Geometric Brownian Motion

- Consider the geometric Brownian motion process $Y(t) \equiv e^{X(t)}$
- X(t) is a (μ, σ) Brownian motion.
- As $\partial Y / \partial X=Y$ and $\partial^{2} Y / \partial X^{2}=Y$, Ito's formula (51) on p. 453 implies

$$
\frac{d Y}{Y}=\left(\mu+\sigma^{2} / 2\right) d t+\sigma d W
$$

- The annualized instantaneous rate of return is $\mu+\sigma^{2} / 2$ not μ.

Product of Geometric Brownian Motion Processes (continued)

- The product of two (or more) correlated geometric Brownian motion processes thus remains geometric Brownian motion.
- Note that
$Y=\exp \left[\left(a-b^{2} / 2\right) d t+b d W_{Y}\right]$,
$Z=\exp \left[\left(f-g^{2} / 2\right) d t+g d W_{Z}\right]$,
$U=\exp \left[\left(a+f-\left(b^{2}+g^{2}\right) / 2\right) d t+b d W_{Y}+g d W_{Z}\right]$

Product of Geometric Brownian Motion Processes

- Let

$$
\begin{aligned}
d Y / Y & =a d t+b d W_{Y} \\
d Z / Z & =f d t+g d W_{Z}
\end{aligned}
$$

- Consider the Ito process $U \equiv Y Z$.
- Apply Ito's lemma (Theorem 18 on p. 457):

$$
\begin{aligned}
d U= & Z d Y+Y d Z+d Y d Z \\
= & Z Y\left(a d t+b d W_{Y}\right)+Y Z\left(f d t+g d W_{Z}\right) \\
& +Y Z\left(a d t+b d W_{Y}\right)\left(f d t+g d W_{Z}\right) \\
= & U(a+f+b g \rho) d t+U b d W_{Y}+U g d W_{Z} .
\end{aligned}
$$

Product of Geometric Brownian Motion Processes

 (concluded)- $\ln U$ is Brownian motion with a mean equal to the sum of the means of $\ln Y$ and $\ln Z$.
- This holds even if Y and Z are correlated.
- Finally, $\ln Y$ and $\ln Z$ have correlation ρ.

Quotients of Geometric Brownian Motion Processes

- Suppose Y and Z are drawn from p. 460.
- Let $U \equiv Y / Z$.
- We now show that

$$
\begin{equation*}
\frac{d U}{U}=\left(a-f+g^{2}-b g \rho\right) d t+b d W_{Y}-g d W_{Z} \tag{52}
\end{equation*}
$$

- Keep in mind that $d W_{Y}$ and $d W_{Z}$ have correlation ρ.

Quotients of Geometric Brownian Motion Processes (concluded)

- The multidimensional Ito's lemma (Theorem 18 on p. 457) can be employed to show that

$$
d U
$$

$=(1 / Z) d Y-\left(Y / Z^{2}\right) d Z-\left(1 / Z^{2}\right) d Y d Z+\left(Y / Z^{3}\right)(d Z)^{2}$
$=(1 / Z)\left(a Y d t+b Y d W_{Y}\right)-\left(Y / Z^{2}\right)\left(f Z d t+g Z d W_{Z}\right)$

$$
-\left(1 / Z^{2}\right)(b g Y Z \rho d t)+\left(Y / Z^{3}\right)\left(g^{2} Z^{2} d t\right)
$$

$=U\left(a d t+b d W_{Y}\right)-U\left(f d t+g d W_{Z}\right)$

$$
-U(b g \rho d t)+U\left(g^{2} d t\right)
$$

$=U\left(a-f+g^{2}-b g \rho\right) d t+U b d W_{Y}-U g d W_{Z}$.

Ornstein-Uhlenbeck Process

- The Ornstein-Uhlenbeck process:

$$
d X=-\kappa X d t+\sigma d W
$$

where $\kappa, \sigma \geq 0$.

