Variance Reduction

- The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output.
- If this variance can be lowered without changing the expected value, fewer replications are needed.
- Methods that improve efficiency in this manner are called variance-reduction techniques.
- Such techniques become practical when the added costs are outweighed by the reduction in sampling.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 630

Monte Carlo Option Pricing

- For the pricing of European options on a dividend-paying stock, we may proceed as follows.
- Stock prices S_1, S_2, S_3, \ldots at times $\Delta t, 2\Delta t, 3\Delta t, \ldots$ can be generated via

$$S_{i+1} = S_i e^{(\mu - \sigma^2/2) \Delta t + \sigma \sqrt{\Delta t} \xi}, \quad \xi \sim N(0, 1)$$
(71)

when $dS/S = \mu dt + \sigma dW$.

- Non-dividend-paying stock prices in a risk-neutral economy can be generated by setting $\mu = r$.
- Pricing Asian options is easy (see text).

Pricing American Options

- Standard Monte Carlo simulation is inappropriate for American options because of early exercise.
- It is difficult to determine the early-exercise point based on one single path.
- Monte Carlo simulation can be modified to price American options with small biases (see p. 683).^a

^aLongstaff and Schwartz (2001).

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 632

Delta and Common Random Numbers

• In estimating delta, it is natural to start with the finite-difference estimate

$$e^{-r\tau} \frac{E[P(S+\epsilon)] - E[P(S-\epsilon)]}{2\epsilon}.$$

- P(x) is the terminal payoff of the derivative security when the underlying asset's initial price equals x.
- Use simulation to estimate $E[P(S + \epsilon)]$ first.
- Use another simulation to estimate $E[P(S-\epsilon)]$.
- Finally, apply the formula to approximate the delta.

Delta and Common Random Numbers (concluded)

- This method is not recommended because of its high variance.
- A much better approach is to use common random numbers to lower the variance:

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - P(S-\epsilon)}{2\epsilon}\right]$$

- Here, the same random numbers are used for $P(S + \epsilon)$ and $P(S - \epsilon)$.
- This holds for gamma and cross gammas (for multivariate derivatives).

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 634

Variance Reduction: Antithetic Variates

- We are interested in estimating $E[g(X_1, X_2, ..., X_n)]$, where $X_1, X_2, ..., X_n$ are independent.
- Let Y_1 and Y_2 be random variables with the same distribution as $g(X_1, X_2, \ldots, X_n)$.
- Then

$$\operatorname{Var}\left[\frac{Y_1 + Y_2}{2}\right] = \frac{\operatorname{Var}[Y_1]}{2} + \frac{\operatorname{Cov}[Y_1, Y_2]}{2}$$

- $\operatorname{Var}[Y_1]/2$ is the variance of the Monte Carlo method with two (independent) replications.
- The variance $\operatorname{Var}[(Y_1 + Y_2)/2]$ is smaller than $\operatorname{Var}[Y_1]/2$ when Y_1 and Y_2 are negatively correlated.

Variance Reduction: Antithetic Variates (continued)

- For each simulated sample path X, a second one is obtained by reusing the random numbers on which the first path is based.
- This yields a second sample path Y.
- Two estimates are then obtained: One based on X and the other on Y.
- If N independent sample paths are generated, the antithetic-variates estimator averages over 2N estimates.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 636

Variance Reduction: Antithetic Variates (continued)

- Consider process $dX = a_t dt + b_t \sqrt{dt} \xi$.
- Let g be a function of n samples X_1, X_2, \ldots, X_n on the sample path.
- We are interested in $E[g(X_1, X_2, \ldots, X_n)].$
- Suppose one simulation run has realizations $\xi_1, \xi_2, \ldots, \xi_n$ for the normally distributed fluctuation term ξ .
- This generates samples x_1, x_2, \ldots, x_n .
- The estimate is then $g(\boldsymbol{x})$, where $\boldsymbol{x} \equiv (x_1, x_2 \dots, x_n)$.

