
Example

• Consider the stochastic process

{Zn ≡
n∑

i=1

Xi, n ≥ 1 },

where Xi are independent random variables with zero

mean.

• This process is a martingale because

E[ Zn+1 |Z1, Z2, . . . , Zn ]

= E[ Zn + Xn+1 |Z1, Z2, . . . , Zn ]

= E[ Zn |Z1, Z2, . . . , Zn ] + E[ Xn+1 |Z1, Z2, . . . , Zn ]

= Zn + E[ Xn+1 ] = Zn.
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Probability Measure

• A martingale is defined with respect to a probability

measure, under which the expectation is taken.

– A probability measure assigns probabilities to states

of the world.

• A martingale is also defined with respect to an

information set.

– In the characterizations (41)–(42) on p. 397, the

information set contains the current and past values

of X by default.

– But it needs not be so.
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Probability Measure (continued)

• A stochastic process {X(t), t ≥ 0 } is a martingale with

respect to information sets { It } if, for all t ≥ 0,

E[ |X(t) | ] < ∞ and

E[ X(u) | It ] = X(t)

for all u > t.

• The discrete-time version: For all n > 0,

E[ Xn+1 | In ] = Xn,

given the information sets { In }.
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Probability Measure (concluded)

• The above implies E[ Xn+m | In ] = Xn for any m > 0

by Eq. (16) on p. 136.

– A typical In is the price information up to time n.

– Then the above identity says the FVs of X will not

deviate systematically from today’s value given the

price history.
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Example

• Consider the stochastic process {Zn − nµ, n ≥ 1 }.
– Zn ≡ ∑n

i=1 Xi.

– X1, X2, . . . are independent random variables with

mean µ.

• Now,

E[ Zn+1 − (n + 1) µ |X1, X2, . . . , Xn ]

= E[ Zn+1 |X1, X2, . . . , Xn ] − (n + 1) µ

= Zn + µ − (n + 1) µ

= Zn − nµ.
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Example (concluded)

• Define

In ≡ {X1, X2, . . . , Xn }.

• Then

{Zn − nµ, n ≥ 1 }
is a martingale with respect to { In }.
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Martingale Pricing

• Recall that the price of a European option is the

expected discounted future payoff at expiration in a

risk-neutral economy.

• This principle can be generalized using the concept of

martingale.

• Recall the recursive valuation of European option via

C = [ pCu + (1 − p) Cd ]/R.

– p is the risk-neutral probability.

– $1 grows to $R in a period.
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Martingale Pricing (continued)

• Let C(i) denote the value of the option at time i.

• Consider the discount process

{C(i)/Ri, i = 0, 1, . . . , n }.

• Then,

E

[
C(i + 1)

Ri+1

∣∣∣∣ C(i) = C

]
=

pCu + (1 − p) Cd

Ri+1
=

C

Ri
.
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Martingale Pricing (continued)

• In general,

E

[
C(k)

Rk

∣∣∣∣ C(i) = C

]
=

C

Ri
, i ≤ k. (44)

• The discount process is a martingale:

C(i)

Ri
= Eπ

i

[
C(k)

Rk

]
, i ≤ k. (45)

– Eπ
i is taken under the risk-neutral probability

conditional on the price information up to time i.

• This risk-neutral probability is also called the EMM, or

the equivalent martingale (probability) measure.
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Martingale Pricing (continued)

• In general, Eq. (45) holds for all assets, not just options.

• When interest rates are stochastic, the equation becomes

C(i)

M(i)
= Eπ

i

[
C(k)

M(k)

]
, i ≤ k. (46)

– M(j) is the balance in the money market account at

time j using the rollover strategy with an initial

investment of $1.

– So it is called the bank account process.

• It says the discount process is a martingale under π.
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Martingale Pricing (concluded)

• If interest rates are stochastic, then M(j) is a random

variable.

– M(0) = 1.

– M(j) is known at time j − 1.

• Identity (46) on p. 411 is the general formulation of

risk-neutral valuation.

