
Variance Reduction

• The statistical efficiency of Monte Carlo simulation can

be measured by the variance of its output.

• If this variance can be lowered without changing the

expected value, fewer replications are needed.

• Methods that improve efficiency in this manner are

called variance-reduction techniques.

• Such techniques become practical when the added costs

are outweighed by the reduction in sampling.
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Monte Carlo Option Pricing

• For the pricing of European options on a

dividend-paying stock, we may proceed as follows.

• Stock prices S1, S2, S3, . . . at times ∆t, 2∆t, 3∆t, . . .

can be generated via

Si+1 = Sie
(µ−σ2/2) ∆t+σ

√
∆t ξ, ξ ∼ N(0, 1)

(71)

when dS/S = µ dt + σ dW .

• Non-dividend-paying stock prices in a risk-neutral

economy can be generated by setting µ = r.

• Pricing Asian options is easy (see text).
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Pricing American Options

• Standard Monte Carlo simulation is inappropriate for

American options because of early exercise.

• It is difficult to determine the early-exercise point based

on one single path.

• Monte Carlo simulation can be modified to price

American options with small biases (see p. 683).a

aLongstaff and Schwartz (2001).
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Delta and Common Random Numbers

• In estimating delta, it is natural to start with the

finite-difference estimate

e−rτ E[ P (S + ε) ] − E[ P (S − ε) ]

2ε
.

– P (x) is the terminal payoff of the derivative security

when the underlying asset’s initial price equals x.

• Use simulation to estimate E[ P (S + ε) ] first.

• Use another simulation to estimate E[ P (S − ε) ].

• Finally, apply the formula to approximate the delta.
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Delta and Common Random Numbers (concluded)

• This method is not recommended because of its high

variance.

• A much better approach is to use common random

numbers to lower the variance:

e−rτ E

[

P (S + ε) − P (S − ε)

2ε

]

.

• Here, the same random numbers are used for P (S + ε)

and P (S − ε).

• This holds for gamma and cross gammas (for

multivariate derivatives).
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Variance Reduction: Antithetic Variates

• We are interested in estimating E[ g(X1, X2, . . . , Xn) ],

where X1, X2, . . . , Xn are independent.

• Let Y1 and Y2 be random variables with the same

distribution as g(X1, X2, . . . , Xn).

• Then

Var

[

Y1 + Y2

2

]

=
Var[ Y1 ]

2
+

Cov[ Y1, Y2 ]

2
.

– Var[ Y1 ]/2 is the variance of the Monte Carlo

method with two (independent) replications.

• The variance Var[ (Y1 + Y2)/2 ] is smaller than

Var[ Y1 ]/2 when Y1 and Y2 are negatively correlated.
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Variance Reduction: Antithetic Variates (continued)

• For each simulated sample path X , a second one is

obtained by reusing the random numbers on which the

first path is based.

• This yields a second sample path Y .

• Two estimates are then obtained: One based on X and

the other on Y .

• If N independent sample paths are generated, the

antithetic-variates estimator averages over 2N

estimates.
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Variance Reduction: Antithetic Variates (continued)

• Consider process dX = at dt + bt

√
dt ξ.

• Let g be a function of n samples X1, X2, . . . , Xn on

the sample path.

• We are interested in E[ g(X1, X2, . . . , Xn) ].

• Suppose one simulation run has realizations

ξ1, ξ2, . . . , ξn for the normally distributed fluctuation

term ξ.

• This generates samples x1, x2, . . . , xn.

• The estimate is then g(x), where x ≡ (x1, x2 . . . , xn).
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Variance Reduction: Antithetic Variates (concluded)

• We do not sample n more numbers from ξ for the

second estimate.

• The antithetic-variates method computes g(x′) from

the sample path x′ ≡ (x′
1, x

′
2 . . . , x′

n) generated by

−ξ1,−ξ2, . . . ,−ξn.

• We then output (g(x) + g(x′))/2.

• Repeat the above steps for as many times as required by

accuracy.
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Variance Reduction: Conditioning

• We are interested in estimating E[ X ].

