Variance Reduction

- The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output.
- If this variance can be lowered without changing the expected value, fewer replications are needed.
- Methods that improve efficiency in this manner are called variance-reduction techniques.
- Such techniques become practical when the added costs are outweighed by the reduction in sampling.

Monte Carlo Option Pricing

- For the pricing of European options on a dividend-paying stock, we may proceed as follows.
- Stock prices S_1, S_2, S_3, \ldots at times $\Delta t, 2\Delta t, 3\Delta t, \ldots$ can be generated via
 \[S_{i+1} = S_i e^{(\mu - \sigma^2/2) \Delta t + \sigma \sqrt{\Delta t} \xi}, \quad \xi \sim N(0, 1) \tag{71} \]
 when $dS/S = \mu \, dt + \sigma \, dW$.
- Non-dividend-paying stock prices in a risk-neutral economy can be generated by setting $\mu = r$.
- Pricing Asian options is easy (see text).

Pricing American Options

- Standard Monte Carlo simulation is inappropriate for American options because of early exercise.
- It is difficult to determine the early-exercise point based on one single path.
- Monte Carlo simulation can be modified to price American options with small biases (see p. 683).\(^{a}\)

\[^{a}\text{Longstaff and Schwartz (2001).} \]

Delta and Common Random Numbers

- In estimating delta, it is natural to start with the finite-difference estimate
 \[e^{-rt} \frac{E[P(S + \epsilon)] - E[P(S - \epsilon)]}{2\epsilon} \]
 - $P(x)$ is the terminal payoff of the derivative security when the underlying asset’s initial price equals x.
- Use simulation to estimate $E[P(S + \epsilon)]$ first.
- Use another simulation to estimate $E[P(S - \epsilon)]$.
- Finally, apply the formula to approximate the delta.
Delta and Common Random Numbers (concluded)

• This method is not recommended because of its high variance.

• A much better approach is to use common random numbers to lower the variance:

 \[e^{-r_T} E \left[\frac{P(S + \epsilon) - P(S - \epsilon)}{2\epsilon} \right] . \]

• Here, the same random numbers are used for \(P(S + \epsilon) \) and \(P(S - \epsilon) \).

• This holds for gamma and cross gammas (for multivariate derivatives).

Variance Reduction: Antithetic Variates (continued)

• For each simulated sample path \(X \), a second one is obtained by reusing the random numbers on which the first path is based.

• This yields a second sample path \(Y \).

• Two estimates are then obtained: One based on \(X \) and the other on \(Y \).

• If \(N \) independent sample paths are generated, the antithetic-variates estimator averages over \(2N \) estimates.

Variance Reduction: Antithetic Variates

• We are interested in estimating \(E[g(X_1, X_2, \ldots, X_n)] \), where \(X_1, X_2, \ldots, X_n \) are independent.

• Let \(Y_1 \) and \(Y_2 \) be random variables with the same distribution as \(g(X_1, X_2, \ldots, X_n) \).

• Then

 \[\text{Var} \left[\frac{Y_1 + Y_2}{2} \right] = \frac{\text{Var}[Y_1]}{2} + \frac{\text{Cov}[Y_1, Y_2]}{2} . \]

 - \(\text{Var}[Y_1]/2 \) is the variance of the Monte Carlo method with two (independent) replications.

 • The variance \(\text{Var}[(Y_1 + Y_2)/2] \) is smaller than \(\text{Var}[Y_1]/2 \) when \(Y_1 \) and \(Y_2 \) are negatively correlated.

Variance Reduction: Antithetic Variates (continued)

• Consider process \(dX = a_t \, dt + b_t \sqrt{dt} \, \xi \).

• Let \(g \) be a function of \(n \) samples \(X_1, X_2, \ldots, X_n \) on the sample path.

• We are interested in \(E[g(X_1, X_2, \ldots, X_n)] \).