Theorem 14 A discrete-time model is arbitrage-free if and

only if there exists a probability measure such that the

discount process is a martingale. This probability measure is

called the risk-neutral probability measure.
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Futures Price under the BOPM

• Futures prices form a martingale under the risk-neutral

probability.

– The expected futures price in the next period is

pfFu + (1 − pf) Fd = F

(
1 − d

u − d
u +

u − 1

u − d
d

)
= F

(p. 374).

• Can be generalized to

Fi = Eπ
i [ Fk ], i ≤ k,

where Fi is the futures price at time i.

• It holds under stochastic interest rates.
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Martingale Pricing and Numeraire

• The martingale pricing formula (46) on p. 411 uses the

money market account as numeraire.a

– It expresses the price of any asset relative to the

money market account.

• The money market account is not the only choice for

numeraire.

• Suppose asset S’s value is positive at all times.

aLeon Walras (1834–1910).
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Martingale Pricing and Numeraire (concluded)

• Choose S as numeraire.

• Martingale pricing says there exists a risk-neutral

probability π under which the relative price of any asset

C is a martingale:

C(i)

S(i)
= Eπ

i

[
C(k)

S(k)

]
, i ≤ k.

– S(j) denotes the price of S at time j.

• So the discount process remains a martingale.
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Example

• Take the binomial model with two assets.

• In a period, asset one’s price can go from S to S1 or

S2.

• In a period, asset two’s price can go from P to P1 or

P2.

• Assume
S1

P1
<

S

P
<

S2

P2

to rule out arbitrage opportunities.
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Example (continued)

• For any derivative security, let C1 be its price at time

one if asset one’s price moves to S1.

• Let C2 be its price at time one if asset one’s price

moves to S2.

• Replicate the derivative by solving

αS1 + βP1 = C1,

αS2 + βP2 = C2,

using α units of asset one and β units of asset two.
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Example (continued)

• This yields

α =
P2C1 − P1C2

P2S1 − P1S2
and β =

S2C1 − S1C2

S2P1 − S1P2
.

• The derivative costs

C = αS + βP

=
P2S − PS2

P2S1 − P1S2
C1 +

PS1 − P1S

P2S1 − P1S2
C2.
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Example (concluded)

• It is easy to verify that

C

P
= p

C1

P1
+ (1 − p)

C2

P2
.

– Above,

p ≡ (S/P ) − (S2/P2)

(S1/P1) − (S2/P2)
.

• The derivative’s price using asset two as numeraire is

thus a martingale under the risk-neutral probability p.

• The expected returns of the two assets are irrelevant.
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Brownian Motiona

• Brownian motion is a stochastic process {X(t), t ≥ 0 }
with the following properties.

1. X(0) = 0, unless stated otherwise.

2. for any 0 ≤ t0 < t1 < · · · < tn, the random variables

X(tk) − X(tk−1)

for 1 ≤ k ≤ n are independent.b

3. for 0 ≤ s < t, X(t) − X(s) is normally distributed

with mean µ(t − s) and variance σ2(t − s), where µ

and σ 6= 0 are real numbers.

aRobert Brown (1773–1858).
bSo X(t) − X(s) is independent of X(r) for r ≤ s < t.
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Brownian Motion (concluded)

• Such a process will be called a (µ, σ) Brownian motion

with drift µ and variance σ2.

• The existence and uniqueness of such a process is

guaranteed by Wiener’s theorem.a

• Although Brownian motion is a continuous function of t

with probability one, it is almost nowhere differentiable.

• The (0, 1) Brownian motion is also called the Wiener

process.

aNorbert Wiener (1894–1964).
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Example

• If {X(t), t ≥ 0 } is the Wiener process, then

X(t) − X(s) ∼ N(0, t − s).

• A (µ, σ) Brownian motion Y = {Y (t), t ≥ 0 } can be

expressed in terms of the Wiener process:

Y (t) = µt + σX(t).

