
General Derivatives Pricing

• In general the underlying asset S may not be traded.

– Interest rate, for instance, is not a traded security.

• Let S follow the Ito process dS/S = µ dt + σ dW ,

where µ and σ may depend only on S and t.

• Let f1(S, t) and f2(S, t) be the prices of two derivatives

with dynamics dfi/fi = µi dt + σi dW , i = 1, 2.

– They share the same Wiener process as S.
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General Derivatives Pricing (continued)

• A portfolio consisting of σ2f2 units of the first

derivative and −σ1f1 units of the second derivative is

instantaneously riskless:

σ2f2 df1 − σ1f1 df2

= σ2f2f1(µ1 dt + σ1 dW ) − σ1f1f2(µ2 dt + σ2 dW )

= (σ2f2f1µ1 − σ1f1f2µ2) dt.

• Therefore,

(σ2f2f1µ1 − σ1f1f2µ2) dt = r(σ2f2f1 − σ1f1f2) dt,

or σ2µ1 − σ1µ2 = r(σ2 − σ1).
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General Derivatives Pricing (continued)

• After rearranging the terms,

µ1 − r

σ1
=

µ2 − r

σ2
≡ λ for some λ.

• A derivative whose value depends only on S and t and

which follows the Ito process df/f = µ dt + σ dW must

thus satisfy

µ − r

σ
= λ or µ = r + λσ. (59)

• We call λ the market price of risk, which is independent

of the specifics of the derivative.
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General Derivatives Pricing (continued)

• Ito’s lemma can be used to derive the formulas for µ

and σ:

µ =
1

f

(

∂f

∂t
+ µS

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2

)

,

σ =
σS

f

∂f

∂S
.

• Substitute the above into Eq. (59) on p. 509 to obtain

∂f

∂t
+ (µ − λσ) S

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2
= rf.

(60)
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General Derivatives Pricing (concluded)

• The presence of µ shows that the investor’s risk

preference is relevant.

• The derivative may be dependent on the underlying

asset’s growth rate and the market price of risk.

• Only when the underlying variable is the price of a

traded security can we assume µ = r in pricing.

– Note that in such a case, λ = 0.
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Hedging
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When Professors Scholes and Merton and I

invested in warrants,

Professor Merton lost the most money.

And I lost the least.

— Fischer Black (1938–1995)
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Delta Hedge

• The delta (hedge ratio) of a derivative f is defined as

∆ ≡ ∂f/∂S.

• Thus ∆f ≈ ∆ × ∆S for relatively small changes in the

stock price, ∆S.

• A delta-neutral portfolio is hedged in the sense that it is

immunized against small changes in the stock price.

• A trading strategy that dynamically maintains a

delta-neutral portfolio is called delta hedge.
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Delta Hedge (concluded)

• Delta changes with the stock price.

• A delta hedge needs to be rebalanced periodically in

order to maintain delta neutrality.

• In the limit where the portfolio is adjusted continuously,

perfect hedge is achieved and the strategy becomes

self-financing.

• This was the gist of the Black-Scholes-Merton argument.
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Implementing Delta Hedge

• We want to hedge N short derivatives.

• Assume the stock pays no dividends.

• The delta-neutral portfolio maintains N × ∆ shares of

stock plus B borrowed dollars such that

−N × f + N × ∆ × S − B = 0.

• At next rebalancing point when the delta is ∆′, buy

N × (∆′ − ∆) shares to maintain N × ∆′ shares with a

total borrowing of B′ = N × ∆′ × S′ − N × f ′.

• Delta hedge is the discrete-time analog of the

continuous-time limit and will rarely be self-financing.
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Example

• A hedger is short 10,000 European calls.

• σ = 30% and r = 6%.

• This call’s expiration is four weeks away, its strike price

is $50, and each call has a current value of f = 1.76791.

• As an option covers 100 shares of stock, N = 1,000,000.

• The trader adjusts the portfolio weekly.

• The calls are replicated well if the cumulative cost of

trading stock is close to the call premium’s FV.
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Example (continued)

• As ∆ = 0.538560, N × ∆ = 538, 560 shares are

purchased for a total cost of 538,560 × 50 = 26,928,000

dollars to make the portfolio delta-neutral.

• The trader finances the purchase by borrowing

B = N × ∆ × S − N × f = 25,160,090

dollars net.

• The portfolio has zero net value now.
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Example (continued)

• At 3 weeks to expiration, the stock price rises to $51.