• Suppose here is a random variable Z such that

E[ X |Z = z ] can be efficiently and precisely computed.

• E[ X ] = E[ E[ X |Z ] ] by the law of iterated conditional

expectations.

• Hence the random variable E[ X |Z ] is also an unbiased

estimator of E[ X ].

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 639

Variance Reduction: Conditioning (concluded)

• As Var[ E[ X |Z ] ] ≤ Var[ X ], E[ X |Z ] has a smaller

variance than observing X directly.

• First obtain a random observation z on Z.

• Then calculate E[ X |Z = z ] as our estimate.

– There is no need to resort to simulation in computing

E[ X |Z = z ].

• The procedure can be repeated a few times to reduce

the variance.
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Control Variates

• Use the analytic solution of a similar yet simpler

problem to improve the solution.

• Suppose we want to estimate E[ X ] and there exists a

random variable Y with a known mean µ ≡ E[ Y ].

• Then W ≡ X + β(Y − µ) can serve as a “controlled”

estimator of E[ X ] for any constant β.

– β can scale the deviation Y − µ to arrive at an

adjustment for X .

– However β is chosen, W remains an unbiased

estimator of E[ X ] as

E[ W ] = E[ X ] + βE[ Y − µ ] = E[ X ].
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Control Variates (continued)

• Note that

Var[ W ] = Var[ X ] + β
2 Var[ Y ] + 2β Cov[ X,Y ],

(72)

• Hence W is less variable than X if and only if

β2 Var[ Y ] + 2β Cov[ X, Y ] < 0. (73)

• The success of the scheme clearly depends on both β

and the choice of Y .
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Control Variates (concluded)

• For example, arithmetic average-rate options can be

priced by choosing Y to be the otherwise identical

geometric average-rate option’s price and β = −1.

• This approach is much more effective than the

antithetic-variates method.
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Choice of Y

• In general, the choice of Y is ad hoc, and experiments

must be performed to confirm the wisdom of the choice.

• Try to match calls with calls and puts with puts.a

• On many occasions, Y is a discretized version of the

derivative that gives µ.

– Discretely monitored geometric average-rate option

vs. the continuously monitored geometric

average-rate option given by formulas (31) on p. 314.

• For some choices, the discrepancy can be significant,

such as the lookback option.b

aContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
bContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
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Optimal Choice of β

• Equation (72) on p. 642 is minimized when

β = −Cov[ X, Y ]/Var[ Y ],

which was called beta earlier in the book.

• For this specific β,

Var[ W ] = Var[ X ] − Cov[ X, Y ]2

Var[ Y ]
=

(

1 − ρ2
X,Y

)

Var[ X ],

where ρX,Y is the correlation between X and Y .

• The stronger X and Y are correlated, the greater the

reduction in variance.
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Optimal Choice of β (continued)

• For example, if this correlation is nearly perfect (±1),

we could control X almost exactly, eliminating

practically all of its variance.

• Typically, neither Var[ Y ] nor Cov[ X, Y ] is known.

• Therefore, we cannot obtain the maximum reduction in

variance.

• We can guess these values and hope that the resulting

W does indeed have a smaller variance than X .

• A second possibility is to use the simulated data to

estimate these quantities.
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Optimal Choice of β (concluded)

• Observe that −β has the same sign as the correlation

between X and Y .

• Hence, if X and Y are positively correlated, β < 0,

then X is adjusted downward whenever Y > µ and

upward otherwise.

• The opposite is true when X and Y are negatively

correlated, in which case β > 0.
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Problems with the Monte Carlo Method

• The error bound is only probabilistic.

• The probabilistic error bound of
√

N does not benefit

from regularity of the integrand function.

• The requirement that the points be independent random

samples are wasteful because of clustering.

• In reality, pseudorandom numbers generated by

completely deterministic means are used.