- It is known that

$$
\begin{aligned}
E[X(t)]= & e^{-\kappa\left(t-t_{0}\right)} E\left[x_{0}\right], \\
\operatorname{Var}[X(t)]= & \frac{\sigma^{2}}{2 \kappa}\left(1-e^{-2 \kappa\left(t-t_{0}\right)}\right)+e^{-2 \kappa\left(t-t_{0}\right)} \operatorname{Var}\left[x_{0}\right], \\
\operatorname{Cov}[X(s), X(t)]= & \frac{\sigma^{2}}{2 \kappa} e^{-\kappa(t-s)}\left[1-e^{-2 \kappa\left(s-t_{0}\right)}\right] \\
& +e^{-\kappa\left(t+s-2 t_{0}\right)} \operatorname{Var}\left[x_{0}\right],
\end{aligned}
$$

for $t_{0} \leq s \leq t$ and $X\left(t_{0}\right)=x_{0}$.

Ornstein-Uhlenbeck Process (continued)

- $X(t)$ is normally distributed if x_{0} is a constant or normally distributed.
- X is said to be a normal process.
- $E\left[x_{0}\right]=x_{0}$ and $\operatorname{Var}\left[x_{0}\right]=0$ if x_{0} is a constant.
- The Ornstein-Uhlenbeck process has the following mean reversion property.
- When $X>0, X$ is pulled X toward zero.
- When $X<0$, it is pulled toward zero again.

Ornstein-Uhlenbeck Process (continued)

- Another version:

$$
d X=\kappa(\mu-X) d t+\sigma d W
$$

where $\sigma \geq 0$.

- Given $X\left(t_{0}\right)=x_{0}$, a constant, it is known that

$$
\begin{align*}
E[X(t)] & =\mu+\left(x_{0}-\mu\right) e^{-\kappa\left(t-t_{0}\right)} \tag{53}\\
\operatorname{Var}[X(t)] & =\frac{\sigma^{2}}{2 \kappa}\left[1-e^{-2 \kappa\left(t-t_{0}\right)}\right]
\end{align*}
$$

for $t_{0} \leq t$.

Interest Rate Models ${ }^{\text {a }}$

- Suppose the short rate r follows process $d r=\mu(r, t) d t+\sigma(r, t) d W$.
- Let $P(r, t, T)$ denote the price at time t of a zero-coupon bond that pays one dollar at time T.
- Write its dynamics as

$$
\frac{d P}{P}=\mu_{p} d t+\sigma_{p} d W
$$

- The expected instantaneous rate of return on a ($T-t$)-year zero-coupon bond is μ_{p}.
- The instantaneous variance is σ_{p}^{2}.
${ }^{\text {a }}$ Merton (1970).

Ornstein-Uhlenbeck Process (concluded)

- The mean and standard deviation are roughly μ and $\sigma / \sqrt{2 \kappa}$, respectively.
- For large t, the probability of $X<0$ is extremely unlikely in any finite time interval when $\mu>0$ is large relative to $\sigma / \sqrt{2 \kappa}$ (say $\mu>4 \sigma / \sqrt{2 \kappa}$).
- The process is mean-reverting.
- X tends to move toward μ.
- Useful for modeling term structure, stock price volatility, and stock price return.

Interest Rate Models (continued)

- Surely $P(r, T, T)=1$ for any T.
- By Ito's lemma (Theorem 17 on p. 455),

$$
\begin{aligned}
d P= & \frac{\partial P}{\partial T} d T+\frac{\partial P}{\partial r} d r+\frac{1}{2} \frac{\partial^{2} P}{\partial r^{2}}(d r)^{2} \\
= & -\frac{\partial P}{\partial T} d t+\frac{\partial P}{\partial r}[\mu(r, t) d t+\sigma(r, t) d W] \\
& +\frac{1}{2} \frac{\partial^{2} P}{\partial r^{2}}[\mu(r, t) d t+\sigma(r, t) d W]^{2} \\
= & {\left[-\frac{\partial P}{\partial T}+\mu(r, t) \frac{\partial P}{\partial r}+\frac{\sigma(r, t)^{2}}{2} \frac{\partial^{2} P}{\partial r^{2}}\right] d t } \\
& +\sigma(r, t) \frac{\partial P}{\partial r} d W .
\end{aligned}
$$

- Hence,

$$
\begin{aligned}
-\frac{\partial P}{\partial T}+\mu(r, t) \frac{\partial P}{\partial r}+\frac{\sigma(r, t)^{2}}{2} \frac{\partial^{2} P}{\partial r^{2}} & =P \mu_{p}, \\
\sigma(r, t) \frac{\partial P}{\partial r} & =P \sigma_{p} .
\end{aligned}
$$

I have hardly met a mathematician who was capable of reasoning. — Plato (428 B.C. -347 B.C.)