• Suppose one simulation run has realizations \(\xi_1, \xi_2, \ldots, \xi_n \) for the normally distributed fluctuation term \(\xi \).

• This generates samples \(x_1, x_2, \ldots, x_n \).

• The estimate is then \(g(x) \), where \(x \equiv (x_1, x_2, \ldots, x_n) \).
Variance Reduction: Antithetic Variates (concluded)

- We do not sample n more numbers from ξ for the second estimate.
- The antithetic-variates method computes $g(x')$ from the sample path $x' = (x'_1, x'_2, \ldots, x'_n)$ generated by $-\xi_1, -\xi_2, \ldots, -\xi_n$.
- We then output $(g(x) + g(x'))/2$.
- Repeat the above steps for as many times as required by accuracy.

Variance Reduction: Conditioning (concluded)

- As $\text{Var}[E[X|Z]] \leq \text{Var}[X]$, $E[X|Z]$ has a smaller variance than observing X directly.
- First obtain a random observation z on Z.
- Then calculate $E[X|Z = z]$ as our estimate.
 - There is no need to resort to simulation in computing $E[X|Z = z]$.
- The procedure can be repeated a few times to reduce the variance.

Control Variates

- Use the analytic solution of a similar yet simpler problem to improve the solution.
- Suppose we want to estimate $E[X]$ and there exists a random variable Y with a known mean $\mu \equiv E[Y]$.
- Then $W \equiv X + \beta(Y - \mu)$ can serve as a “controlled” estimator of $E[X]$ for any constant β.
 - β can scale the deviation $Y - \mu$ to arrive at an adjustment for X.
 - However β is chosen, W remains an unbiased estimator of $E[X]$ as

 $$E[W] = E[X] + \beta E[Y - \mu] = E[X].$$

Control Variates (continued)

• Note that

$$\text{Var}[W] = \text{Var}[X] + \beta^2 \text{Var}[Y] + 2\beta \text{Cov}[X,Y],$$ \hspace{1cm} (72)

• Hence W is less variable than X if and only if

$$\beta^2 \text{Var}[Y] + 2\beta \text{Cov}[X,Y] < 0.$$ \hspace{1cm} (73)

• The success of the scheme clearly depends on both β and the choice of Y.

Choice of Y

• In general, the choice of Y is ad hoc, and experiments must be performed to confirm the wisdom of the choice.

• Try to match calls with calls and puts with puts.a

• On many occasions, Y is a discretized version of the derivative that gives μ.
 - Discretely monitored geometric average-rate option vs. the continuously monitored geometric average-rate option given by formulas (31) on p. 314.

• For some choices, the discrepancy can be significant, such as the lookback option.b

Optimal Choice of β

• Equation (72) on p. 642 is minimized when

$$\beta = -\frac{\text{Cov}[X,Y]}{\text{Var}[Y]},$$

which was called beta earlier in the book.

• For this specific β,

$$\text{Var}[W] = \text{Var}[X] - \frac{\text{Cov}[X,Y]^2}{\text{Var}[Y]} = (1 - \rho_X^2) \text{Var}[X],$$

where ρ_X is the correlation between X and Y.

• The stronger X and Y are correlated, the greater the reduction in variance.

aContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.

bContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
Optimal Choice of β (continued)

- For example, if this correlation is nearly perfect (± 1), we could control X almost exactly, eliminating practically all of its variance.
- Typically, neither $\text{Var}[Y]$ nor $\text{Cov}[X, Y]$ is known.
- Therefore, we cannot obtain the maximum reduction in variance.
- We can guess these values and hope that the resulting W does indeed have a smaller variance than X.
- A second possibility is to use the simulated data to estimate these quantities.

Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of \sqrt{N} does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.

Optimal Choice of β (concluded)

- Observe that $-\beta$ has the same sign as the correlation between X and Y.
- Hence, if X and Y are positively correlated, $\beta < 0$, then X is adjusted downward whenever $Y > \mu$ and upward otherwise.
- The opposite is true when X and Y are negatively correlated, in which case $\beta > 0$.