• Monte Carlo simulation exhibits a great sensitivity on

the seed of the pseudorandom-number generator.
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Quasi-Monte Carlo Methods

• The low-discrepancy sequences (or quasi-random

sequences) address the above-mentioned problems.

• It is a deterministic version of the Monte Carlo method

in that random samples are replaced by deterministic

quasi-random points.

• If a smaller number of samples suffices as a result,

efficiency has been gained.

• Aim is to select deterministic points for which the

deterministic error bound is smaller than Monte Carlo’s

probabilistic error bound.
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Problems with Quasi-Monte Carlo Methods

• Their theories are valid for integration problems, but

may not be directly applicable to simulations because of

the correlations between points in a quasi-random

sequence.

• This problem may be overcome by writing the desired

result as an integral.

• But the integral often has a very high dimension.
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Problems with Quasi-Monte Carlo Methods
(concluded)

• The improved accuracy is generally lost for problems of

high dimension or problems in which the integrand is

not smooth.

• No theoretical basis for empirical estimates of their

accuracy, a role played by the central limit theorem in

the Monte Carlo method.
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Assessment

• The results are somewhat mixed.

• The application of such methods in finance seems

promising.

• A speed-up as high as 1,000 over the Monte Carlo

method, for example, is reported.

• The success of the quasi-Monte Carlo method when

compared with traditional variance-reduction techniques

is problem dependent.

• For example, the antithetic-variates method outperforms

the quasi-Monte Carlo method in bond pricing.

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 652

Matrix Computation
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To set up a philosophy against physics is rash;

philosophers who have done so

have always ended in disaster.

— Bertrand Russell
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Definitions and Basic Results

• Let A ≡ [ aij ]1≤i≤m,1≤j≤n, or simply A ∈ Rm×n,

denote an m × n matrix.

• It can also be represented as [ a1, a2, . . . , an ] where

ai ∈ Rm are vectors.

– Vectors are column vectors unless stated otherwise.

• A is a square matrix when m = n.

• The rank of a matrix is the largest number of linearly

independent columns.

• An m× n matrix is rank deficient if its rank is less than

min(m, n); otherwise, it has full rank.
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Definitions and Basic Results (continued)

• A square matrix A is said to be symmetric if AT = A.

• A real n × n matrix A ≡ [ aij ]i,j is diagonally

dominant if | aii | >
∑

j 6=i | aij | for 1 ≤ i ≤ n.

– Such matrices are nonsingular.

• A diagonal m × n matrix D ≡ [ dij ]i,j may be denoted

by diag[ D1, D2, . . . , Dq ], where q ≡ min(m, n) and

Di = dii for 1 ≤ i ≤ q.

• The identity matrix is the square matrix

I ≡ diag[ 1, 1, . . . , 1 ].
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Diagonal Matrices
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Definitions and Basic Results (concluded)

• A matrix has full column rank if its columns are linearly

independent.

• A real symmetric matrix A is positive definite if

xTAx =
∑

i,j aijxixj > 0 for any nonzero vector x.

• It is known that a matrix A is positive definite if and

only if there exists a matrix W such that A = WTW

and W has full column rank.
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Gaussian Eliminationa

• Gaussian elimination is a standard method for solving a

linear system Ax = b, where A ∈ Rn×n.

• The total running time is O(n3).

• The space complexity is O(n2).

aCarl Friedrich Gauss (1777–1855) in 1809.
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Banded Linear Systems

• Matrix A is banded if all the nonzero elements are

placed near the diagonal of the matrix.

• We say A = [ aij ]i,j has upper bandwidth u if aij = 0

for j − i > u and lower bandwidth l if aij = 0 for

i − j > l.

– A tridiagonal matrix, for instance, has upper

bandwidth one and lower bandwidth one.

• For banded matrices, Gaussian elimination can be easily

modified to run in O(nul) time.
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X X

X X X

X X X

X X X

X X X

X X X

X X

O

O
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Decompositions

• Gaussian elimination can be used to factor any square

matrix all of whose leading principal submatrices are

nonsingular into a product of a lower triangular matrix

L and an upper triangular matrix U :

A = LU.