- Models with the short rate as the only explanatory variable are called short rate models.

Toward the Black-Scholes Differential Equation

- The price of any derivative on a non-dividend-paying stock must satisfy a partial differential equation.
- The key step is recognizing that the same random process drives both securities.
- As their prices are perfectly correlated, we figure out the amount of stock such that the gain from it offsets exactly the loss from the derivative.
- The removal of uncertainty forces the portfolio's return to be the riskless rate.

Assumptions

- The stock price follows $d S=\mu S d t+\sigma S d W$.
- There are no dividends.
- Trading is continuous, and short selling is allowed.
- There are no transactions costs or taxes.
- All securities are infinitely divisible.
- The term structure of riskless rates is flat at r.
- There is unlimited riskless borrowing and lending.
- t is the current time, T is the expiration time, and $\tau \equiv T-t$.

Black-Scholes Differential Equation (continued)

- The change in the value of the portfolio at time $d t$ is

$$
d \Pi=-d C+\frac{\partial C}{\partial S} d S
$$

- Substitute the formulas for $d C$ and $d S$ into the partial differential equation to yield

$$
d \Pi=\left(-\frac{\partial C}{\partial t}-\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}\right) d t
$$

- As this equation does not involve $d W$, the portfolio is riskless during $d t$ time: $d \Pi=r \Pi d t$.

Black-Scholes Differential Equation

- Let C be the price of a derivative on S.
- From Ito's lemma (p. 455), $d C=\left(\mu S \frac{\partial C}{\partial S}+\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}\right) d t+\sigma S \frac{\partial C}{\partial S} d W$. - The same W drives both C and S.
- Short one derivative and long $\partial C / \partial S$ shares of stock (call it Π).
- By construction,

$$
\Pi=-C+S(\partial C / \partial S)
$$

Black-Scholes Differential Equation (concluded)

- So

$$
\left(\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}\right) d t=r\left(C-S \frac{\partial C}{\partial S}\right) d t
$$

- Equate the terms to finally obtain

$$
\frac{\partial C}{\partial t}+r S \frac{\partial C}{\partial S}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}=r C
$$

- When there is a dividend yield q,

$$
\frac{\partial C}{\partial t}+(r-q) S \frac{\partial C}{\partial S}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}=r C
$$

Rephrase

- The Black-Scholes differential equation can be expressed in terms of sensitivity numbers,

$$
\begin{equation*}
\Theta+r S \Delta+\frac{1}{2} \sigma^{2} S^{2} \Gamma=r C \tag{55}
\end{equation*}
$$

- Identity (55) leads to an alternative way of computing Θ numerically from Δ and Γ.
- When a portfolio is delta-neutral,

$$
\Theta+\frac{1}{2} \sigma^{2} S^{2} \Gamma=r C
$$

- A definite relation thus exists between Γ and Θ.

PDEs for Asian Options

- Add the new variable $A(t) \equiv \int_{0}^{t} S(u) d u$.
- Then the value V of the Asian option satisfies this two-dimensional PDE: ${ }^{\text {a }}$

$$
\frac{\partial V}{\partial t}+r S \frac{\partial V}{\partial S}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} V}{\partial S^{2}}+S \frac{\partial V}{\partial A}=r V
$$

- The terminal conditions are

$$
\begin{aligned}
& V(T, S, A)=\max \left(\frac{A}{T}-X, 0\right) \quad \text { for call } \\
& V(T, S, A)=\max \left(X-\frac{A}{T}, 0\right) \quad \text { for put. }
\end{aligned}
$$

[^0]
PDEs for Asian Options (continued)

- The two-dimensional PDE produces algorithms similar to that on pp. 316ff.
- But one-dimensional PDEs are available for Asian options. ${ }^{\text {a }}$
- For example, Večeř (2001) derives the following PDE for Asian calls:

$$
\frac{\partial u}{\partial t}+r\left(1-\frac{t}{T}-z\right) \frac{\partial u}{\partial z}+\frac{\left(1-\frac{t}{T}-z\right)^{2} \sigma^{2}}{2} \frac{\partial^{2} u}{\partial z^{2}}=0
$$

with the terminal condition $u(T, z)=\max (z, 0)$.
${ }^{\text {a Rogers and Shi (1995), Večeř (2001), and Dubois and Lelièvre (2005). }}$

PDEs for Asian Options (concluded)

- For Asian puts:

$$
\frac{\partial u}{\partial t}+r\left(\frac{t}{T}-1-z\right) \frac{\partial u}{\partial z}+\frac{\left(\frac{t}{T}-1-z\right)^{2} \sigma^{2}}{2} \frac{\partial^{2} u}{\partial z^{2}}=0
$$

with the same terminal condition.