• The new call value is f ′ = 2.10580.

• So the portfolio is worth

−N × f ′ + 538,560 × 51 − Be0.06/52 = 171, 622

before rebalancing.
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Example (continued)

• A delta hedge does not replicate the calls perfectly; it is

not self-financing as $171,622 can be withdrawn.

• The magnitude of the tracking error—the variation in

the net portfolio value—can be mitigated if adjustments

are made more frequently.

• In fact, the tracking error is positive about 68% of the

time even though its expected value is essentially zero.a

• It is furthermore proportional to vega.

aBoyle and Emanuel (1980).
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Example (continued)

• In practice tracking errors will cease to decrease beyond

a certain rebalancing frequency.

• With a higher delta ∆′ = 0.640355, the trader buys

N × (∆′ − ∆) = 101, 795 shares for $5,191,545.

• The number of shares is increased to N × ∆′ = 640, 355.

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 521

Example (continued)

• The cumulative cost is

26,928,000 × e0.06/52 + 5,191,545 = 32,150,634.

• The total borrowed amount is

B′ = 640,355 × 51 − N × f ′ = 30,552,305.

• The portfolio is again delta-neutral with zero value.

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 522



Option Change in No. shares Cost of Cumulative

value Delta delta bought shares cost

τ S f ∆ N×(5) (1)×(6) FV(8’)+(7)

(1) (2) (3) (5) (6) (7) (8)

4 50 1.7679 0.53856 — 538,560 26,928,000 26,928,000

3 51 2.1058 0.64036 0.10180 101,795 5,191,545 32,150,634

2 53 3.3509 0.85578 0.21542 215,425 11,417,525 43,605,277

1 52 2.2427 0.83983 −0.01595 −15,955 −829,660 42,825,960

0 54 4.0000 1.00000 0.16017 160,175 8,649,450 51,524,853

The total number of shares is 1,000,000 at expiration

(trading takes place at expiration, too).

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 523

Example (concluded)

• At expiration, the trader has 1,000,000 shares.

• They are exercised against by the in-the-money calls for

$50,000,000.

• The trader is left with an obligation of

51,524,853 − 50,000,000 = 1,524,853,

which represents the replication cost.

• Compared with the FV of the call premium,

1,767,910 × e0.06×4/52 = 1,776,088,

the net gain is 1,776,088 − 1,524,853 = 251,235.
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Delta-Gamma Hedge

• Delta hedge is based on the first-order approximation to

changes in the derivative price, ∆f , due to changes in

the stock price, ∆S.

• When ∆S is not small, the second-order term, gamma

Γ ≡ ∂2f/∂S2, helps (theoretically).

• A delta-gamma hedge is a delta hedge that maintains

zero portfolio gamma, or gamma neutrality.

• To meet this extra condition, one more security needs to

be brought in.
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Delta-Gamma Hedge (concluded)

• Suppose we want to hedge short calls as before.

• A hedging call f2 is brought in.

• To set up a delta-gamma hedge, we solve

−N × f + n1 × S + n2 × f2 − B = 0 (self-financing),

−N × ∆ + n1 + n2 × ∆2 − 0 = 0 (delta neutrality),

−N × Γ + 0 + n2 × Γ2 − 0 = 0 (gamma neutrality),

for n1, n2, and B.

– The gammas of the stock and bond are 0.
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Other Hedges

• If volatility changes, delta-gamma hedge may not work

well.

• An enhancement is the delta-gamma-vega hedge, which

also maintains vega zero portfolio vega.

• To accomplish this, one more security has to be brought

into the process.

• In practice, delta-vega hedge, which may not maintain

gamma neutrality, performs better than delta hedge.
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Trees
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I love a tree more than a man.

— Ludwig van Beethoven (1770–1827)

And though the holes were rather small,

they had to count them all.

— The Beatles, A Day in the Life (1967)
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The Combinatorial Method

• The combinatorial method can often cut the running

time by an order of magnitude.

• The basic paradigm is to count the number of admissible

paths that lead from the root to any terminal node.

• We first used this method in the linear-time algorithm

for standard European option pricing on p. 227.

– It cannot apply to American options.

• We will now apply it to price barrier options.
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The Reflection Principlea

• Imagine a particle at position (0,−a) on the integral

lattice that is to reach (n,−b).

• Without loss of generality, assume a > 0 and b ≥ 0.