Quasi-Monte Carlo Methods

- The low-discrepancy sequences (or quasi-random sequences) address the above-mentioned problems.
- It is a deterministic version of the Monte Carlo method in that random samples are replaced by deterministic quasi-random points.
- If a smaller number of samples suffices as a result, efficiency has been gained.
- Aim is to select deterministic points for which the deterministic error bound is smaller than Monte Carlo’s probabilistic error bound.
Problems with Quasi-Monte Carlo Methods

• Their theories are valid for integration problems, but may not be directly applicable to simulations because of the correlations between points in a quasi-random sequence.
• This problem may be overcome by writing the desired result as an integral.
• But the integral often has a very high dimension.

Assessment

• The results are somewhat mixed.
• The application of such methods in finance seems promising.
• A speed-up as high as 1,000 over the Monte Carlo method, for example, is reported.
• The success of the quasi-Monte Carlo method when compared with traditional variance-reduction techniques is problem dependent.
• For example, the antithetic-variates method outperforms the quasi-Monte Carlo method in bond pricing.

Problems with Quasi-Monte Carlo Methods (concluded)

• The improved accuracy is generally lost for problems of high dimension or problems in which the integrand is not smooth.
• No theoretical basis for empirical estimates of their accuracy, a role played by the central limit theorem in the Monte Carlo method.

Matrix Computation
Definitions and Basic Results

- Let $A \equiv [a_{ij}]_{1 \leq i \leq m, 1 \leq j \leq n}$, or simply $A \in \mathbb{R}^{m \times n}$, denote an $m \times n$ matrix.
- It can also be represented as $[a_1, a_2, \ldots, a_n]$ where $a_i \in \mathbb{R}^n$ are vectors.
 - Vectors are column vectors unless stated otherwise.
- A is a square matrix when $m = n$.
- The rank of a matrix is the largest number of linearly independent columns.
- An $m \times n$ matrix is rank deficient if its rank is less than $\min(m, n)$; otherwise, it has full rank.

Definitions and Basic Results (continued)

- A square matrix A is said to be symmetric if $A^T = A$.
- A real $n \times n$ matrix $A \equiv [a_{ij}]_{i,j}$ is diagonally dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for $1 \leq i \leq n$.
 - Such matrices are nonsingular.
- A diagonal $m \times n$ matrix $D \equiv [d_{ij}]_{i,j}$ may be denoted by $\text{diag}[D_1, D_2, \ldots, D_q]$, where $q \equiv \min(m, n)$ and $D_i = d_{ii}$ for $1 \leq i \leq q$.
- The identity matrix is the square matrix $I \equiv \text{diag}[1,1,\ldots,1]$.

Diagonal Matrices

\[
\begin{bmatrix}
\times & 0 & 0 & 0 & 0 \\
0 & \times & 0 & 0 & 0 \\
0 & 0 & \times & 0 & 0 \\
0 & 0 & 0 & \times & 0 \\
0 & 0 & 0 & 0 & \times \\
\end{bmatrix}
\begin{bmatrix}
0 & \times & 0 & 0 & 0 \\
0 & \times & 0 & 0 & 0 \\
0 & 0 & \times & 0 & 0 \\
0 & 0 & 0 & \times & 0 \\
0 & 0 & 0 & 0 & \times \\
\end{bmatrix}
\begin{bmatrix}
\times & 0 & 0 \\
0 & \times & 0 \\
0 & 0 & \times \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & \times & 0 & 0 & 0 \\
0 & \times & 0 & 0 & 0 \\
0 & 0 & \times & 0 & 0 \\
0 & 0 & 0 & \times & 0 \\
0 & 0 & 0 & 0 & \times \\
\end{bmatrix}
\begin{bmatrix}
0 & 0 & \times & 0 & 0 \\
0 & 0 & \times & 0 & 0 \\
0 & 0 & \times & 0 & 0 \\
0 & 0 & 0 & \times & 0 \\
0 & 0 & 0 & 0 \end{bmatrix}
\]
Definitions and Basic Results (concluded)