Variance Reduction: Antithetic Variates (concluded)

- We do not sample n more numbers from ξ for the second estimate.
- The antithetic-variates method computes $g(\mathbf{x}')$ from the sample path $\mathbf{x}' \equiv (x'_1, x'_2, \dots, x'_n)$ generated by $-\xi_1, -\xi_2, \dots, -\xi_n$.
- We then output $(g(\boldsymbol{x}) + g(\boldsymbol{x}'))/2$.
- Repeat the above steps for as many times as required by accuracy.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 638

Variance Reduction: Conditioning

- We are interested in estimating E[X].
- Suppose here is a random variable Z such that E[X | Z = z] can be efficiently and precisely computed.
- E[X] = E[E[X | Z]] by the law of iterated conditional expectations.
- Hence the random variable E[X | Z] is also an unbiased estimator of E[X].

Variance Reduction: Conditioning (concluded)

- As $\operatorname{Var}[E[X | Z]] \leq \operatorname{Var}[X], E[X | Z]$ has a smaller variance than observing X directly.
- First obtain a random observation z on Z.
- Then calculate E[X | Z = z] as our estimate.
 - There is no need to resort to simulation in computing E[X | Z = z].
- The procedure can be repeated a few times to reduce the variance.

C2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 640

Control Variates

- Use the analytic solution of a similar yet simpler problem to improve the solution.
- Suppose we want to estimate E[X] and there exists a random variable Y with a known mean $\mu \equiv E[Y]$.
- Then $W \equiv X + \beta(Y \mu)$ can serve as a "controlled" estimator of E[X] for any constant β .
 - $-\beta$ can scale the deviation $Y \mu$ to arrive at an adjustment for X.
 - However β is chosen, W remains an unbiased estimator of E[X] as

```
E[W] = E[X] + \beta E[Y - \mu] = E[X].
```


• The success of the scheme clearly depends on both β and the choice of Y.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 642

Control Variates (concluded)

- For example, arithmetic average-rate options can be priced by choosing Y to be the otherwise identical geometric average-rate option's price and $\beta = -1$.
- This approach is much more effective than the antithetic-variates method.

^aContributed by Ms. Teng, Huei-Wen (**R91723054**) on May 25, 2004. ^bContributed by Mr. Tsai, Hwai (**R92723049**) on May 12, 2004.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 644

Optimal Choice of β

• Equation (72) on p. 642 is minimized when

$$\beta = -\operatorname{Cov}[X, Y] / \operatorname{Var}[Y],$$

which was called beta earlier in the book.

• For this specific β ,

$$\operatorname{Var}[W] = \operatorname{Var}[X] - \frac{\operatorname{Cov}[X,Y]^2}{\operatorname{Var}[Y]} = \left(1 - \rho_{X,Y}^2\right) \operatorname{Var}[X],$$

where $\rho_{X,Y}$ is the correlation between X and Y.

• The stronger X and Y are correlated, the greater the reduction in variance.

Optimal Choice of β (continued)

- For example, if this correlation is nearly perfect (±1), we could control X almost exactly, eliminating practically all of its variance.
- Typically, neither $\operatorname{Var}[Y]$ nor $\operatorname{Cov}[X, Y]$ is known.
- Therefore, we cannot obtain the maximum reduction in variance.
- We can guess these values and hope that the resulting W does indeed have a smaller variance than X.
- A second possibility is to use the simulated data to estimate these quantities.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 646

Optimal Choice of β (concluded)

- Observe that $-\beta$ has the same sign as the correlation between X and Y.
- Hence, if X and Y are positively correlated, $\beta < 0$, then X is adjusted downward whenever $Y > \mu$ and upward otherwise.
- The opposite is true when X and Y are negatively correlated, in which case $\beta > 0$.

Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of \sqrt{N} does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 648

Quasi-Monte Carlo Methods

- The low-discrepancy sequences (or quasi-random sequences) address the above-mentioned problems.
- It is a deterministic version of the Monte Carlo method in that random samples are replaced by deterministic quasi-random points.
- If a smaller number of samples suffices as a result, efficiency has been gained.
- Aim is to select deterministic points for which the deterministic error bound is smaller than Monte Carlo's probabilistic error bound.

Problems with Quasi-Monte Carlo Methods

- Their theories are valid for integration problems, but may not be directly applicable to simulations because of the correlations between points in a quasi-random sequence.
- This problem may be overcome by writing the desired result as an integral.
- But the integral often has a very high dimension.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 650

Assessment

- The results are somewhat mixed.
- The application of such methods in finance seems promising.
- A speed-up as high as 1,000 over the Monte Carlo method, for example, is reported.
- The success of the quasi-Monte Carlo method when compared with traditional variance-reduction techniques is problem dependent.
- For example, the antithetic-variates method outperforms the quasi-Monte Carlo method in bond pricing.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 652

Problems with Quasi-Monte Carlo Methods (concluded)

- The improved accuracy is generally lost for problems of high dimension or problems in which the integrand is not smooth.
- No theoretical basis for empirical estimates of their accuracy, a role played by the central limit theorem in the Monte Carlo method.

Matrix Computation

Page 654

Definitions and Basic Results (continued)

- A square matrix A is said to be symmetric if $A^{T} = A$.
- A real $n \times n$ matrix $A \equiv [a_{ij}]_{i,j}$ is diagonally dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for $1 \le i \le n$.
 - Such matrices are nonsingular.
- A diagonal $m \times n$ matrix $D \equiv [d_{ij}]_{i,j}$ may be denoted by diag $[D_1, D_2, \ldots, D_q]$, where $q \equiv \min(m, n)$ and $D_i = d_{ii}$ for $1 \le i \le q$.
- The identity matrix is the square matrix

 $I \equiv \operatorname{diag}[1, 1, \dots, 1].$

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 656

Definitions and Basic Results

- Let $A \equiv [a_{ij}]_{1 \le i \le m, 1 \le j \le n}$, or simply $A \in \mathbb{R}^{m \times n}$, denote an $m \times n$ matrix.
- It can also be represented as $[a_1, a_2, \dots, a_n]$ where $a_i \in \mathbf{R}^m$ are vectors.
 - Vectors are column vectors unless stated otherwise.
- A is a square matrix when m = n.
- The rank of a matrix is the largest number of linearly independent columns.
- An $m \times n$ matrix is rank deficient if its rank is less than $\min(m, n)$; otherwise, it has full rank.

Definitions and Basic Results (concluded)

- A matrix has full column rank if its columns are linearly independent.
- A real symmetric matrix A is positive definite if $x^{T}Ax = \sum_{i,j} a_{ij}x_{i}x_{j} > 0$ for any nonzero vector x.
- It is known that a matrix A is positive definite if and only if there exists a matrix W such that $A = W^{T}W$ and W has full column rank.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 658

Banded Linear Systems

- Matrix A is banded if all the nonzero elements are placed near the diagonal of the matrix.
- We say $A = [a_{ij}]_{i,j}$ has upper bandwidth u if $a_{ij} = 0$ for j - i > u and lower bandwidth l if $a_{ij} = 0$ for i - j > l.
 - A tridiagonal matrix, for instance, has upper bandwidth one and lower bandwidth one.
- For banded matrices, Gaussian elimination can be easily modified to run in O(nul) time.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 660

Gaussian Elimination^a

- Gaussian elimination is a standard method for solving a linear system Ax = b, where $A \in \mathbf{R}^{n \times n}$.
- The total running time is $O(n^3)$.
- The space complexity is $O(n^2)$.
- ^aCarl Friedrich Gauss (1777–1855) in 1809.

Decompositions

• Gaussian elimination can be used to factor any square matrix all of whose leading principal submatrices are nonsingular into a product of a lower triangular matrix L and an upper triangular matrix U:

A = LU.