- One-dimensional PDEs lead to highly efficient numerical methods.

Exchange Options ${ }^{\text {a }}$

- A correlation option has value dependent on multiple assets.
- An exchange option is a correlation option.
- It gives the holder the right to exchange one asset for another.
- Its value at expiration is thus

$$
\max \left(S_{2}(T)-S_{1}(T), 0\right)
$$

where $S_{1}(T)$ and $S_{2}(T)$ denote the prices of the two assets at expiration.
${ }^{\text {a }}$ Margrabe (1978).

Exchange Options (concluded)

- The payoff implies two ways of looking at the option.
- It is a call on asset 2 with a strike price equal to the future price of asset 1 .
- It is a put on asset 1 with a strike price equal to the future value of asset 2 .

Pricing of Exchange Options

- Assume that the two underlying assets do not pay dividends and that their prices follow

$$
\begin{aligned}
\frac{d S_{1}}{S_{1}} & =\mu_{1} d t+\sigma_{1} d W_{1} \\
\frac{d S_{2}}{S_{2}} & =\mu_{2} d t+\sigma_{2} d W_{2}
\end{aligned}
$$

where ρ is the correlation between $d W_{1}$ and $d W_{2}$.

Pricing of Exchange Options (concluded)

- The option value at time t is

$$
V\left(S_{1}, S_{2}, t\right)=S_{2} N(x)-S_{1} N(x-\sigma \sqrt{T-t})
$$

where

$$
\begin{align*}
x & \equiv \frac{\ln \left(S_{2} / S_{1}\right)+\left(\sigma^{2} / 2\right)(T-t)}{\sigma \sqrt{T-t}} \\
\sigma^{2} & \equiv \sigma_{1}^{2}-2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2} \tag{56}
\end{align*}
$$

- This is called Margrabe's formula.

Derivation of Margrabe's Formula

- Observe first that $V(x, y, t)$ is homogeneous of degree one in x and y.
- That is, $V\left(\lambda S_{1}, \lambda S_{2}, t\right)=\lambda V\left(S_{1}, S_{2}, t\right)$.
- An exchange option based on λ times the prices of the two assets is thus equal in value to λ original exchange options.
- Intuitively, this is true because of $\max \left(\lambda S_{2}(T)-\lambda S_{1}(T), 0\right)=\lambda \times \max \left(S_{2}(T)-S_{1}(T), 0\right)$ and the perfect market assumption.

Derivation of Margrabe's Formula (continued)

- The price of asset 2 relative to asset 1 is $S \equiv S_{2} / S_{1}$.
- The diffusion of $d S / S$ is $\sqrt{\sigma_{1}^{2}-2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}}$ by Eq. (52) on p. 463 (proving Eq. (56) on p. 486).
- Hence, the option sells for

$$
V\left(S_{1}, S_{2}, t\right) / S_{1}=V\left(1, S_{2} / S_{1}, t\right)
$$

with asset 1 as the numeraire.

Derivation of Margrabe's Formula (continued)

- The interest rate on a riskless loan denominated in asset

1 is zero in a perfect market.

- A lender of one unit of asset 1 demands one unit of asset 1 back as repayment of principal.
- The option to exchange asset 1 for asset 2 is a call on asset 2 with a strike price equal to unity and the interest rate equal to zero.

Derivation of Margrabe's Formula (concluded)

- So the Black-Scholes formula applies:

$$
\begin{aligned}
\frac{V\left(S_{1}, S_{2}, t\right)}{S_{1}} & =V(1, S, t) \\
& =S N(x)-1 \times e^{-0 \times(T-t)} N(x-\sigma \sqrt{T-t})
\end{aligned}
$$

where
$x \equiv \frac{\ln (S / 1)+\left(0+\sigma^{2} / 2\right)(T-t)}{\sigma \sqrt{T-t}}=\frac{\ln \left(S_{2} / S_{1}\right)+\left(\sigma^{2} / 2\right)(T-t)}{\sigma \sqrt{T-t}}$.