• This particle’s movement:

(i, j)
*(i + 1, j + 1) up move S → Su

j(i + 1, j − 1) down move S → Sd

• How many paths touch the x axis?

aAndré (1887).
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The Reflection Principle (continued)

• For a path from (0,−a) to (n,−b) that touches the x

axis, let J denote the first point this happens.

• Reflect the portion of the path from (0,−a) to J .

• A path from (0, a) to (n,−b) is constructed.

• It also hits the x axis at J for the first time (see figure

next page).

• The one-to-one mapping shows the number of paths

from (0,−a) to (n,−b) that touch the x axis equals

the number of paths from (0, a) to (n,−b).
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(0, a) (n, b)

(0, a)

J
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The Reflection Principle (concluded)

• A path of this kind has (n + b + a)/2 down moves and

(n − b − a)/2 up moves.

• Hence there are
(

n
n+a+b

2

)

(61)

such paths for even n + a + b.

– Convention:
(

n
k

)

= 0 for k < 0 or k > n.

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 534



Pricing Barrier Options (Lyuu, 1998)

• Focus on the down-and-in call with barrier H < X .

• Assume H < S without loss of generality.

• Define

a ≡

‰

ln (X/ (Sdn))

ln(u/d)

ı

=

‰

ln(X/S)

2σ
√

∆t
+

n

2

ı

,

h ≡

—

ln (H/ (Sdn))

ln(u/d)

�

=

—

ln(H/S)

2σ
√

∆t
+

n

2

�

.

– h is such that H̃ ≡ Suhdn−h is the terminal price

that is closest to, but does not exceed H.

– a is such that X̃ ≡ Suadn−a is the terminal price

that is closest to, but is not exceeded by X .
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Pricing Barrier Options (continued)

• The true barrier is replaced by the effective barrier H̃

in the binomial model.

• A process with n moves hence ends up in the money if

and only if the number of up moves is at least a.

• The price Sukdn−k is at a distance of 2k from the

lowest possible price Sdn on the binomial tree.

–

Sukdn−k = Sd−kdn−k = Sdn−2k. (62)
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H Su dh n h
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Pricing Barrier Options (continued)

• The number of paths from S to the terminal price

Sujdn−j is
(

n
j

)

, each with probability pj(1 − p)n−j .

• With reference to p. 537, the reflection principle can be

applied with a = n − 2h and b = 2j − 2h in Eq. (61)

on p. 534 by treating the S line as the x axis.

• Therefore,
(

n
n+(n−2h)+(2j−2h)

2

)

=

(

n

n − 2h + j

)

paths hit H̃ in the process for h ≤ n/2.
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Pricing Barrier Options (concluded)

• The terminal price Sujdn−j is reached by a path that

hits the effective barrier with probability
(

n

n − 2h + j

)

pj(1 − p)n−j .

• The option value equals

R−n
2h
∑

j=a

(

n

n − 2h + j

)

pj(1 − p)n−j
(

Sujdn−j − X
)

.

(63)

– R ≡ erτ/n is the riskless return per period.

• It implies a linear-time algorithm.
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Convergence of BOPM

• Equation (63) results in the sawtooth-like convergence

shown on p. 299.

• The reasons are not hard to see.

• The true barrier most likely does not equal the effective

barrier.

• The same holds for the strike price and the effective

strike price.

• The issue of the strike price is less critical.

• But the issue of the barrier is not negligible.
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Convergence of BOPM (continued)

• Convergence is actually good if we limit n to certain

values—191, for example.

• These values make the true barrier coincide with or

occur just above one of the stock price levels, that is,

H ≈ Sdj = Se−jσ
√

τ/n for some integer j.

• The preferred n’s are thus

n =

⌊

τ

(ln(S/H)/(jσ))
2

⌋

, j = 1, 2, 3, . . .

• There is only one minor technicality left.
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Convergence of BOPM (continued)

• We picked the effective barrier to be one of the n + 1

possible terminal stock prices.

• However, the effective barrier above, Sdj , corresponds to

a terminal stock price only when n − j is even by

Eq. (62) on p. 536.a

• To close this gap, we decrement n by one, if necessary,

to make n − j an even number.

aWe could have adopted the form Sdj (−n ≤ j ≤ n) for the effective

barrier.
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Convergence of BOPM (concluded)

• The preferred n’s are now

n =







` if ` − j is even

` − 1 otherwise
,

j = 1, 2, 3, . . . , where

` ≡

⌊

τ

(ln(S/H)/(jσ))
2

⌋

.