- This is called the LU decomposition.
- The conditions are satisfied by positive definite matrices and diagonally dominant matrices.
- Positive definite matrices can in fact be factored as

$$A = LL^{\mathrm{T}},\tag{74}$$

called the Cholesky decomposition.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 662

Orthogonal and Orthonormal Matrices

- A vector set $\{x_1, x_2, \ldots, x_p\}$ is orthogonal if all its vectors are nonzero and the inner products $x_i^{\mathsf{T}} x_j$ equal zero for $i \neq j$.
- It is orthonormal if, furthermore,

$$x_i^{\mathrm{T}} x_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

- A real square matrix Q is orthogonal if $Q^{\mathrm{T}}Q = I$.
- For such matrices, $Q^{-1} = Q^{T}$ and $QQ^{T} = I$.

Generation of Multivariate Normal Distribution

- Let $\boldsymbol{x} \equiv [x_1, x_2, \dots, x_n]^{\mathrm{T}}$ be a vector random variable with a positive definite covariance matrix C.
- As usual, assume $E[\mathbf{x}] = \mathbf{0}$.
- This distribution can be generated by Py.
 - $-C = PP^{T}$ is the Cholesky decomposition of C.
 - $\mathbf{y} \equiv [y_1, y_2, \dots, y_n]^{\mathrm{T}}$ is a vector random variable with a covariance matrix equal to the identity matrix.
- Reason (see text):

$$\operatorname{Cov}[P\boldsymbol{y}] = P\operatorname{Cov}[\boldsymbol{y}]P^{\mathrm{T}} = PP^{\mathrm{T}} = C.$$

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 664

Generation of Multivariate Normal Distribution (concluded)

- Suppose we want to generate the multivariate normal distribution with a covariance matrix $C = PP^{T}$.
- We start with independent standard normal distributions y_1, y_2, \ldots, y_n .
- Then $P[y_1, y_2, \dots, y_n]^{\mathsf{T}}$ has the desired distribution.

Multivariate Derivatives Pricing

- Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives (p. 567).
- For example, the rainbow option on k assets has payoff

 $\max(\max(S_1, S_2, \ldots, S_k) - X, 0)$

at maturity.

• The closed-form formula is a multi-dimensional integral.^a

^aJohnson (1987).

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 666

Least-Squares Problems

- The least-squares (LS) problem is concerned with $\min_{x \in \mathbb{R}^n} || Ax b ||$, where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m \ge n$.
- The LS problem is called regression analysis in statistics and is equivalent to minimizing the mean-square error.
- Often stated as Ax = b, the LS problem is overdetermined when there are more equations than unknowns (m > n).

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 668

Multivariate Derivatives Pricing (concluded)

- Suppose $dS_j/S_j = r dt + \sigma_j dW_j$, $1 \le j \le n$, where C is the correlation matrix for dW_1, dW_2, \ldots, dW_k .
- Let $C = PP^{\mathrm{T}}$.
- Let ξ consist of k independent random variables from N(0, 1).
- Let $\xi' = P\xi$.
- Similar to Eq. (71) on p. 631,

$$S_{i+1} = S_i e^{(r - \sigma_j^2/2) \Delta t + \sigma_j \sqrt{\Delta t}} \xi'_j, \quad 1 \le j \le n.$$

Polynomial Regression
In polynomial regression, $x_0 + x_1x + \dots + x_nx^n$ is used to fit the data $\{(a_1, b_1), (a_2, b_2), \dots, (a_m, b_m)\}$.
This leads to the LS problem, $\begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_m & a_m^2 & \cdots & a_m^n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$ (75)

Normal Equations

- Since Ax is a linear combination of A's columns with coefficients x_1, x_2, \ldots, x_n , the LS problem finds the minimum distance between b and A's column space.
- A solution x_{LS} must identify a point Ax_{LS} which is at least as close to b as any other point in the column space.
- Therefore, the error vector $Ax_{LS} b$ must be perpendicular to that space.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 670

Normal Equations (concluded)

• This means

$$(Ay)^{\mathrm{T}}(Ax_{\mathrm{LS}} - b) = y^{\mathrm{T}}(A^{\mathrm{T}}Ax_{\mathrm{LS}} - A^{\mathrm{T}}b) = \mathbf{0}$$

for all y.

