of k£ independent random variables from
N(0,1).

Let ¢ = PE.

Similar to Eq. (71) on p. 631,

Siy1 = Sie(r—a]?/g)AtJraj\/A_t 5_;.’ 1<j<n.
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Polynomial Regression

e In polynomial regression, o + x12 + - - - + x,z™ is used
to fit the data { (a1,b1), (az,b2),-.. , (@m,bm) }.

e This leads to the LS problem,

1 a a@ -+ af Zo b1
1 ay a3 --- a¥ 1 by

(75)
1 an, a2 a®, T b,
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Normal Equations

e Since Az is a linear combination of A’s columns with
coefficients x1, s, ... ,x,, the LS problem finds the

minimum distance between b and A’s column space.

e A solution x5 must identify a point Ax,s which is at
least as close to b as any other point in the column
space.

e Therefore, the error vector Az, — b must be
perpendicular to that space.

Numerical Solutions to LS
e The LS problem is called the full-rank least-squares
problem when A has full column rank.
— Consider the polynomial regression (75) on p. 669.
— The m x n matrix has full column rank as long as

ai,as, ... ,a, contain at least n distinct numbers.

e Since ATA is then nonsingular, the normal equations
(76),
ATAx = A"b,

can be solved, say, by Gaussian elimination.
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Normal Equations (concluded)
e This means
(Ay)T(Azis —b) =y (ATAzs — ATH) =0
for all y.

e We conclude that any solution x must satisfy the

normal equations,

AT Az = A™b. (76)

Numerical Solutions to LS (concluded)
e The unique solution for normal equations is
x5 = (ATA)TTATD,
e This is called the ordinary least-squares (OLS)
estimator.

e As AT A is positive definite, the normal equations can
be solved by the Cholesky decomposition (p. 662).

e This approach is usually not recommended because its
numerical stability is lower than the alternative SVD
approach (see text).
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An Intuitive Methodology
Let ®(z) = (1/2) || Az — b |2

e Define its gradient vector as

[ o0®(z) 0P(x) 0®(z) 1"
vel) = dry = Oxe 77 Oz, '

Then normal equations are exactly 7®(x) = 0.

e This method based on calculus can often be derived

without appealing to normal equations.
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An Intuitive Methodology (continued)
e Take the polynomial regression on p. 669.
e The mean-square error is
D(xoy...,2n) = Z[(xo + 2105 + -+ 2pa7) — b;
i=1
e To minimize it, we set

0P
8.’L’j

for 0 < j <n.

]2

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 675

An Intuitive Methodology (continued)

e These equalities result in

[(zo + zra; + -+ xpal) —b;] = 0,
i=1
> ai(zo+a1ai + -+ anaf) —bi] = 0,
i=1
Za?[(xo—o—mlai—i—-n—i—xna?)—bi] = 0.
i=1
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An Intuitive Methodology (continued)
e They lead to the linear system,
i1 ity ai A a? T iy ai o
m m m m n+1
2ot ai 2o a? 2o a? D Y ai+ T1
L 2itian i1 a?-H i1 a?+2 T i a?n Tn
Ly bi
2oty aib
[ 2t aibs
e It can be solved by Gaussian elimination.
©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 677



An Intuitive Methodology (continued) An Intuitive Methodology (continued)

e Polynomial regression uses 1,x,... ,z™ as the basis )
Functions e They lead to the linear system,
e In general, we can use fo(z), f1(2),... , fu(2) as the [ S folai)fola) <o S folai)fu(ai) | [ o
basis functions. S fia) fo(as) oo T fi(as) fa(as) z1
e The mean-square error is : - : :
<I>(x0 mn) L 2121 fn(ai)fO(ai) Zil fn(ai)fn(ai) Tn
e
m ) >2i%y fo(ai) by
= [(@ofolai) + @1 fi(as) + -+ + znfulai) — bi] S fi(an) b
i=1 = .
e To minimize it, we again set .
6(1) L Zi:l fn(a'i) bz’
e 0, 0<j<n e It can be solved by Gaussian elimination.
J
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An Intuitive Methodology (continued)

e These equalities result in - .
b An Intuitive Methodology (continued)

> folai) [(zofo(ai) + @1 fi(ai) + - + @n fulai)) — bi]

— =0 e Popular types of basis functions include: Laguerre
m polynomials, Hermite polynomials, Legendre
Z;fl (@) [(zofolas) + @1 filai) + -+ @nfnlai)) —bi] =0, polynomials, Chebyshev polynomials, Gedenbauer
polynomials, and Jacobi polynomials.
m ' e Again, in general, the SVD approach is more stable.
= 0.