• So evaluate pricing formula (63) on p. 539 only with the

n’s above.
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Practical Implications

• Now that barrier options can be efficiently priced, we

can afford to pick very large n’s (p. 546).

• This has profound consequences.

• For example, pricing is prohibitively time consuming

when S ≈ H because n ∼ 1/ ln2(S/H).

• This observation is indeed true of standard

quadratic-time binomial tree algorithms.

• But it no longer applies to linear-time algorithms

(p. 547).
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n Combinatorial method

Value Time (milliseconds)

21 5.507548 0.30

84 5.597597 0.90

191 5.635415 2.00

342 5.655812 3.60

533 5.652253 5.60

768 5.654609 8.00

1047 5.658622 11.10

1368 5.659711 15.00

1731 5.659416 19.40

2138 5.660511 24.70

2587 5.660592 30.20

3078 5.660099 36.70

3613 5.660498 43.70

4190 5.660388 44.10

4809 5.659955 51.60

5472 5.660122 68.70

6177 5.659981 76.70

6926 5.660263 86.90

7717 5.660272 97.20

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 546



Barrier at 95.0 Barrier at 99.5 Barrier at 99.9

n Value Time n Value Time n Value Time

.

.

. 795 7.47761 8 19979 8.11304 253

2743 2.56095 31.1 3184 7.47626 38 79920 8.11297 1013

3040 2.56065 35.5 7163 7.47682 88 179819 8.11300 2200

3351 2.56098 40.1 12736 7.47661 166 319680 8.11299 4100

3678 2.56055 43.8 19899 7.47676 253 499499 8.11299 6300

4021 2.56152 48.1 28656 7.47667 368 719280 8.11299 8500

True 2.5615 7.4767 8.1130

(All times in milliseconds.)
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Trinomial Tree

• Set up a trinomial approximation to the geometric

Brownian motion dS/S = r dt + σ dW .a

• The three stock prices at time ∆t are S, Su, and Sd,

where ud = 1.

• Impose the matching of mean and that of variance:

1 = pu + pm + pd,

SM ≡ (puu + pm + (pd/u))S,

S2V ≡ pu(Su − SM)2 + pm(S − SM)2 + pd(Sd − SM)2.

aBoyle (1988).
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• Above,

M ≡ er∆t,

V ≡ M2(eσ2∆t − 1),

by Eqs. (18) on p. 144.
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Trinomial Tree (continued)

• Use linear algebra to verify that

pu =
u

(

V + M2 − M
)

− (M − 1)

(u − 1) (u2 − 1)
,

pd =
u2

(

V + M2 − M
)

− u3(M − 1)

(u − 1) (u2 − 1)
.

– In practice, must make sure the probabilities lie

between 0 and 1.

• Countless variations.
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Trinomial Tree (concluded)

• Use u = eλσ
√

∆t, where λ ≥ 1 is a tunable parameter.

• Then

pu →
1

2λ2
+

(

r + σ2
)
√

∆t

2λσ
,

pd →
1

2λ2
−

(

r − 2σ2
)√

∆t

2λσ
.

• A nice choice for λ is
√

π/2 .a

aOmberg (1988).
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Barrier Options Revisited

• BOPM introduces a specification error by replacing the

barrier with a nonidentical effective barrier.

• The trinomial model solves the problem by adjusting λ

so that the barrier is hit exactly.a

• It takes

h =
ln(S/H)

λσ
√

∆t

consecutive down moves to go from S to H if h is an

integer, which is easy to achieve by adjusting λ.

aRitchken (1995).
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Barrier Options Revisited (continued)

• Typically, we find the smallest λ ≥ 1 such that h is an

integer.

• That is, we find the largest integer j ≥ 1 that satisfies
ln(S/H)

jσ
√

∆t
≥ 1 and then let

λ =
ln(S/H)

jσ
√

∆t
.

– Such a λ may not exist for very small n’s.

– This is not hard to check.

• This done, one of the layers of the trinomial tree

coincides with the barrier.
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Barrier Options Revisited (concluded)

• The following probabilities may be used,

pu =
1

2λ2
+

µ′
√

∆t

2λσ
,

pm = 1 −
1

λ2
,

pd =
1

2λ2
−

µ′
√

∆t

2λσ
.

– µ′ ≡ r − σ2/2.
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