• We conclude that any solution x must satisfy the normal equations,

$$A^{\mathrm{T}}Ax = A^{\mathrm{T}}b.$$

Numerical Solutions to LS

- The LS problem is called the full-rank least-squares problem when A has full column rank.
 - Consider the polynomial regression (75) on p. 669.
 - The $m \times n$ matrix has full column rank as long as a_1, a_2, \ldots, a_m contain at least n distinct numbers.
- Since $A^{\mathrm{T}}A$ is then nonsingular, the normal equations (76),

$$A^{\mathrm{T}}Ax = A^{\mathrm{T}}b$$

can be solved, say, by Gaussian elimination.

O2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 672

Numerical Solutions to LS (concluded)

• The unique solution for normal equations is

 $x_{\rm LS} = (A^{\rm T}A)^{-1}A^{\rm T}b.$

- This is called the ordinary least-squares (OLS) estimator.
- As $A^{T}A$ is positive definite, the normal equations can be solved by the Cholesky decomposition (p. 662).
- This approach is usually not recommended because its numerical stability is lower than the alternative SVD approach (see text).

(76)

An Intuitive Methodology

- Let $\Phi(x) \equiv (1/2) \parallel Ax b \parallel^2$.
- Define its gradient vector as

$$\nabla \Phi(x) \equiv \left[\frac{\partial \Phi(x)}{\partial x_1}, \frac{\partial \Phi(x)}{\partial x_2}, \dots, \frac{\partial \Phi(x)}{\partial x_n}\right]^{\mathrm{T}}$$

- Then normal equations are exactly $\nabla \Phi(x) = \mathbf{0}$.
- This method based on calculus can often be derived without appealing to normal equations.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 674

An Intuitive Methodology (continued) • These equalities result in $\sum_{i=1}^{m} [(x_0 + x_1 a_i + \dots + x_n a_i^n) - b_i] = 0,$ $\sum_{i=1}^{m} a_i [(x_0 + x_1 a_i + \dots + x_n a_i^n) - b_i] = 0,$ \vdots $\sum_{i=1}^{m} a_i^n [(x_0 + x_1 a_i + \dots + x_n a_i^n) - b_i] = 0.$

C2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 676

An Intuitive Methodology (continued)

- Take the polynomial regression on p. 669.
- The mean-square error is

$$\Phi(x_0, \dots, x_n) = \sum_{i=1}^m \left[(x_0 + x_1 a_i + \dots + x_n a_i^n) - b_i \right]^2$$

• To minimize it, we set

$$\frac{\partial \Phi}{\partial x_j} =$$

0

for $0 \leq j \leq n$.

An Intuitive Methodology (continued)

• They lead to the linear system,

$$\begin{bmatrix} \sum_{i=1}^{m} 1 & \sum_{i=1}^{m} a_i & \sum_{i=1}^{m} a_i^2 & \cdots & \sum_{i=1}^{m} a_i^n \\ \sum_{i=1}^{m} a_i & \sum_{i=1}^{m} a_i^2 & \sum_{i=1}^{m} a_i^3 & \cdots & \sum_{i=1}^{m} a_i^{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{m} a_n & \sum_{i=1}^{m} a_i^{n+1} & \sum_{i=1}^{m} a_i^{n+2} & \cdots & \sum_{i=1}^{m} a_i^{2n} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_1 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$$
$$\begin{bmatrix} \sum_{i=1}^{m} b_i \\ \sum_{i=1}^{m} a_i b_i \\ \vdots \\ \sum_{i=1}^{m} a_i^n b_i \end{bmatrix}$$

• It can be solved by Gaussian elimination.