• As Y (t + s) − Y (t) ∼ N(µs, σ2s), uncertainty about the

future value of Y grows as the square root of how far

we look into the future.
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Brownian Motion Is a Random Walk in Continuous
Time

Claim 1 A (µ, σ) Brownian motion is the limiting case of

random walk.

• A particle moves ∆x to the left with probability 1 − p.

• It moves to the right with probability p after ∆t time.

• Assume n ≡ t/∆t is an integer.

• Its position at time t is

Y (t) ≡ ∆x (X1 + X2 + · · · + Xn) .
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Brownian Motion as Limit of Random Walk
(continued)

• (continued)

– Here

Xi ≡





+1 if the ith move is to the right,

−1 if the ith move is to the left.

– Xi are independent with

Prob[ Xi = 1 ] = p = 1 − Prob[ Xi = −1 ].

• Recall E[ Xi ] = 2p − 1 and Var[ Xi ] = 1 − (2p − 1)2.
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Brownian Motion as Limit of Random Walk
(continued)

• Therefore,

E[ Y (t) ] = n(∆x)(2p − 1),

Var[ Y (t) ] = n(∆x)2
[
1 − (2p − 1)2

]
.

• With ∆x ≡ σ
√

∆t and p ≡ [ 1 + (µ/σ)
√

∆t ]/2,

E[ Y (t) ] = nσ
√

∆t (µ/σ)
√

∆t = µt,

Var[ Y (t) ] = nσ2∆t
[
1 − (µ/σ)2∆t

]
→ σ2t,

as ∆t → 0.
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Brownian Motion as Limit of Random Walk
(concluded)

• Thus, {Y (t), t ≥ 0 } converges to a (µ, σ) Brownian

motion by the central limit theorem.

• Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing µ = 0.

• Note that

Var[ Y (t + ∆t) − Y (t) ]

=Var[ ∆xXn+1 ] = (∆x)2 × Var[ Xn+1 ] → σ2∆t.

• Similarity to the the BOPM: The p is identical to the

probability in Eq. (25) on p. 234 and ∆x = lnu.
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Geometric Brownian Motion

• Let X ≡ {X(t), t ≥ 0 } be a Brownian motion process.

• The process

{Y (t) ≡ eX(t), t ≥ 0 },
is called geometric Brownian motion.

• Suppose further that X is a (µ, σ) Brownian motion.

• X(t) ∼ N(µt, σ2t) with moment generating function

E
[
esX(t)

]
= E [ Y (t)s ] = eµts+(σ2ts2/2)

from Eq. (17) on p 138.
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Geometric Brownian Motion (continued)

• In particular,

E[ Y (t) ] = eµt+(σ2t/2),

Var[ Y (t) ] = E
[
Y (t)2

]
− E[ Y (t) ]2

= e2µt+σ2t
(
eσ2t − 1

)
.
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Geometric Brownian Motion (continued)

• It is useful for situations in which percentage changes

are independent and identically distributed.

• Let Yn denote the stock price at time n and Y0 = 1.

• Assume relative returns

Xi ≡
Yi

Yi−1

are independent and identically distributed.
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Geometric Brownian Motion (concluded)

• Then

ln Yn =
n∑

i=1

lnXi

is a sum of independent, identically distributed random

variables.

• Thus { lnYn, n ≥ 0 } is approximately Brownian motion.

– And {Yn, n ≥ 0 } is approximately geometric

Brownian motion.
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.

— Mark Kac (1914–1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861–1947),

Science and the Modern World
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Stochastic Integrals

• Use W ≡ {W (t), t ≥ 0 } to denote the Wiener process.

• The goal is to develop integrals of X from a class of

stochastic processes,a

It(X) ≡
∫ t

0

X dW, t ≥ 0.

• It(X) is a random variable called the stochastic integral

of X with respect to W .