Margrabe's Formula with Dividends

- Margrabe's formula is not much more complicated if S_{i} pays out a continuous dividend yield of $q_{i}, i=1,2$.
- Simply replace each occurrence of S_{i} with $S_{i} e^{-q_{i}(T-t)}$ to obtain

$$
\begin{align*}
V\left(S_{1}, S_{2}, t\right) \equiv & S_{2} e^{-q_{2}(T-t)} N(x) \tag{57}\\
& -S_{1} e^{-q_{1}(T-t)} N(x-\sigma \sqrt{T-t}), \\
x \equiv & \frac{\ln \left(S_{2} / S_{1}\right)+\left(q_{1}-q_{2}+\sigma^{2} / 2\right)(T-t)}{\sigma \sqrt{T-t}}, \\
\sigma^{2} \equiv & \sigma_{1}^{2}-2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}
\end{align*}
$$

Options on Foreign Currencies and Assets

- Correlation options involving foreign currencies and assets can be analyzed either take place in the domestic market or the foreign market before being converted back into the domestic currency.
- In the following, $S(t)$ denotes the spot exchange rate in terms of the domestic value of one unit of foreign currency.
- We knew from p. 305 that foreign currency is analogous to a stock paying a continuous dividend yield equal to the foreign riskless interest rate r_{f} in foreign currency.

Options on Foreign Currencies and Assets (concluded)

- So $S(t)$ follows the geometric Brownian motion process,

$$
\frac{d S}{S}=\left(r-r_{\mathrm{f}}\right) d t+\sigma_{\mathrm{s}} d W_{\mathrm{s}}(t)
$$

in a risk-neutral economy.

- The foreign asset will be assumed to pay a continuous dividend yield of q_{f}, and its price follows

$$
\frac{d G_{\mathrm{f}}}{G_{\mathrm{f}}}=\left(\mu_{\mathrm{f}}-q_{\mathrm{f}}\right) d t+\sigma_{\mathrm{f}} d W_{\mathrm{f}}(t)
$$

in foreign currency.

- ρ is the correlation between $d W_{\mathrm{s}}$ and $d W_{\mathrm{f}}$.

Inverse Exchange Rates

- Suppose we have to work with the inverse of the exchange rate, $Y \equiv 1 / S$, instead of S.
- Because the option payoff is a function of Y; or
- Because the parameters for Y are quoted in the markets but not S.
- Y follows

$$
\frac{d Y}{Y}=-\left(r-r_{\mathrm{f}}-\sigma_{\mathrm{s}}^{2}\right) d t-\sigma_{\mathrm{s}} d W_{\mathrm{s}}(t)
$$

by Eq. (52) on p. 463.

Inverse Exchange Rates (concluded)

- Hence the volatility of Y equals that of S.
- If a simulation of S gives wildly different sample volatilities for S and Y, you probably forgot to take logarithms before calculating the standard deviations.
- The correlation between Y and G_{f} equals

$$
\begin{aligned}
& \frac{E\left[\left(-Y \sigma_{\mathrm{s}} d W_{\mathrm{s}}\right)\left(G_{\mathrm{f}} \sigma_{\mathrm{f}} d W_{\mathrm{f}}\right)\right]}{\sqrt{E\left[\left(-Y \sigma_{\mathrm{s}} d W_{\mathrm{s}}\right)^{2}\right] E\left[\left(G_{\mathrm{f}} \sigma_{\mathrm{f}} d W_{\mathrm{f}}\right)^{2}\right]}} \\
=- & -\frac{E\left[d W_{\mathrm{s}} d W_{\mathrm{f}}\right]}{\sqrt{E\left[d W_{\mathrm{s}}^{2}\right] E\left[d W_{\mathrm{f}}^{2}\right]}}=-\rho
\end{aligned}
$$

as the correlation between S and G_{f} is ρ.