=

An Intuitive Methodology (continued)

- Polynomial regression uses $1, x, \ldots, x^n$ as the basis functions.
- In general, we can use $f_0(x), f_1(x), \ldots, f_n(x)$ as the basis functions.
- The mean-square error is

$$\Phi(x_0, \dots, x_n) = \sum_{i=1}^m \left[\left(x_0 f_0(a_i) + x_1 f_1(a_i) + \dots + x_n f_n(a_i) \right) - b_i \right]^2$$

• To minimize it, we again set

$$\frac{\partial \Phi}{\partial x_j} = 0, \quad 0 \le j \le n.$$

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 678

An Intuitive Methodology (continued)

• They lead to the linear system,

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 680

An Intuitive Methodology (continued)

• These equalities result in

$$\sum_{i=1}^{m} f_0(a_i) \left[\left(x_0 f_0(a_i) + x_1 f_1(a_i) + \dots + x_n f_n(a_i) \right) - b_i \right] = 0,$$

$$\sum_{i=1}^{m} f_1(a_i) \left[\left(x_0 f_0(a_i) + x_1 f_1(a_i) + \dots + x_n f_n(a_i) \right) - b_i \right] = 0,$$

$$\vdots$$

$$\sum_{i=1}^{m} f_n(a_i) \left[\left(x_0 f_0(a_i) + x_1 f_1(a_i) + \dots + x_n f_n(a_i) \right) - b_i \right] = 0.$$

Page 682

American Option Pricing by Simulation

- The continuation value of an American option is the conditional expectation of the payoff from keeping the option alive now.
- The option holder must compare the immediate exercise value and the continuation value.
- In standard Monte Carlo simulation, each path is treated independently of other paths.
- But the decision to exercise the option cannot be reached by looking at only one path alone.

The Least-Squares Monte Carlo Approach

- The continuation value can be estimated from the cross-sectional information in the simulation by using least squares.^a
- The result is a function of the state for estimating the continuation values.
- Use the function to estimate the continuation value for each path to determine its cash flow.
- This is called the least-squares Monte Carlo (LSM) approach and is provably convergent.^b

^aLongstaff and Schwartz (2001). ^bClément, Lamberton, and Protter (2002).

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 684

A Numerical Example

- Consider a 3-year American put on a non-dividend-paying stock.
- The put is exercisable at years 1, 2, and 3.
- The strike price X = 105.
- The annualized riskless rate is r = 5%.
- The spot stock price is 101.
 - The annual discount factor hence equals 0.951229.
- We use only 8 price paths to illustrate the algorithm.

		Stock price	e paths	
Path	Year 0	Year 1	Year 2	Year 3
1	101	97.6424	92.5815	107.5178
2	101	101.2103	105.1763	102.4524
3	101	105.7802	103.6010	124.5115
4	101	96.4411	98.7120	108.3600
5	101	124.2345	101.0564	104.5315
6	101	95.8375	93.7270	99.3788
7	101	108.9554	102.4177	100.9225
8	101	104.1475	113.2516	115.0994

Page 686

- We use the basis functions $1, x, x^2$.
 - Other basis functions are possible (p. 681).
- The plot next page shows the final estimated optimal exercise strategy given by LSM.
- We now proceed to tackle our problem.
- Our concrete problem is to calculate the cash flow along each path, using information from all paths.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 688

3

	Cash	n flows at	year 3	
Path	Year 0	Year 1	Year 2	Year 3
1				0
2				2.5476
3				0
4				0
5				0.4685
6				5.6212
7				4.0775
8				0

Page 690

A Numerical Example (continued)

- We move on to year 2.
- For each state that is in the money at year 2, we must decide whether to exercise it.
- There are 6 paths for which the put is in the money: 1, 3, 4, 5, 6, 7.
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 1.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 692

A Numerical Example (continued)