• The stochastic process { It(X), t ≥ 0 } will be denoted

by
∫

X dW .

aIto (1915–).
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Stochastic Integrals (concluded)

• Typical requirements for X in financial applications are:

– Prob[
∫ t

0
X2(s) ds < ∞ ] = 1 for all t ≥ 0 or the

stronger
∫ t

0
E[ X2(s) ] ds < ∞.

– The information set at time t includes the history of

X and W up to that point in time.

– But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).

– The future cannot influence the present.

• {X(s), 0 ≤ s ≤ t } is independent of

{W (t + u) − W (t), u > 0 }.
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Ito Integral

• A theory of stochastic integration.

• As with calculus, it starts with step functions.

• A stochastic process {X(t) } is simple if there exist

0 = t0 < t1 < · · · such that

X(t) = X(tk−1) for t ∈ [ tk−1, tk), k = 1, 2, . . .

for any realization (see figure next page).
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Ito Integral (continued)

• The Ito integral of a simple process is defined as

It(X) ≡
n−1∑

k=0

X(tk)[ W (tk+1) − W (tk) ], (47)

where tn = t.

– The integrand X is evaluated at tk, not tk+1.

• Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.
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Ito Integral (continued)

• Let X = {X(t), t ≥ 0 } be a general stochastic process.

• Then there exists a random variable It(X), unique

almost certainly, such that It(Xn) converges in

probability to It(X) for each sequence of simple

stochastic processes X1, X2, . . . such that Xn converges

in probability to X .

• If X is continuous with probability one, then It(Xn)

converges in probability to It(X) as

δn ≡ max1≤k≤n(tk − tk−1) goes to zero.
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Ito Integral (concluded)

• It is a fundamental fact that
∫

X dW is continuous

almost surely.

• The following theorem says the Ito integral is a

martingale.

• A corollary is the mean value formula

E

[∫ b

a

X dW

]
= 0.

Theorem 15 The Ito integral
∫

X dW is a martingale.
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Discrete Approximation

• Recall Eq. (47) on p. 438.

• The following simple stochastic process { X̂(t) } can be

used in place of X to approximate the stochastic

integral
∫ t

0
X dW ,

X̂(s) ≡ X(tk−1) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• Note the nonanticipating feature of X̂.

– The information up to time s,

{ X̂(t), W (t), 0 ≤ t ≤ s },

cannot determine the future evolution of X or W .
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Discrete Approximation (concluded)

• Suppose we defined the stochastic integral as

n−1∑

k=0

X(tk+1)[ W (tk+1) − W (tk) ].

• Then we would be using the following different simple

stochastic process in the approximation,

Ŷ (s) ≡ X(tk) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• This clearly anticipates the future evolution of X .
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Ito Process

• The stochastic process X = {Xt, t ≥ 0 } that solves

Xt = X0 +

∫ t

0

a(Xs, s) ds +

∫ t

0

b(Xs, s) dWs, t ≥ 0

is called an Ito process.

– X0 is a scalar starting point.

– { a(Xt, t) : t ≥ 0 } and { b(Xt, t) : t ≥ 0 } are

stochastic processes satisfying certain regularity

conditions.

• The terms a(Xt, t) and b(Xt, t) are the drift and the

diffusion, respectively.
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Ito Process (continued)

• A shorthanda is the following stochastic differential

equation for the Ito differential dXt,

dXt = a(Xt, t) dt + b(Xt, t) dWt. (48)

– Or simply dXt = at dt + bt dWt.

• This is Brownian motion with an instantaneous drift at

and an instantaneous variance b2
t .

• X is a martingale if the drift at is zero by Theorem 15

(p. 440).

aPaul Langevin (1904).
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Ito Process (concluded)

• dW is normally distributed with mean zero and

variance dt.

• An equivalent form to Eq. (48) is

dXt = at dt + bt

√
dt ξ, (49)

where ξ ∼ N(0, 1).

• This formulation makes it easy to derive Monte Carlo

simulation algorithms.
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Euler Approximation

• The following approximation follows from Eq. (49),

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn) ∆t + b(X̂(tn), tn) ∆W (tn),

(50)

where tn ≡ n∆t.