• This is called the LU decomposition.

• The conditions are satisfied by positive definite matrices

and diagonally dominant matrices.

• Positive definite matrices can in fact be factored as

A = LLT, (74)

called the Cholesky decomposition.
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Orthogonal and Orthonormal Matrices

• A vector set {x1, x2, . . . , xp } is orthogonal if all its

vectors are nonzero and the inner products xT

i xj equal

zero for i 6= j.

• It is orthonormal if, furthermore,

xT

i xj =







1 if i = j

0 otherwise

• A real square matrix Q is orthogonal if QTQ = I.

• For such matrices, Q−1 = QT and QQT = I.

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 663

Generation of Multivariate Normal Distribution

• Let x ≡ [ x1, x2, . . . , xn ]T be a vector random variable

with a positive definite covariance matrix C.

• As usual, assume E[ x ] = 0.

• This distribution can be generated by Py.

– C = PPT is the Cholesky decomposition of C.

– y ≡ [ y1, y2, . . . , yn ]T is a vector random variable

with a covariance matrix equal to the identity matrix.

• Reason (see text):

Cov[ Py ] = P Cov[ y ] PT = PPT = C.
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Generation of Multivariate Normal Distribution
(concluded)

• Suppose we want to generate the multivariate normal

distribution with a covariance matrix C = PPT.

• We start with independent standard normal

distributions y1, y2, . . . , yn.

• Then P [ y1, y2, . . . , yn ]T has the desired distribution.
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Multivariate Derivatives Pricing

• Generating the multivariate normal distribution is

essential for the Monte Carlo pricing of multivariate

derivatives (p. 567).

• For example, the rainbow option on k assets has payoff

max(max(S1, S2, . . . , Sk) − X, 0)

at maturity.

• The closed-form formula is a multi-dimensional integral.a

aJohnson (1987).
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Multivariate Derivatives Pricing (concluded)

• Suppose dSj/Sj = r dt + σj dWj, 1 ≤ j ≤ n, where C is

the correlation matrix for dW1, dW2, . . . , dWk.

• Let C = PPT.

• Let ξ consist of k independent random variables from

N(0, 1).

• Let ξ′ = Pξ.

• Similar to Eq. (71) on p. 631,

Si+1 = Sie
(r−σ2

j /2)∆t+σj

√
∆t ξ′

j , 1 ≤ j ≤ n.
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Least-Squares Problems

• The least-squares (LS) problem is concerned with

minx∈Rn ‖ Ax − b ‖, where A ∈ Rm×n, b ∈ Rm, m ≥ n.

• The LS problem is called regression analysis in statistics

and is equivalent to minimizing the mean-square error.

• Often stated as Ax = b, the LS problem is

overdetermined when there are more equations than

unknowns (m > n).
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Polynomial Regression

• In polynomial regression, x0 + x1x + · · · + xnxn is used

to fit the data { (a1, b1), (a2, b2), . . . , (am, bm) }.

• This leads to the LS problem,
















1 a1 a2
1 · · · an

1

1 a2 a2
2 · · · an

2

...
...

...
. . .

...

1 am a2
m · · · an

m

































x0

x1

...

xn

















=

















b1

b2

...

bm

















.

(75)
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Normal Equations

• Since Ax is a linear combination of A’s columns with

coefficients x1, x2, . . . , xn, the LS problem finds the

minimum distance between b and A’s column space.

• A solution xLS must identify a point AxLS which is at

least as close to b as any other point in the column

space.

• Therefore, the error vector AxLS − b must be

perpendicular to that space.
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Normal Equations (concluded)

• This means

(Ay)T(AxLS − b) = yT (ATAxLS − ATb) = 0

for all y.

• We conclude that any solution x must satisfy the

normal equations,

ATAx = ATb. (76)
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Numerical Solutions to LS

• The LS problem is called the full-rank least-squares

problem when A has full column rank.

– Consider the polynomial regression (75) on p. 669.