- A matrix has full column rank if its columns are linearly independent.
- A real symmetric matrix A is positive definite if $x^T Ax = \sum_{i,j} a_{ij} x_i x_j > 0$ for any nonzero vector x.
- It is known that a matrix A is positive definite if and only if there exists a matrix W such that $A = W^T W$ and W has full column rank.

Banded Linear Systems

- Matrix A is banded if all the nonzero elements are placed near the diagonal of the matrix.
- We say $A = [a_{ij}]_{i,j}$ has upper bandwidth u if $a_{ij} = 0$ for $j - i > u$ and lower bandwidth l if $a_{ij} = 0$ for $i - j > l$.
 - A tridiagonal matrix, for instance, has upper bandwidth one and lower bandwidth one.
- For banded matrices, Gaussian elimination can be easily modified to run in $O(nu l)$ time.

Gaussian Eliminationa

- Gaussian elimination is a standard method for solving a linear system $Ax = b$, where $A \in \mathbb{R}^{n \times n}$.
- The total running time is $O(n^3)$.
- The space complexity is $O(n^2)$.

aCarl Friedrich Gauss (1777–1855) in 1809.
Decompositions

- Gaussian elimination can be used to factor any square matrix all of whose leading principal submatrices are nonsingular into a product of a lower triangular matrix L and an upper triangular matrix U:
 \[A = LU. \]
- This is called the LU decomposition.
- The conditions are satisfied by positive definite matrices and diagonally dominant matrices.
- Positive definite matrices can in fact be factored as
 \[A = LL^T, \tag{74} \]
called the Cholesky decomposition.

Orthogonal and Orthonormal Matrices

- A vector set \(\{ x_1, x_2, \ldots, x_p \} \) is orthogonal if all its vectors are nonzero and the inner products \(x_i^T x_j \) equal zero for \(i \neq j \).
- It is orthonormal if, furthermore,
 \[x_i^T x_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} \]
- A real square matrix \(Q \) is orthogonal if \(Q^T Q = I \).
- For such matrices, \(Q^{-1} = Q^T \) and \(QQ^T = I \).

Generation of Multivariate Normal Distribution

- Let \(x \equiv [x_1, x_2, \ldots, x_n]^T \) be a vector random variable with a positive definite covariance matrix \(C \).
- As usual, assume \(E[x] = 0 \).
- This distribution can be generated by \(Py \).
 - \(C = PP^T \) is the Cholesky decomposition of \(C \).
 - \(y \equiv [y_1, y_2, \ldots, y_n]^T \) is a vector random variable with a covariance matrix equal to the identity matrix.
- Reason (see text):
 \[\text{Cov}[Py] = P \text{Cov}[y] P^T = PP^T = C. \]

(continued)

- Suppose we want to generate the multivariate normal distribution with a covariance matrix \(C = PP^T \).
- We start with independent standard normal distributions \(y_1, y_2, \ldots, y_n \).
- Then \(P[y_1, y_2, \ldots, y_n]^T \) has the desired distribution.
Multivariate Derivatives Pricing

- Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives (p. 567).
- For example, the rainbow option on \(k \) assets has payoff
 \[
 \max(\max(S_1, S_2, \ldots, S_k) - X, 0)
 \]
at maturity.
- The closed-form formula is a multi-dimensional integral.\(^a\)

\(^a\)Johnson (1987).

Least-Squares Problems

- The least-squares (LS) problem is concerned with
 \[
 \min_{x \in \mathbb{R}^n} \| Ax - b \|,
 \]
 where \(A \in \mathbb{R}^{m \times n} \), \(b \in \mathbb{R}^m \), \(m \geq n \).
- The LS problem is called regression analysis in statistics and is equivalent to minimizing the mean-square error.
- Often stated as \(Ax = b \), the LS problem is overdetermined when there are more equations than unknowns (\(m > n \)).