• It is called the Euler or Euler-Maruyama method.

• Under mild conditions, X̂(tn) converges to X(tn).

• Recall that ∆W (tn) should be interpreted as

W (tn+1) − W (tn) instead of W (tn) − W (tn−1).
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More Discrete Approximations

• Under fairly loose regularity conditions, approximation

(50) on p. 447 can be replaced by

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn) ∆t + b(X̂(tn), tn)
√

∆t Y (tn).

– Y (t0), Y (t1), . . . are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

• A simpler discrete approximation scheme:

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn) ∆t + b(X̂(tn), tn)
√

∆t ξ.

– Prob[ ξ = 1 ] = Prob[ ξ = −1 ] = 1/2.

– Note that E[ ξ ] = 0 and Var[ ξ ] = 1.

• This clearly defines a binomial model.

• As ∆t goes to zero, X̂ converges to X .
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Trading and the Ito Integral

• Consider an Ito process dSt = µt dt + σt dWt.

– St is the vector of security prices at time t.

• Let φt be a trading strategy denoting the quantity of

each type of security held at time t.

• Hence the stochastic process φtSt is the value of the

portfolio φt at time t.

• φt dSt ≡ φt(µt dt + σt dWt) represents the change in the

value from security price changes occurring at time t.
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Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

GT (φ) ≡
∫ T

0

φt dSt =

∫ T

0

φtµt dt +

∫ T

0

φtσt dWt,

measures the gains realized by the trading strategy over

the period [ 0, T ].
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Ito’s Lemma

A smooth function of an Ito process is itself an Ito process.

Theorem 16 Suppose f : R → R is twice continuously

differentiable and dX = at dt + bt dW . Then f(X) is the

Ito process,

f(Xt)

= f(X0) +

∫ t

0

f ′(Xs) as ds +

∫ t

0

f ′(Xs) bs dW

+
1

2

∫ t

0

f ′′(Xs) b2
s ds

for t ≥ 0.
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Ito’s Lemma (continued)

• In differential form, Ito’s lemma becomes

df(X) = f ′(X) a dt + f ′(X) b dW +
1

2
f ′′(X) b2 dt.

(51)

• Compared with calculus, the interesting part is the third

term on the right-hand side.

• A convenient formulation of Ito’s lemma is

df(X) = f ′(X) dX +
1

2
f ′′(X)(dX)2.
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Ito’s Lemma (continued)

• We are supposed to multiply out

(dX)2 = (a dt + b dW )2 symbolically according to

× dW dt

dW dt 0

dt 0 0

– The (dW )2 = dt entry is justified by a known result.

• This form is easy to remember because of its similarity

to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 17 (Higher-Dimensional Ito’s Lemma) Let

W1, W2, . . . , Wn be independent Wiener processes and

X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt +
∑n

j=1 bij dWj. Then

df(X) is an Ito process with the differential,

df(X) =
m∑

i=1

fi(X) dXi +
1

2

m∑

i=1

m∑

k=1

fik(X) dXi dXk,

where fi ≡ ∂f/∂xi and fik ≡ ∂2f/∂xi∂xk.

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 455

Ito’s Lemma (continued)

• The multiplication table for Theorem 17 is

× dWi dt

dWk δik dt 0

dt 0 0

in which

δik =





1 if i = k,

0 otherwise.
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Ito’s Lemma (continued)

Theorem 18 (Alternative Ito’s Lemma) Let

W1, W2, . . . , Wm be Wiener processes and

X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt + bi dWi. Then df(X) is the

following Ito process,

df(X) =
m∑

i=1

fi(X) dXi +
1

2

m∑

i=1

m∑

k=1

fik(X) dXi dXk.
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Ito’s Lemma (concluded)

• The multiplication table for Theorem 18 is

× dWi dt

dWk ρik dt 0

dt 0 0

• Here, ρik denotes the correlation between dWi and

dWk.
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