Example

e Consider the stochastic process
n
{Z, = ZXZ-,n > 1},
i=1

where X; are independent random variables with zero

mean.

e This process is a martingale because

E[Zns1| 24, 2oy ... Z]
= E[Zn+Xpi1|21,Z0,..., 2]
= E[Z,|21,Z9,..., Zp) + E[Xns1| 21, Zoy ..., Zn]
= Zn+E[Xpi1] = Zy.

Probability Measure (continued)

e A stochastic process { X(t),t > 0} is a martingale with
respect to information sets { I; } if, for all ¢ > 0,
E[|X(t)]] < oo and

E[X(u)| L] = X(t)
for all u > t.
e The discrete-time version: For all n > 0,
E[Xpi1[1n] = X,

given the information sets { I, }.
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Probability Measure

e A martingale is defined with respect to a probability

measure, under which the expectation is taken.

— A probability measure assigns probabilities to states
of the world.

e A martingale is also defined with respect to an

information set.

— In the characterizations (41)—(42) on p. 397, the
information set contains the current and past values
of X by default.

— But it needs not be so.

Probability Measure (concluded)
e The above implies F[ X, 4m | I,] = X, for any m >0
by Eq. (16) on p. 136.
— A typical I, is the price information up to time n.
— Then the above identity says the FVs of X will not

deviate systematically from today’s value given the

price history.
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Example

e Consider the stochastic process { Z,, — npu,n >1}.

— Zn = Z?:l XL
— X1, Xo,... are independent random variables with
mean U.
e Now,

ElZyp1—(n+ 1) p| X1, X, ..., X, ]
= ElZy1| X1, Xe,... . Xp]—(n+1)u
= Zntp—(n+1)p
= Z,— nu.
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Example (concluded)
e Define
In = {Xl,XQ,... ,Xn}.
e Then
{Zn —np,n 21}

is a martingale with respect to { I, }.
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Martingale Pricing

e Recall that the price of a European option is the
expected discounted future payoff at expiration in a

risk-neutral economy.

e This principle can be generalized using the concept of

martingale.
e Recall the recursive valuation of European option via
C=[pCu+(1-p)Cal/R.

— p is the risk-neutral probability.
— $1 grows to $R in a period.
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Martingale Pricing (continued)
e Let C(i) denote the value of the option at time 1.

e Consider the discount process
{C(i)/R",i=0,1,... ,n}.
e Then,

cli+1)| .. pCut+(1-p)Cq C
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Martingale Pricing (continued)

e In general,

C

C(k) . .
e The discount process is a martingale:
C(4) C(k) .
— _pr| 7 <k. 4
Rl 7 |: Rk I ? — k ( 5)

— ET is taken under the risk-neutral probability

conditional on the price information up to time 1.

e This risk-neutral probability is also called the EMM, or
the equivalent martingale (probability) measure.
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Martingale Pricing (continued)
e In general, Eq. (45) holds for all assets, not just options.

e When interest rates are stochastic, the equation becomes

o) [C0]
v = ) s (“0)

— M(j) is the balance in the money market account at
time j using the rollover strategy with an initial

investment of $1.

— So it is called the bank account process.

e It says the discount process is a martingale under 7.
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Martingale Pricing (concluded)

e If interest rates are stochastic, then M (j) is a random

variable.
- M(0)=1.
— M(j) is known at time j — 1.
e Identity (46) on p. 411 is the general formulation of

risk-neutral valuation.

Theorem 14 A discrete-time model is arbitrage-free if and
only if there exists a probability measure such that the
discount process is a martingale. This probability measure is

called the risk-neutral probability measure.
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Futures Price under the BOPM

e Futures prices form a martingale under the risk-neutral
probability.

— The expected futures price in the next period is

1—-d u—1
pfFu—l—(l—pf)Fd—F<u_du—0—u_dd> =F

(p. 374).
e Can be generalized to
Fy=E][Fg], i<k,
where Fj; is the futures price at time 1.

e It holds under stochastic interest rates.
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Martingale Pricing and Numeraire Example
e The martingale pricing formula (46) on p. 411 uses the o Take the binomial model with two assets.
money market account as numeraire.* e In a period, asset one’s price can go from S to S; or
— It expresses the price of any asset relative to the Sa.
money market account. e In a period, asset two’s price can go from P to P; or
e The money market account is not the only choice for Ps.
numeraire. e Assume
, . . . S S 5
e Suppose asset S’s value is positive at all times. — < =< =
P P P
*Leon Walras (1834-1910). to rule out arbitrage opportunities.
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Martingale Pricing and Numeraire (concluded) Example (continued)

. e For an rivati rity, 1 its pri imy

e Choose S as numeraire. or any derivative security, let C7 be its price at time
one if asset one’s price moves to 5.
e Martingale pricing says there exists a risk-neutral

. . . . .
probability 7 under which the relative price of any asset o Let Cp be its price at time one if asset one’s price

C' is a martingale: moves to 5.