 Polynomial Regression

- In polynomial regression, \(x_0 + x_1 x + \cdots + x_n x^n \) is used to fit the data \(\{ (a_1, b_1), (a_2, b_2), \ldots, (a_m, b_m) \} \).
- This leads to the LS problem,

\[
\begin{bmatrix}
1 & a_1^2 & \cdots & a_1^n \\
1 & a_2^2 & \cdots & a_2^n \\
\vdots & \vdots & \ddots & \vdots \\
1 & a_m^2 & \cdots & a_m^n \\
\end{bmatrix}
\begin{bmatrix}
x_0 \\
x_1 \\
\vdots \\
x_n \\
\end{bmatrix}
= \begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m \\
\end{bmatrix}.
\] (75)
Normal Equations

- Since Ax is a linear combination of A’s columns with coefficients x_1, x_2, \ldots, x_n, the LS problem finds the minimum distance between b and A’s column space.
- A solution x_{LS} must identify a point Ax_{LS} which is at least as close to b as any other point in the column space.
- Therefore, the error vector $Ax_{LS} - b$ must be perpendicular to that space.

Numerical Solutions to LS

- The LS problem is called the full-rank least-squares problem when A has full column rank.
 - Consider the polynomial regression (75) on p. 669.
 - The $m \times n$ matrix has full column rank as long as a_1, a_2, \ldots, a_m contain at least n distinct numbers.
- Since $A^T A$ is then nonsingular, the normal equations (76),
 $$A^T Ax = A^T b,$$
can be solved, say, by Gaussian elimination.

Normal Equations (concluded)

- This means
 $$(Ay)^T(Ax_{LS} - b) = y^T (A^T Ax_{LS} - A^T b) = 0$$
 for all y.
- We conclude that any solution x must satisfy the normal equations,
 $$A^T Ax = A^T b.\quad (76)$$

Numerical Solutions to LS (concluded)

- The unique solution for normal equations is
 $$x_{LS} = (A^T A)^{-1} A^T b.$$
- This is called the ordinary least-squares (OLS) estimator.
- As $A^T A$ is positive definite, the normal equations can be solved by the Cholesky decomposition (p. 662).
- This approach is usually not recommended because its numerical stability is lower than the alternative SVD approach (see text).
An Intuitive Methodology

• Let $\Phi(x) \equiv (1/2) \|Ax - b\|^2$.
• Define its gradient vector as
 $$\nabla \Phi(x) \equiv \left[\frac{\partial \Phi(x)}{\partial x_1}, \frac{\partial \Phi(x)}{\partial x_2}, \ldots, \frac{\partial \Phi(x)}{\partial x_n} \right]^T.$$
• Then normal equations are exactly $\nabla \Phi(x) = 0$.
• This method based on calculus can often be derived without appealing to normal equations.

An Intuitive Methodology (continued)

• Take the polynomial regression on p. 669.
• The mean-square error is
 $$\Phi(x_0, \ldots, x_n) = \sum_{i=1}^{m} [(x_0 + x_1 a_i + \cdots + x_n a^n_i) - b_i]^2.$$
• To minimize it, we set
 $$\frac{\partial \Phi}{\partial x_j} = 0$$
 for $0 \leq j \leq n$.
• These equalities result in
 $$\sum_{i=1}^{m} [(x_0 + x_1 a_i + \cdots + x_n a^n_i) - b_i] = 0,$$
 $$\sum_{i=1}^{m} a_i [(x_0 + x_1 a_i + \cdots + x_n a^n_i) - b_i] = 0,$$
 $$\vdots$$
 $$\sum_{i=1}^{m} a^n_i [(x_0 + x_1 a_i + \cdots + x_n a^n_i) - b_i] = 0.$$
• It can be solved by Gaussian elimination.
An Intuitive Methodology (continued)

• Polynomial regression uses $1, x, \ldots, x^n$ as the basis functions.