Foreign Equity Options

- From Eq. (26) on p. 255, a European option on the
foreign asset G_{f} with the terminal payoff $S(T) \times \max \left(G_{\mathrm{f}}(T)-X_{\mathrm{f}}, 0\right)$ is worth

$$
C_{\mathrm{f}}=G_{\mathrm{f}} e^{-q_{\mathrm{f}} \tau} N(x)-X_{\mathrm{f}} e^{-r_{\mathrm{f}} \tau} N\left(x-\sigma_{\mathrm{f}} \sqrt{\tau}\right)
$$

in foreign currency.

- Above,

$$
x \equiv \frac{\ln \left(G_{\mathrm{f}} / X_{\mathrm{f}}\right)+\left(r_{\mathrm{f}}-q_{\mathrm{f}}+\sigma_{\mathrm{f}}^{2} / 2\right) \tau}{\sigma_{\mathrm{f}} \sqrt{\tau}}
$$

$-X_{\mathrm{f}}$ is the strike price in foreign currency.

Foreign Equity Options (concluded)

- Similarly, a European option on the foreign asset G_{f} with the terminal payoff $S(T) \times \max \left(X_{\mathrm{f}}-G_{\mathrm{f}}(T), 0\right)$ is worth

$$
P_{\mathrm{f}}=X_{\mathrm{f}} e^{-r_{\mathrm{f}} \tau} N\left(-x+\sigma_{\mathrm{f}} \sqrt{\tau}\right)-G_{\mathrm{f}} e^{-q_{\mathrm{f}} \tau} N(-x)
$$

in foreign currency.

- They will fetch $S C_{\mathrm{f}}$ and $S P_{\mathrm{f}}$, respectively, in domestic currency.
- These options are called foreign equity options struck in foreign currency.

Foreign Domestic Options

- Foreign equity options fundamentally involve values in the foreign currency.
- A foreign equity call may allow the holder to participate in a foreign market rally.
- But the profits can be wiped out if the foreign currency depreciates against the domestic currency.
- What is really needed is a call in domestic currency with a payoff of $\max \left(S(T) G_{\mathrm{f}}(T)-X, 0\right)$.
- For foreign equity options, the strike price in domestic currency is the uncertain $S(T) X_{\mathrm{f}}$.
- This is called a foreign domestic option.

Pricing of Foreign Domestic Options

- To foreign investors, this call is an option to exchange X units of domestic currency (foreign currency to them) for one share of foreign asset (domestic asset to them).
- It is an exchange option, that is.
- By Eq. (57) on p. 491, its price in foreign currency equals

$$
\begin{aligned}
& G_{\mathrm{f}} e^{-q_{\mathrm{f}} \tau} N(x)-\frac{X}{S} e^{-r \tau} N(x-\sigma \sqrt{\tau}), \\
x \equiv & \frac{\ln \left(G_{\mathrm{f}} S / X\right)+\left(r-q_{\mathrm{f}}+\sigma^{2} / 2\right) \tau}{\sigma \sqrt{\tau}}, \\
\sigma^{2} \equiv & \sigma_{\mathrm{s}}^{2}+2 \rho \sigma_{\mathrm{s}} \sigma_{\mathrm{f}}+\sigma_{\mathrm{f}}^{2} .
\end{aligned}
$$

Pricing of Foreign Domestic Options (concluded)

- The domestic price is therefore

$$
C=S G_{\mathrm{f}} e^{-q_{\mathrm{f}} \tau} N(x)-X e^{-r \tau} N(x-\sigma \sqrt{\tau}) .
$$

- Similarly, a put has a price of

$$
P=X e^{-r \tau} N(-x+\sigma \sqrt{\tau})-S G_{\mathrm{f}} e^{-q_{\mathrm{f}} \tau} N(-x)
$$

Cross-Currency Options

- A cross-currency option is an option in which the currency of the strike price is different from the currency in which the underlying asset is denominated.
- An option to buy 100 yen at a strike price of 1.18 Canadian dollars provides one example.
- Usually, a third currency, the U.S. dollar, is involved because of the lack of relevant exchange-traded options for the two currencies in question (yen and Canadian dollars in the above example).
- So the notations below will be slightly different.