O [0, e

e Replicate the derivative by solving

S@) "L S(k
(®) (k) aS + P = Ch,
— S(j) denotes the price of S at time j. aSs+ P, = O,
e So the discount process remains a martingale. : : :
S p g using «a units of asset one and 3 units of asset two.
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Example (continued)
e This yields
PQC] — Png SgCl — 5102
a=—-——>"= and f=—7———.
PQSl — P1SQ S2P1 — 51P2
e The derivative costs
C = aS+pP
P,S — PS PSS — P S
= - 2 C1+ 55 Ca
PS; — P1So PyS1 — Py So
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Example (concluded)

e It is easy to verify that

¢ c
PPy t1-D)

P YP Py

— Above,
(S/P) — (52/ 1)
S1/P1) — (S2/Ps)’

e The derivative’s price using asset two as numeraire is

pE(

thus a martingale under the risk-neutral probability p.

e The expected returns of the two assets are irrelevant.
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Brownian Motion®
e Brownian motion is a stochastic process { X (t),t >0}
with the following properties.
1. X(0) = 0, unless stated otherwise.
2. forany 0 <ty <ty <---<ty, the random variables

X(tk) — X(tkfl)

for 1 < k <n are independent.?
3. for 0 <s<t, X(t)— X(s) is normally distributed
with mean pu(t — s) and variance o%(t — s), where p

and o # 0 are real numbers.

aRobert Brown (1773-1858).
bSo X(t) — X (s) is independent of X (r) for r < s < t.
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Brownian Motion (concluded)

e Such a process will be called a (i, o) Brownian motion

with drift g and variance o?.

e The existence and uniqueness of such a process is
guaranteed by Wiener’s theorem.?

e Although Brownian motion is a continuous function of ¢
with probability one, it is almost nowhere differentiable.

e The (0,1) Brownian motion is also called the Wiener
process.

aNorbert Wiener (1894-1964).
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Example

o If {X(¢),t >0} is the Wiener process, then
X(t)— X(s) ~ N(0,t—s).

e A (u,0) Brownian motion Y = {Y(¢),t >0} can be
expressed in terms of the Wiener process:

Y(t) = pt+ o X(t).

o As Y(t+s)—Y(t) ~ N(us,o?s), uncertainty about the
future value of Y grows as the square root of how far
we look into the future.

Brownian Motion as Limit of Random Walk
(continued)

e (continued)

— Here

+1 if the ith move is to the right,
—1 if the ¢th move is to the left.

XiE

— X, are independent with
Prob[X; =1] =p=1—Prob[ X; = —1].
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e Recall E[X;]=2p—1 and Var[X;]=1- (2p—1)%

Brownian Motion Is a Random Walk in Continuous
Time

Claim 1 A (u,0) Brownian motion is the limiting case of

random walk.

e A particle moves Az to the left with probability 1 — p.
e It moves to the right with probability p after At time.
e Assume n =t/At is an integer.

e Its position at time ¢ is

Y(t)EA:E(X1+X2+"'+Xn).
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Brownian Motion as Limit of Random Walk
(continued)

e Therefore,

Var[Y (t)] = n(Az)* [1— (2p — 1)*].

e With Az =oVAt and p=[1+ (u/0)VAt]/2,

E[Y(®)] = noVAt(u/o)VAt = ut,
Var[Y(t)] = no’At[1— (u/0)’At] — ot
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Brownian Motion as Limit of Random Walk
(concluded)

e Thus, {Y(¢),t >0} converges to a (u, o) Brownian

motion by the central limit theorem. Geometric Brownian Motion (continued)
e Brownian motion with zero drift is the limiting case of e In particular,
symmetric random walk by choosing p = 0. E[Y(t)] = e;Lt+(o'2t/2)’
e Note that Var[Y (t)] = E [Y(t)*] = E[Y (t)]?
Var[Y (t + At) — Y (t) ] — Q2utto’t (602t _ 1) .