• In general, we can use $f_0(x), f_1(x), \ldots, f_n(x)$ as the basis functions.

• The mean-square error is
 \[\Phi(x_0, \ldots, x_n) = \sum_{i=1}^{m} \left[(x_0 f_0(a_i) + x_1 f_1(a_i) + \cdots + x_n f_n(a_i)) - b_i \right]^2. \]

• To minimize it, we again set \[\frac{\partial \Phi}{\partial x_j} = 0, \quad 0 \leq j \leq n. \]

• They lead to the linear system,
 \[
 \begin{bmatrix}
 \sum_{i=1}^{m} f_0(a_i) b_i \\
 \sum_{i=1}^{m} f_1(a_i) b_i \\
 \vdots \\
 \sum_{i=1}^{m} f_n(a_i) b_i
 \end{bmatrix}
 =
 \begin{bmatrix}
 \sum_{i=1}^{m} f_0(a_i) f_0(a_i) \\
 \sum_{i=1}^{m} f_1(a_i) f_0(a_i) \\
 \vdots \\
 \sum_{i=1}^{m} f_n(a_i) f_0(a_i)
 \end{bmatrix}
 \begin{bmatrix}
 x_0 \\
 x_1 \\
 \vdots \\
 x_n
 \end{bmatrix}.
 \]

 It can be solved by Gaussian elimination.

An Intuitive Methodology (continued)

• Popular types of basis functions include: Laguerre polynomials, Hermite polynomials, Legendre polynomials, Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomials.

• Again, in general, the SVD approach is more stable.
An Intuitive Methodology (concluded)

• And the LS formulation is

\[
\begin{bmatrix}
 f_0(a_1) & f_1(a_1) & f_2(a_1) & \cdots & f_n(a_1) \\
 f_0(a_2) & f_1(a_2) & f_2(a_2) & \cdots & f_n(a_2) \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 f_0(a_m) & f_1(a_m) & f_2(a_m) & \cdots & f_n(a_m)
\end{bmatrix}
\begin{bmatrix}
 x_0 \\
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix} =
\begin{bmatrix}
 b_2 \\
 b_2 \\
 \vdots \\
 b_m
\end{bmatrix}.
\]

The Least-Squares Monte Carlo Approach

• The continuation value can be estimated from the cross-sectional information in the simulation by using least squares.\(^a\)

• The result is a function of the state for estimating the continuation values.

• Use the function to estimate the continuation value for each path to determine its cash flow.

• This is called the least-squares Monte Carlo (LSM) approach and is provably convergent.\(^b\)

\(^a\)Longstaff and Schwartz (2001).

\(^b\)Clément, Lamberton, and Protter (2002).

American Option Pricing by Simulation

• The continuation value of an American option is the conditional expectation of the payoff from keeping the option alive now.

• The option holder must compare the immediate exercise value and the continuation value.

• In standard Monte Carlo simulation, each path is treated independently of other paths.

• But the decision to exercise the option cannot be reached by looking at only one path alone.

A Numerical Example

• Consider a 3-year American put on a non-dividend-paying stock.

• The put is exercisable at years 1, 2, and 3.

• The strike price \(X = 105 \).

• The annualized riskless rate is \(r = 5\% \).

• The spot stock price is 101.

 – The annual discount factor hence equals 0.951229.