– The m × n matrix has full column rank as long as

a1, a2, . . . , am contain at least n distinct numbers.

• Since ATA is then nonsingular, the normal equations

(76),

ATAx = ATb,

can be solved, say, by Gaussian elimination.
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Numerical Solutions to LS (concluded)

• The unique solution for normal equations is

xLS = (ATA)−1ATb.

• This is called the ordinary least-squares (OLS)

estimator.

• As ATA is positive definite, the normal equations can

be solved by the Cholesky decomposition (p. 662).

• This approach is usually not recommended because its

numerical stability is lower than the alternative SVD

approach (see text).
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An Intuitive Methodology

• Let Φ(x) ≡ (1/2) ‖ Ax − b ‖2.

• Define its gradient vector as

5Φ(x) ≡
[

∂Φ(x)

∂x1
,
∂Φ(x)

∂x2
, . . . ,

∂Φ(x)

∂xn

]T

.

• Then normal equations are exactly 5Φ(x) = 0.

• This method based on calculus can often be derived

without appealing to normal equations.
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An Intuitive Methodology (continued)

• Take the polynomial regression on p. 669.

• The mean-square error is

Φ(x0, . . . , xn) =
m

∑

i=1

[ (x0 + x1ai + · · · + xnan
i ) − bi ]2 .

• To minimize it, we set

∂Φ

∂xj
= 0

for 0 ≤ j ≤ n.
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An Intuitive Methodology (continued)

• These equalities result in

m
∑

i=1

[ (x0 + x1ai + · · · + xnan
i ) − bi ] = 0,

m
∑

i=1

ai [ (x0 + x1ai + · · · + xnan
i ) − bi ] = 0,

...
m

∑

i=1

an
i [ (x0 + x1ai + · · · + xnan

i ) − bi ] = 0.
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An Intuitive Methodology (continued)

• They lead to the linear system,

2

6

6

6

6

6

6

4

P

m
i=1 1

P

m
i=1 ai

P

m
i=1 a2

i · · ·
P

m
i=1 an

i
P

m
i=1 ai

P

m
i=1 a2

i

P

m
i=1 a3

i · · ·
P

m
i=1 an+1

i

.

.

.
.
.
.

.

.

.
. . .

.

.

.
P

m
i=1 an

P

m
i=1 an+1

i

P

m
i=1 an+2

i
· · ·

P

m
i=1 a2n

i

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

x0

x1

.

.

.

xn

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

P

m
i=1 bi

P

m
i=1 aibi

.

.

.
P

m
i=1 an

i bi

3

7

7

7

7

7

7

5

.

• It can be solved by Gaussian elimination.
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An Intuitive Methodology (continued)

• Polynomial regression uses 1, x, . . . , xn as the basis

functions.

• In general, we can use f0(x), f1(x), . . . , fn(x) as the

basis functions.

• The mean-square error is

Φ(x0, . . . , xn)

=
m

∑

i=1

[ (x0f0(ai) + x1f1(ai) + · · · + xnfn(ai)) − bi ]2 .

• To minimize it, we again set

∂Φ

∂xj
= 0, 0 ≤ j ≤ n.
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An Intuitive Methodology (continued)

• These equalities result in

m
X

i=1

f0(ai) [ (x0f0(ai) + x1f1(ai) + · · · + xnfn(ai)) − bi ] = 0,

m
X

i=1

f1(ai) [ (x0f0(ai) + x1f1(ai) + · · · + xnfn(ai)) − bi ] = 0,

.

.

.
m

X

i=1

fn(ai) [ (x0f0(ai) + x1f1(ai) + · · · + xnfn(ai)) − bi ] = 0.
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An Intuitive Methodology (continued)

• They lead to the linear system,

2

6

6

6
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P

m
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P

m
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P
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.

..
P

m

i=1
fn(ai) bi

3

7

7

7

7

7

7

5

.

• It can be solved by Gaussian elimination.
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An Intuitive Methodology (continued)

• Popular types of basis functions include: Laguerre

polynomials, Hermite polynomials, Legendre

polynomials, Chebyshev polynomials, Gedenbauer

polynomials, and Jacobi polynomials.