=Var[ Az X111 ] = (Az)? x Var[ X, 4 1] — 0?At.

e Similarity to the the BOPM: The p is identical to the
probability in Eq. (25) on p. 234 and Az = Inu.
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Geometric Brownian Motion
e Let X ={X(¢),t >0} be a Brownian motion process. (1)

e The process
{(Y(t)=eXD t >0},

is called geometric Brownian motion.
e Suppose further that X is a (u, o) Brownian motion.

e X(t) ~ N(ut,0%t) with moment generating function

E X0 ] = BY ()] = ertr+e™t/2)

from Eq. (17) on p 138.
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Geometric Brownian Motion (continued)

e It is useful for situations in which percentage changes
are independent and identically distributed.

e Let Y,, denote the stock price at time n and Yy = 1.

e Assume relative returns
)

X.
T Y

are independent and identically distributed.
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Geometric Brownian Motion (concluded)

e Then

n
Iny, = Zln X;
1=1

is a sum of independent, identically distributed random
variables.
e Thus {InY,,n >0} is approximately Brownian motion.

— And {Y,,n >0} is approximately geometric
Brownian motion.
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;
a rigorous proof is that which convinces an
unreasonable man.

— Mark Kac (1914-1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861-1947),
Science and the Modern World
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Stochastic Integrals
e Use W={W(t),t >0} to denote the Wiener process.
e The goal is to develop integrals of X from a class of
stochastic processes,?
¢
I,(X) E/ XdW, t>0.
0
e I,(X) is a random variable called the stochastic integral
of X with respect to W.

e The stochastic process {I;(X),t > 0} will be denoted
by [XdW.

alto (1915-).
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Stochastic Integrals (concluded)

e Typical requirements for X in financial applications are:

Prob[ngQ(s) ds <oo] =1 forall t>0 or the
stronger fJE[XQ(s)]ds < 0.

The information set at time ¢ includes the history of

X and W up to that point in time.

— But it contains nothing about the evolution of X or

W after ¢ (nonanticipating, so to speak).
— The future cannot influence the present.

o {X(s),0<s<t} isindependent of
{W(t+u)—W(t),u>0}.
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Ito Integral
e A theory of stochastic integration.
e As with calculus, it starts with step functions.

e A stochastic process { X(¢)} is simple if there exist
0=ty <ty <--- such that

X(t) ZX(tk_l) for t € [tk—latk), k=1,2,...

for any realization (see figure next page).
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X(1)
o——O0
o————0
——oO
—————oO0
o——O0
t
t() Z‘] t2 t3 t4 tS
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Ito Integral (continued)

e The Ito integral of a simple process is defined as

L0 = 3 X ([ Wlter) - Wit)], (47)
k=0

where t,, = t.
— The integrand X is evaluated at ty, not txi;.
e Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple
stochastic processes.
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Ito Integral (continued)
e Let X ={X(¢),t>0} be a general stochastic process.

e Then there exists a random variable I;(X), unique
almost certainly, such that I;(X,) converges in
probability to I;(X) for each sequence of simple
stochastic processes X7, Xo,... such that X, converges
in probability to X.

e If X is continuous with probability one, then I;(X,,)
converges in probability to I;(X) as
0p = maxi<p<n(ty —tg—1) goes to zero.
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Ito Integral (concluded)

e It is a fundamental fact that f X dW is continuous
almost surely.

e The following theorem says the Ito integral is a

martingale.

e A corollary is the mean value formula

b
/XdW] =0.

Theorem 15 The Ito integral [ X dW is a martingale.

E
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Discrete Approximation
e Recall Eq. (47) on p. 438.

e The following simple stochastic process { X(¢)} can be
used in place of X to approximate the stochastic
integral fg’ X dWw,

~

X(s) = X(tk—1) for s € [tp_1,tx), k=1,2,... ,n.

e Note the nonanticipating feature of X.

— The information up to time s,
{X(1),W(1),0<t<s},

cannot determine the future evolution of X or W.
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Discrete Approximation (concluded)

e Suppose we defined the stochastic integral as

n—1

D X ()W (trn) = W(tn) ]

k=0

e Then we would be using the following different simple
stochastic process in the approximation,

~

Y(s) = X(tg) for s € [tp_1,tk), k=1,2,... ,n.

e This clearly anticipates the future evolution of X.

Ito Process

e The stochastic process X = { X;,t > 0} that solves

t ¢
Xt:Xo—l—/ a(XS,s)ds—i—/ b(Xs,s8)dWs, t>0
0 0

is called an Ito process.

— Xy is a scalar starting point.