• We use only 8 price paths to illustrate the algorithm.
A Numerical Example (continued)

Stock price paths

<table>
<thead>
<tr>
<th>Path</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>101</td>
<td>97.6424</td>
<td>92.5815</td>
<td>107.5178</td>
</tr>
<tr>
<td>2</td>
<td>101</td>
<td>101.2103</td>
<td>105.1763</td>
<td>102.4524</td>
</tr>
<tr>
<td>3</td>
<td>101</td>
<td>105.7802</td>
<td>103.6010</td>
<td>124.5115</td>
</tr>
<tr>
<td>4</td>
<td>101</td>
<td>96.4411</td>
<td>98.7120</td>
<td>108.3600</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>124.2345</td>
<td>101.0564</td>
<td>104.5315</td>
</tr>
<tr>
<td>6</td>
<td>101</td>
<td>95.8375</td>
<td>93.7270</td>
<td>99.3788</td>
</tr>
<tr>
<td>7</td>
<td>101</td>
<td>108.9554</td>
<td>102.4177</td>
<td>100.9225</td>
</tr>
<tr>
<td>8</td>
<td>101</td>
<td>104.1475</td>
<td>113.2516</td>
<td>115.0994</td>
</tr>
</tbody>
</table>

We use the basis functions $1, x, x^2$.

- Other basis functions are possible (p. 681).

The plot next page shows the final estimated optimal exercise strategy given by LSM.

We now proceed to tackle our problem.

Our concrete problem is to calculate the cash flow along each path, using information from all paths.
A Numerical Example (continued)

Cash flows at year 3

<table>
<thead>
<tr>
<th>Path</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2.5476</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.4685</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.6212</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4.0775</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
</tbody>
</table>

• The cash flows at year 3 are the exercise value if the put is in the money.

• Only 4 paths are in the money: 2, 5, 6, 7.

• Some of the cash flows may not occur if the put is exercised earlier, which we will find out step by step.

• Incidentally, the European counterpart has a value of

\[
0.951229^3 \times \frac{2.5476 + 0.4685 + 5.6212 + 4.0775}{8} = 1.3680.
\]

A Numerical Example (continued)

• We move on to year 2.

• For each state that is in the money at year 2, we must decide whether to exercise it.

• There are 6 paths for which the put is in the money: 1, 3, 4, 5, 6, 7.

• Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 1.

A Numerical Example (continued)

• Let \(x \) denote the stock prices at year 2 for those 6 paths.

• Let \(y \) denote the corresponding discounted future cash flows (at year 3) if the put is not exercised at year 2.
A Numerical Example (continued)

Regression at year 2

<table>
<thead>
<tr>
<th>Path</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>92.5815</td>
<td>0 × 0.951229</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>103.6010</td>
<td>0 × 0.951229</td>
</tr>
<tr>
<td>4</td>
<td>98.7120</td>
<td>0 × 0.951229</td>
</tr>
<tr>
<td>5</td>
<td>101.0564</td>
<td>0.4685 × 0.951229</td>
</tr>
<tr>
<td>6</td>
<td>93.7270</td>
<td>5.6212 × 0.951229</td>
</tr>
<tr>
<td>7</td>
<td>102.4177</td>
<td>4.0775 × 0.951229</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Optimal early exercise decision at year 2

<table>
<thead>
<tr>
<th>Path</th>
<th>Exercise</th>
<th>Continuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.4185</td>
<td>f(92.5815) = 2.2558</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>1.3990</td>
<td>f(103.6010) = 1.1168</td>
</tr>
<tr>
<td>4</td>
<td>6.2880</td>
<td>f(98.7120) = 1.5901</td>
</tr>
<tr>
<td>5</td>
<td>3.9436</td>
<td>f(101.0564) = 1.3568</td>
</tr>
<tr>
<td>6</td>
<td>11.2730</td>
<td>f(93.7270) = 2.1253</td>
</tr>
<tr>
<td>7</td>
<td>2.5823</td>
<td>f(102.4177) = 0.3326</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

A Numerical Example (continued)

- We regress y on 1, x, and x^2.
- The result is
 \[f(x) = 22.08 - 0.313114 \times x + 0.00106918 \times x^2. \]
- f estimates the continuation value conditional on the stock price at year 2.
- We next compare the immediate exercise value and the continuation value.