D falai) [(wofolai) + @1 fi(ai) + - - + @nfa(ai)) — bi
=1
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The Least-Squares Monte Carlo Approach

e The continuation value can be estimated from the

.. cross-sectional information in the simulation by usin
An Intuitive Methodology (concluded) lonst o v usme
east squares.

e And the LS formulation is
e The result is a function of the state for estimating the

fola)  fi(a) fo(a1) - fala1) o by continuation values.
folaz)  filaz)  fa(az) - fala2) N b2 . e Use the function to estimate the continuation value for
: : : : : : each path to determine its cash flow.
m m m Tt n m n bm . .
fo(am) — filam)  f2(am) fn(am) v e This is called the least-squares Monte Carlo (LSM)
approach and is provably convergent.P
aLongstaff and Schwartz (2001).
PClément, Lamberton, and Protter (2002).
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American Option Pricing by Simulation A Numerical Example
e The continuation value of an American option is the e Consider a 3-year American put on a
conditional expectation of the payoff from keeping the non-dividend-paying stock.

option alive now. e The put is exercisable at years 1, 2, and 3.

e The option holder must compare the immediate exercise e The strike price X — 105.

value and the continuation value.
e The annualized riskless rate is r = 5%.
e In standard Monte Carlo simulation, each path is

treated independently of other paths. e The spot stock price is 101.

— Th 1 dis t factor h Is 0.951229.
e But the decision to exercise the option cannot be ¢ annual discount factor hence equals 0.951229

reached by looking at only one path alone. e We use only 8 price paths to illustrate the algorithm.
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A Numerical Example (continued)
Stock price paths
Path  Year 0 Year 1 Year 2 Year 3
1 101 97.6424 92.5815 107.5178
2 101 101.2103 105.1763 102.4524
3 101 105.7802 103.6010 124.5115
4 101 96.4411 98.7120 108.3600
5 101 124.2345 101.0564 104.5315
6 101 95.8375 93.7270 99.3788
7 101 108.9554 102.4177 100.9225
8 101 104.1475 113.2516 115.0994
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A Numerical Example (continued)

We use the basis functions 1, z, z2.

— Other basis functions are possible (p. 681).

The plot next page shows the final estimated optimal
exercise strategy given by LSM.

We now proceed to tackle our problem.

Our concrete problem is to calculate the cash flow along
each path, using information from all paths.
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Cash flows at year 3

Path Year0 Year1l Year?2

A Numerical Example (continued)

Year 3

1 -

0 N O Ot e W N
|

0
2.5476
0
0
0.4685
5.6212
4.0775
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is in the money.

0.9512292 x

A Numerical Example (continued)

e The cash flows at year 3 are the exercise value if the put

e Only 4 paths are in the money: 2, 5, 6, 7.

e Some of the cash flows may not occur if the put is
exercised earlier, which we will find out step by step.

e Incidentally, the European counterpart has a value of

2.5476 + 0.4685 + 5.6212 + 4.0775

= 1.3680.
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A Numerical Example (continued)
e We move on to year 2.

e For each state that is in the money at year 2, we must
decide whether to exercise it.

e There are 6 paths for which the put is in the money: 1,
3,4,5,6, 1.

e Only in-the-money paths will be used in the regression

because they are where early exercise is relevant.