—{a(Xy,t):t>0} and {b(Xy,t):t >0} are
stochastic processes satisfying certain regularity

conditions.

e The terms a(X;,t) and b(X,,t) are the drift and the
diffusion, respectively.
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Ito Process (continued)

e A shorthand® is the following stochastic differential
equation for the Ito differential dXj,

dXt = a(Xt, t) dt + b(Xt, t) th (48)
— Or simply dX; = a; dt + b; dW4.

e This is Brownian motion with an instantaneous drift a;

and an instantaneous variance b?.

e X is a martingale if the drift a; is zero by Theorem 15
(p. 440).

aPaul Langevin (1904).
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Ito Process (concluded)

e dW is normally distributed with mean zero and

variance dt.
e An equivalent form to Eq. (48) is
dX, = aydt + byVdt €, (49)
where £ ~ N(0,1).

e This formulation makes it easy to derive Monte Carlo

simulation algorithms.
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Euler Approximation

The following approximation follows from Eq. (49),

X(tni1)

=X (t) + a(X (tn), tn) At + b(X (tn), tn) AW (L),
(50)

where t,, = nAt.

It is called the Euler or Euler-Maruyama method.

Under mild conditions, X (t,) converges to X (t,).

Recall that AW (t,,) should be interpreted as
W (tp+1) — W(t,) instead of W(t,) — W(t,—1).
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More Discrete Approximations

e Under fairly loose regularity conditions, approximation
(50) on p. 447 can be replaced by

X (tn+1)
=X (tn) + a(X (tn), tn) At + b(X (tn), tn) VALY (t,).

— Y (to),Y(t1),... are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

e A simpler discrete approximation scheme:

)?(tn-i-l)
=X (tn) + a(X (tn), tn) At + b(X (tn), tn) VALE.
— Prob[{ = 1] =Prob[{ = —-1] =1/2.
— Note that F[£] =0 and Var[{] = 1.
e This clearly defines a binomial model.

~

e As At goes to zero, X converges to X.
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Ito’s Lemma
Trading and the lto Integral A smooth function of an Ito process is itself an Ito process.

o Consider an Ito process dS; = p¢ dt + o¢ dWs. Theorem 16 Suppose f: R — R is twice continuously

— 8, is the vector of security prices at time ¢. differentiable and dX = a, dt + b, dW. Then f(X) is the
o Let ¢, be a trading strategy denoting the quantity of Ito process,
each type of security held at time t. F(X

e Hence the stochastic process ¢,S; is the value of the

)
¢ ¢
= X "(Xs)asd "(Xs) bs dW
portfolio ¢, at time . H 0)+/0 f(Xe)a S+/0 f%s)

. 1 [t
— " 2
o ¢, dS; = ¢ (uy dt + oy dWy) represents the change in the +§ F(X,) b2 ds
value from security price changes occurring at time t. 0
for t > 0.
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lto's Lemma (continued)

_ e In differential form, Ito’s lemma becomes

Trading and the Ito Integral (concluded) )

df (X) = f'(X)adt+ f'(X)bdW + 3 (X)) b? dt.
(51)

T T T
Gr(¢) = /0 b, dS: = /0 Pypue dt + /0 b0t AW, e Compared with calculus, the interesting part is the third
term on the right-hand side.

e The equivalent Ito integral,

measures the gains realized by the trading strategy over
the period [0,T]. e A convenient formulation of Ito’s lemma is

4 (X) = /(X)X + 5 (X)X ).
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Ito's Lemma (continued) lto’s Lemma (continued)
¢ We are supposed to multiply out e The multiplication table for Theorem 17 is
(dX)? = (adt+ bdW)? symbolically according to
X ClWL dt
x | dW dt
AWy | dirdt 0
aw | dt 0
dt 0 0
dt 0 0
in which
— The (dW)? = dt entry is justified by a known result. 1 ik
. . o Sir = -
e This form is easy to remember because of its similarity k 0 otherwise.
to the Taylor expansion.
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Ito’s Lemma (continued) Ito's Lemma (continued)

Theorem 17 (Higher-Dimensional Ito’s Lemma) Let
Theorem 18 (Alternative Ito’s Lemma) Let

Wi, Wa, ... , W, be independent Wiener processes and
Wi, Wa, ... , Wy, be Wiener processes and

X = (X4, Xo,...,Xm) be a vector process. Suppose
f:R™ — R is twice continuously differentiable and X; is X = (X1, Xy, , Xon) be a vector process. Suppose
an Ito process with dX; = a; dt + 2?21 bi; dW;. Then

df (X) is an Ito process with the differential,

f:R™ — R is twice continuously differentiable and X; is
an Tto process with dX; = a;dt + b; dW;. Then df (X) is the

following Ito process,
m m m

1
df (X) = (X)) dX; + = k(X)) dX; dX, m m m
=1 1=1 k=1

where f; = 0f /0x; and fi, = 0°f/0x;0xy.
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Ito’s Lemma (concluded)

e The multiplication table for Theorem 18 is

X dw,; dt
AWy | pixdt 0
dt 0 0

e Here, p;;, denotes the correlation between dW,; and
dWy,.
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