• Again, in general, the SVD approach is more stable.
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An Intuitive Methodology (concluded)

• And the LS formulation is
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American Option Pricing by Simulation

• The continuation value of an American option is the

conditional expectation of the payoff from keeping the

option alive now.

• The option holder must compare the immediate exercise

value and the continuation value.

• In standard Monte Carlo simulation, each path is

treated independently of other paths.

• But the decision to exercise the option cannot be

reached by looking at only one path alone.
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The Least-Squares Monte Carlo Approach

• The continuation value can be estimated from the

cross-sectional information in the simulation by using

least squares.a

• The result is a function of the state for estimating the

continuation values.

• Use the function to estimate the continuation value for

each path to determine its cash flow.

• This is called the least-squares Monte Carlo (LSM)

approach and is provably convergent.b

aLongstaff and Schwartz (2001).
bClément, Lamberton, and Protter (2002).
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A Numerical Example

• Consider a 3-year American put on a

non-dividend-paying stock.

• The put is exercisable at years 1, 2, and 3.

• The strike price X = 105.

• The annualized riskless rate is r = 5%.

• The spot stock price is 101.

– The annual discount factor hence equals 0.951229.

• We use only 8 price paths to illustrate the algorithm.
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A Numerical Example (continued)

Stock price paths

Path Year 0 Year 1 Year 2 Year 3

1 101 97.6424 92.5815 107.5178

2 101 101.2103 105.1763 102.4524

3 101 105.7802 103.6010 124.5115

4 101 96.4411 98.7120 108.3600

5 101 124.2345 101.0564 104.5315

6 101 95.8375 93.7270 99.3788

7 101 108.9554 102.4177 100.9225

8 101 104.1475 113.2516 115.0994
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A Numerical Example (continued)

• We use the basis functions 1, x, x2.

– Other basis functions are possible (p. 681).

• The plot next page shows the final estimated optimal

exercise strategy given by LSM.

• We now proceed to tackle our problem.

• Our concrete problem is to calculate the cash flow along

each path, using information from all paths.
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A Numerical Example (continued)

Cash flows at year 3

Path Year 0 Year 1 Year 2 Year 3

1 — — — 0

2 — — — 2.5476

3 — — — 0

4 — — — 0

5 — — — 0.4685

6 — — — 5.6212

7 — — — 4.0775

8 — — — 0
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A Numerical Example (continued)

• The cash flows at year 3 are the exercise value if the put

is in the money.

• Only 4 paths are in the money: 2, 5, 6, 7.

• Some of the cash flows may not occur if the put is

exercised earlier, which we will find out step by step.

• Incidentally, the European counterpart has a value of

0.9512293 × 2.5476 + 0.4685 + 5.6212 + 4.0775

8
= 1.3680.
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A Numerical Example (continued)

• We move on to year 2.

• For each state that is in the money at year 2, we must

decide whether to exercise it.

• There are 6 paths for which the put is in the money: 1,

3, 4, 5, 6, 7.

• Only in-the-money paths will be used in the regression

because they are where early exercise is relevant.

– If there were none, we would move on to year 1.
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A Numerical Example (continued)

• Let x denote the stock prices at year 2 for those 6 paths.

• Let y denote the corresponding discounted future cash

flows (at year 3) if the put is not exercised at year 2.
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A Numerical Example (continued)

Regression at year 2

Path x y

1 92.5815 0 × 0.951229

2 — —

3 103.6010 0 × 0.951229

4 98.7120 0 × 0.951229

5 101.0564 0.4685 × 0.951229

6 93.7270 5.6212 × 0.951229

7 102.4177 4.0775 × 0.951229

8 — —
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A Numerical Example (continued)

• We regress y on 1, x, and x2.

• The result is

f(x) = 22.08 − 0.313114 × x + 0.00106918 × x2.

• f estimates the continuation value conditional on the

stock price at year 2.