A Numerical Example (continued)

- Amazingly, the put should be exercised in all 6 paths: 1, 3, 4, 5, 6, 7.
- Now, any positive cash flow at year 3 should be set to zero for these paths as the put is exercised before year 3.
 - They are paths 5, 6, 7.
- Hence the cash flows on p. 690 become the next ones.
A Numerical Example (continued)

Cash flows at years 2 & 3

<table>
<thead>
<tr>
<th>Path</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>—</td>
<td>12.4185</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>2.5476</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
<td>1.3990</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>—</td>
<td>6.2880</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
<td>3.9436</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>—</td>
<td>11.2730</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>—</td>
<td>2.5823</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A Numerical Example (continued)

- We move on to year 1.
- For each state that is in the money at year 1, we must decide whether to exercise it.
- There are 5 paths for which the put is in the money: 1, 2, 4, 6, 8.
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 0.

A Numerical Example (continued)

- Let x denote the stock prices at year 1 for those 5 paths.
- Let y denote the corresponding discounted future cash flows if the put is not exercised at year 1.
- From p. 698, we have the following table.

Regression at year 1

<table>
<thead>
<tr>
<th>Path</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97.6424</td>
<td>12.4185×0.951229</td>
</tr>
<tr>
<td>2</td>
<td>101.2103</td>
<td>2.5476×0.951229^2</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>96.4411</td>
<td>6.2880×0.951229</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>95.8375</td>
<td>11.2730×0.951229</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>104.1475</td>
<td>0</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- We regress y on 1, x, and x^2.
- The result is
 \[f(x) = -420.964 + 9.78113 \times x - 0.0551567 \times x^2. \]
- f estimates the continuation value conditional on the stock price at year 1.
- We next compare the immediate exercise value and the continuation value.

A Numerical Example (continued)

- The put should be exercised for 1 path only: 8.
- Now, any positive future cash flow should be set to zero for this path as the put is exercised before years 2 and 3.
 - But there is none.
- Hence the cash flows on p. 698 become the next ones.
- They also confirm the plot on p. 689.

A Numerical Example (continued)

Optimal early exercise decision at year 1

<table>
<thead>
<tr>
<th>Path</th>
<th>Exercise</th>
<th>Continuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.3576</td>
<td>$f(97.6424) = 8.2230$</td>
</tr>
<tr>
<td>2</td>
<td>3.7897</td>
<td>$f(101.2103) = 3.9882$</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>8.5589</td>
<td>$f(96.4411) = 9.3329$</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>9.1625</td>
<td>$f(95.8375) = 9.83042$</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>0.8525</td>
<td>$f(104.1475) = -0.551885$</td>
</tr>
</tbody>
</table>

A Numerical Example (continued)

Cash flows at years 1, 2, & 3

<table>
<thead>
<tr>
<th>Path</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>12.4185</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>0</td>
<td>2.5476</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>0</td>
<td>1.3990</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>0</td>
<td>6.2880</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>0</td>
<td>3.9436</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>0</td>
<td>11.2730</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>0</td>
<td>2.5823</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>0.8525</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- We move on to year 0.
- The continuation value is, from p 705,
 \[
 (12.4185 \times 0.951229^2 + 2.5476 \times 0.951229^3 \\
 + 1.3990 \times 0.951229^2 + 6.2880 \times 0.951229^2 \\
 + 3.9436 \times 0.951229^2 + 11.2730 \times 0.951229^2 \\
 + 2.5823 \times 0.951229^2 + 0.8525 \times 0.951229^2) / 8 \\
 = 4.66263.
 \]

A Numerical Example (concluded)

- As this is larger than the immediate exercise value of
 \[105 - 101 = 4\], the put should not be exercised at year 0.
- Hence the put’s value is estimated to be 4.66263.
- This is much larger than the European put’s value of
 \[1.3680\] (p. 691).