— If there were none, we would move on to year 1.
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A Numerical Example (continued)
e Let x denote the stock prices at year 2 for those 6 paths.

e Let y denote the corresponding discounted future cash
flows (at year 3) if the put is not exercised at year 2.
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A Numerical Example (continued) A Numerical Example (continued)
Regression at year 2 Optimal early exercise decision at year 2

Path T Y Path  Exercise Continuation
1 92.5815 0 x 0.951229 1 12.4185 £(92.5815) = 2.2558

2 — 2 — —

3 103.6010 0 x 0.951229 3 1.3990  f(103.6010) = 1.1168

4 98.7120 0 x 0.951229 4 6.2880  f(98.7120) = 1.5901

5 101.0564 0.4685 x 0.951229 5 3.9436  f(101.0564) = 1.3568

6 93.7270  5.6212 x 0.951229 6 11.2730  f(93.7270) = 2.1253

7 102.4177  4.0775 x 0.951229 7 2.5823  f(102.4177) = 0.3326

8 — 8 — —
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A Numerical Example (continued)

We regress g on 1, o, and 22 A Numerical Example (continued)
. regress y on 1, x, and x°.

e Amazingly, the put should be exercised in all 6 paths: 1,
3,4,5,6, 7.

The result is

_ _ 2
f(z) =22.08 — 0.313114 x 2 + 0.00106918 x z”. e Now, any positive cash flow at year 3 should be set to

zero for these paths as the put is exercised before year 3.

f estimates the continuation value conditional on the
stock price at year 2. — They are paths 5, 6, 7.

e We next compare the immediate exercise value and the e Hence the cash flows on p. 690 become the next ones.

continuation value.
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A Numerical Example (continued)

Cash flows at years 2 & 3

Path  Year 0 Yearl Year 2 Year 3
1 — — 12.4185 0
— — 0 2.5476

— — 1.3990

— — 6.2880

3.9436
— — 11.2730
— — 2.5823
— — 0

o N O Ut e W N
|
|

o O o o o o
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A Numerical Example (continued)

e We move on to year 1.

For each state that is in the money at year 1, we must
decide whether to exercise it.

e There are 5 paths for which the put is in the money: 1,
2,4, 6, 8.

Only in-the-money paths will be used in the regression
because they are where early exercise is relevant.

— If there were none, we would move on to year 0.
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A Numerical Example (continued)
e Let x denote the stock prices at year 1 for those 5 paths.

e Let y denote the corresponding discounted future cash
flows if the put is not exercised at year 1.

e From p. 698, we have the following table.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 700
A Numerical Example (continued)
Regression at year 1
Path x Y
1 97.6424 12.4185 x 0.951229
2 101.2103 2.5476 x 0.9512292
3 N N
4 96.4411 6.2880 x 0.951229
5 — —
6 95.8375 11.2730 x 0.951229
7 _ _
8 104.1475 0
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A Numerical Example (continued)

) A Numerical Example (continued)
e We regress y on 1, x, and z-.

The put should be exercised for 1 path only: 8.
The result is

e Now, any positive future cash flow should be set to zero
f(x) = —420.964 + 9.78113 x = — 0.0551567 x z°. for this path as the put is exercised before years 2 and 3.

— But there is none.

f estimates the continuation value conditional on the
stock price at year 1.

Hence the cash flows on p. 698 become the next ones.

We next compare the immediate exercise value and the

They also confirm the plot on p. 689.
continuation value.
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A Numerical Example (continued) A Numerical Example (continued)
Optimal early exercise decision at year 1 Cash flows at years 1, 2, & 3

Path  Exercise Continuation Path  Year 0 Year1l Year 2 Year 3
1 7.3576 £(97.6424) = 8.2230 1 — 0 124185 0
2 3.7897 £(101.2103) = 3.9882 2 — 0 0 2.5476
3 — — 3 — 0 1.3990 0
4 8.5589 £(96.4411) = 9.3329 4 — 0 6.2880 0
) — — b) — 0 3.9436 0
6 9.1625 £(95.8375) = 9.83042 6 — 0 11.2730 0
7 — — 7 — 0 2.5823 0
8 0.8525  f(104.1475) = —0.551885 8 — 0.8525 0 0
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A Numerical Example (continued)
e We move on to year 0.

e The continuation value is, from p 705,

(12.4185 x 0.951229% + 2.5476 x 0.951229°

+1.3990 x 0.951229 + 6.2880 x 0.951229°

+3.9436 x 0.951229% + 11.2730 x 0.951229°

+2.5823 x 0.951229% + 0.8525 x 0.951229)/8
= 4.66263.
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A Numerical Example (concluded)

e As this is larger than the immediate exercise value of
105 — 101 = 4, the put should not be exercised at year 0.

e Hence the put’s value is estimated to be 4.66263.

e This is much larger than the European put’s value of
1.3680 (p. 691).
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