- The cash flows at year 3 are the exercise value if the put is in the money.
- Only 4 paths are in the money: 2, 5, 6, 7.
- Some of the cash flows may not occur if the put is exercised earlier, which we will find out step by step.
- Incidentally, the European counterpart has a value of

$$0.951229^3 \times \frac{2.5476 + 0.4685 + 5.6212 + 4.0775}{8} = 1.3680.$$

n at year 2	Regressio	
2	x	Path
0×0.951229	92.5815	1
_		2
0×0.951229	103.6010	3
0×0.951229	98.7120	4
0.4685×0.951229	101.0564	5
5.6212×0.951229	93.7270	6
4.0775×0.951229	102.4177	7
_		8

Optimal early exercise decision at year 2				
Path	Exercise	Continuation		
1	12.4185	f(92.5815) = 2.2558		
2	—			
3	1.3990	f(103.6010) = 1.1168		
4	6.2880	f(98.7120) = 1.5901		
5	3.9436	f(101.0564) = 1.3568		
6	11.2730	f(93.7270) = 2.1253		
7	2.5823	f(102.4177) = 0.3326		
8				

Page 694

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 696

A Numerical Example (continued)

- We regress y on 1, x, and x^2 .
- The result is

$$f(x) = 22.08 - 0.313114 \times x + 0.00106918 \times x^2$$

- f estimates the continuation value conditional on the stock price at year 2.
- We next compare the immediate exercise value and the continuation value.

A Numerical Example (continued)

- Amazingly, the put should be exercised in all 6 paths: 1, 3, 4, 5, 6, 7.
- Now, any positive cash flow at year 3 should be set to zero for these paths as the put is exercised before year 3.
 - They are paths 5, 6, 7.
- Hence the cash flows on p. 690 become the next ones.

	ears 2 & 3	lows at ye	Cash f	
Year 3	Year 2	Year 1	Year 0	Path
0	12.4185			1
2.5476	0			2
C	1.3990			3
0	6.2880			4
0	3.9436			5
C	11.2730			6
0	2.5823			7
0	0		_	8

Page 698

A Numerical Example (continued) • Let x denote the stock prices at year 1 for those 5 paths. • Let *y* denote the corresponding discounted future cash flows if the put is not exercised at year 1. • From p. 698, we have the following table.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 700

Regression at year 1						
Path	<i>x</i>	y				
1	97.6424	12.4185×0.951229				
2	101.2103	2.5476×0.951229^2				
3						
4	96.4411	6.2880 imes 0.951229				
5		_				
6	95.8375	11.2730×0.951229				
7		_				
8	104.1475	0				

2, 4, 6, 8.

A Numerical Example (continued)

- We regress y on 1, x, and x^2 .
- The result is

 $f(x) = -420.964 + 9.78113 \times x - 0.0551567 \times x^2.$

- *f* estimates the continuation value conditional on the stock price at year 1.
- We next compare the immediate exercise value and the continuation value.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 702

exercise decision at year 1	imal early o	Opt
Continuatio	Exercise	Path
f(97.6424) = 8.223	7.3576	1
f(101.2103) = 3.988	3.7897	2
_		3
f(96.4411) = 9.332	8.5589	4
=		5
f(95.8375) = 9.8304	9.1625	6
=		7
f(104.1475) = -0.55188	0.8525	8

A Numerical Example (continued)

- The put should be exercised for 1 path only: 8.
- Now, any positive future cash flow should be set to zero for this path as the put is exercised before years 2 and 3.
 But there is none.
- Hence the cash flows on p. 698 become the next ones.
- They also confirm the plot on p. 689.

©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 704

Cash flows at years 1, 2, & 3					
Path	Year 0	Year 1	Year 2	Year 3	
1		0	12.4185	0	
2		0	0	2.5476	
3		0	1.3990	0	
4		0	6.2880	0	
5		0	3.9436	0	
6		0	11.2730	0	
7		0	2.5823	0	
8		0.8525	0	0	

Page 706

A Numerical Example (concluded)

- As this is larger than the immediate exercise value of 105 - 101 = 4, the put should not be exercised at year 0.
- Hence the put's value is estimated to be 4.66263.
- This is much larger than the European put's value of 1.3680 (p. 691).