Cross-Currency Options (continued)

- Let S_{A} denote the price of the foreign asset and S_{C} the price of currency C that the strike price X is based on.
- Both S_{A} and S_{C} are in U.S. dollars, say.
- If S is the price of the foreign asset as measured in currency C , then we have the triangular arbitrage $S=S_{\mathrm{A}} / S_{\mathrm{C}} .{ }^{\mathrm{a}}$

[^1]
Cross-Currency Options (concluded)

- Assume S_{A} and S_{C} follow the geometric Brownian motion processes $d S_{\mathrm{A}} / S_{\mathrm{A}}=\mu_{\mathrm{A}} d t+\sigma_{\mathrm{A}} d W_{\mathrm{A}}$ and $d S_{\mathrm{C}} / S_{\mathrm{C}}=\mu_{\mathrm{C}} d t+\sigma_{\mathrm{C}} d W_{\mathrm{C}}$, respectively.
- Parameters $\sigma_{\mathrm{A}}, \sigma_{\mathrm{C}}$, and ρ can be inferred from exchange-traded options.
- By an exercise in the text,
$\frac{d S}{S}=\left(\mu_{\mathrm{A}}-\mu_{\mathrm{C}}+\sigma_{\mathrm{C}}^{2}-\rho \sigma_{\mathrm{A}} \sigma_{\mathrm{C}}\right) d t+\sigma_{\mathrm{A}} d W_{\mathrm{A}}-\sigma_{\mathrm{C}} d W_{\mathrm{C}}$, where ρ is the correlation between $d W_{\mathrm{A}}$ and $d W_{\mathrm{C}}$.
- The volatility of $d S / S$ is hence $\left(\sigma_{\mathrm{A}}^{2}-2 \rho \sigma_{\mathrm{A}} \sigma_{\mathrm{C}}+\sigma_{\mathrm{C}}^{2}\right)^{1 / 2}$.

Quanto Options

- Consider a call with a terminal payoff
$\widehat{S} \times \max \left(G_{\mathrm{f}}(T)-X_{\mathrm{f}}, 0\right)$ in domestic currency, where \widehat{S} is a constant.
- This amounts to fixing the exchange rate to \widehat{S}.
- For instance, a call on the Nikkei 225 futures, if it existed, fits this framework with $\widehat{S}=5$ and G_{f} denoting the futures price.
- A guaranteed exchange rate option is called a quanto option or simply a quanto

Quanto Options (continued)

- The process $U \equiv \widehat{S} G_{\mathrm{f}}$ in a risk-neutral economy follows

$$
\begin{equation*}
\frac{d U}{U}=\left(r_{\mathrm{f}}-q_{\mathrm{f}}-\rho \sigma_{\mathrm{s}} \sigma_{\mathrm{f}}\right) d t+\sigma_{\mathrm{f}} d W \tag{58}
\end{equation*}
$$

in domestic currency.

- Hence, it can be treated as a stock paying a continuous dividend yield of $q \equiv r-r_{\mathrm{f}}+q_{\mathrm{f}}+\rho \sigma_{\mathrm{s}} \sigma_{\mathrm{f}}$.
- Apply Eq. (26) on p. 255 to obtain

$$
C=\widehat{S}\left(G_{\mathrm{f}} e^{-q \tau} N(x)-X_{\mathrm{f}} e^{-r \tau} N\left(x-\sigma_{\mathrm{f}} \sqrt{\tau}\right)\right)
$$

$$
P=\widehat{S}\left(X_{\mathrm{f}} e^{-r \tau} N\left(-x+\sigma_{\mathrm{f}} \sqrt{\tau}\right)-G_{\mathrm{f}} e^{-q \tau} N(-x)\right)
$$

where $x \equiv \frac{\ln \left(G_{\mathrm{f}} / X_{\mathrm{f}}\right)+\left(r-q+\sigma_{\mathrm{f}}^{2} / 2\right) \tau}{\sigma_{\mathrm{f}} \sqrt{\tau}}$.

Quanto Options (concluded)

- In general, a quanto derivative has nominal payments in the foreign currency which are converted into the domestic currency at a fixed exchange rate.
- A cross-rate swap, for example, is like a currency swap except that the foreign currency payments are converted into the domestic currency at a fixed exchange rate.
- Quanto derivatives form a rapidly growing segment of international financial markets.

[^0]: ${ }^{\text {a }}$ Kemna and Vorst (1990).

[^1]: ${ }^{\text {a }}$ Triangular arbitrage had been known for centuries. See Montesquieu's The Spirit of Laws.