• We next compare the immediate exercise value and the

continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 2

Path Exercise Continuation

1 12.4185 f(92.5815) = 2.2558

2 — —

3 1.3990 f(103.6010) = 1.1168

4 6.2880 f(98.7120) = 1.5901

5 3.9436 f(101.0564) = 1.3568

6 11.2730 f(93.7270) = 2.1253

7 2.5823 f(102.4177) = 0.3326

8 — —

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 696

A Numerical Example (continued)

• Amazingly, the put should be exercised in all 6 paths: 1,

3, 4, 5, 6, 7.

• Now, any positive cash flow at year 3 should be set to

zero for these paths as the put is exercised before year 3.

– They are paths 5, 6, 7.

• Hence the cash flows on p. 690 become the next ones.
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A Numerical Example (continued)

Cash flows at years 2 & 3

Path Year 0 Year 1 Year 2 Year 3

1 — — 12.4185 0

2 — — 0 2.5476

3 — — 1.3990 0

4 — — 6.2880 0

5 — — 3.9436 0

6 — — 11.2730 0

7 — — 2.5823 0

8 — — 0 0
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A Numerical Example (continued)

• We move on to year 1.

• For each state that is in the money at year 1, we must

decide whether to exercise it.

• There are 5 paths for which the put is in the money: 1,

2, 4, 6, 8.

• Only in-the-money paths will be used in the regression

because they are where early exercise is relevant.

– If there were none, we would move on to year 0.
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A Numerical Example (continued)

• Let x denote the stock prices at year 1 for those 5 paths.

• Let y denote the corresponding discounted future cash

flows if the put is not exercised at year 1.

• From p. 698, we have the following table.
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A Numerical Example (continued)

Regression at year 1

Path x y

1 97.6424 12.4185 × 0.951229

2 101.2103 2.5476 × 0.9512292

3 — —

4 96.4411 6.2880 × 0.951229

5 — —

6 95.8375 11.2730 × 0.951229

7 — —

8 104.1475 0

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 701



A Numerical Example (continued)

• We regress y on 1, x, and x2.

• The result is

f(x) = −420.964 + 9.78113 × x − 0.0551567 × x2.

• f estimates the continuation value conditional on the

stock price at year 1.

• We next compare the immediate exercise value and the

continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 1

Path Exercise Continuation

1 7.3576 f(97.6424) = 8.2230

2 3.7897 f(101.2103) = 3.9882

3 — —

4 8.5589 f(96.4411) = 9.3329

5 — —

6 9.1625 f(95.8375) = 9.83042

7 — —

8 0.8525 f(104.1475) = −0.551885
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A Numerical Example (continued)

• The put should be exercised for 1 path only: 8.

• Now, any positive future cash flow should be set to zero

for this path as the put is exercised before years 2 and 3.

– But there is none.

• Hence the cash flows on p. 698 become the next ones.

• They also confirm the plot on p. 689.
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A Numerical Example (continued)

Cash flows at years 1, 2, & 3

Path Year 0 Year 1 Year 2 Year 3

1 — 0 12.4185 0

2 — 0 0 2.5476

3 — 0 1.3990 0

4 — 0 6.2880 0

5 — 0 3.9436 0

6 — 0 11.2730 0

7 — 0 2.5823 0

8 — 0.8525 0 0
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A Numerical Example (continued)

• We move on to year 0.

• The continuation value is, from p 705,

(12.4185 × 0.9512292 + 2.5476 × 0.9512293

+1.3990 × 0.9512292 + 6.2880 × 0.9512292

+3.9436 × 0.9512292 + 11.2730 × 0.9512292

+2.5823 × 0.9512292 + 0.8525 × 0.951229)/8

= 4.66263.
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A Numerical Example (concluded)

• As this is larger than the immediate exercise value of

105 − 101 = 4, the put should not be exercised at year 0.

• Hence the put’s value is estimated to be 4.66263.

• This is much larger than the European put’s value of

1.3680 (p. 691).
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