
Sensitivity Analysis of Options
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Cleopatra’s nose, had it been shorter,

the whole face of the world

would have been changed.

— Blaise Pascal (1623–1662)
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Sensitivity Measures (“The Greeks”)

• Understanding how the value of a security changes

relative to changes in a given parameter is key to

hedging.

– Duration, for instance.

• Let x ≡ ln(S/X)+(r+σ2/2) τ
σ
√

τ
(recall p. 239).

• Note that

N ′(y) = (1/
√

2π ) e−y2/2 > 0,

the density function of standard normal distribution.
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Delta

• Defined as ∆ ≡ ∂f/∂S.

– f is the price of the derivative.

– S is the price of the underlying asset.

• The delta of a portfolio of derivatives on the same

underlying asset is the sum of their individual deltas.

• The delta used in the BOPM is the discrete analog.
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Delta (concluded)

• The delta of a European call on a non-dividend-paying

stock equals
∂C

∂S
= N(x) > 0.

• The delta of a European put equals

∂P

∂S
= N(x) − 1 < 0.

• The delta of a long stock is 1.
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Delta Neutrality

• A position with a total delta equal to 0 is delta-neutral.

• A delta-neutral portfolio is immune to small price

changes in the underlying asset.

• Creating one serves for hedging purposes.

– A portfolio consisting of a call and −∆ shares of

stock is delta-neutral.

– Short ∆ shares of stock to hedge a long call.

• In general, hedge a position in a security with a delta of

∆1 by shorting ∆1/∆2 units of a security with a delta

of ∆2.
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Theta (Time Decay)

• Defined as the rate of change of a security’s value with

respect to time, or Θ ≡ −∂f/∂τ .

• For a European call on a non-dividend-paying stock,

Θ = −
SN ′(x) σ

2
√

τ
− rXe−rτN(x − σ

√
τ) < 0.

– The call loses value with the passage of time.

• For a European put,

Θ = −
SN ′(x) σ

2
√

τ
+ rXe−rτN(−x + σ

√
τ).

– Can be negative or positive.
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Gamma

• Defined as the rate of change of its delta with respect to

the price of the underlying asset, or Γ ≡ ∂2Π/∂S2.

• Measures how sensitive delta is to changes in the price of

the underlying asset.

• A portfolio with a high gamma needs in practice be

rebalanced more often to maintain delta neutrality.

• Delta ∼ duration; gamma ∼ convexity.

• The gamma of a European call or put on a

non-dividend-paying stock is

N ′(x)/(Sσ
√

τ) > 0.
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Vegaa (Lambda, Kappa, Sigma)

• Defined as the rate of change of its value with respect to

the volatility of the underlying asset Λ ≡ ∂Π/∂σ.

• Volatility often changes over time.

• A security with a high vega is very sensitive to small

changes in volatility.

• The vega of a European call or put on a

non-dividend-paying stock is S
√

τ N ′(x) > 0.

– Higher volatility increases option value.

aVega is not Greek.
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Rho

• Defined as the rate of change in its value with respect to

interest rates ρ ≡ ∂Π/∂r.

• The rho of a European call on a non-dividend-paying

stock is

Xτe−rτN(x − σ
√

τ) > 0.

• The rho of a European put on a non-dividend-paying

stock is

−Xτe−rτN(−x + σ
√

τ) < 0.

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 266

Numerical Greeks

• Needed when closed-form formulas do not exist.

• Take delta as an example.

• A standard method computes the finite difference,

f(S + ∆S) − f(S − ∆S)

2∆S
.

• The computation time roughly doubles that for

evaluating the derivative security itself.
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An Alternative Numerical Deltaa

• Use intermediate results of the binomial tree algorithm.

• When the algorithm reaches the end of the first period,

fu and fd are computed.

• These values correspond to derivative values at stock

prices Su and Sd, respectively.

• Delta is approximated by

fu − fd

Su − Sd
.

• Almost zero extra computational effort.

aPelsser and Vorst (1994).
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Numerical Gamma

• At the stock price (Suu + Sud)/2, delta is

approximately (fuu − fud)/(Suu − Sud).

• At the stock price (Sud + Sdd)/2, delta is

approximately (fud − fdd)/(Sud − Sdd).

• Gamma is the rate of change in deltas between

(Suu + Sud)/2 and (Sud + Sdd)/2, that is,

fuu−fud

Suu−Sud − fud−fdd

Sud−Sdd

(Suu − Sdd)/2
.
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Finite Difference Fails for Numerical Gamma

• Numerical differentiation gives

f(S + ∆S) − 2f(S) + f(S − ∆S)

(∆S)2
.

• It does not work (see text).

• Why did the binomial tree version work?
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Other Numerical Greeks

• The theta can be computed as

fud − f

2(τ/n)
.

– In fact, the theta of a European option will be shown

to be computable from delta and gamma (see p. 502).

• For vega and rho, there is no alternative but to run the

binomial tree algorithm twice.

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 271

S/(ud)


S/d


S/u


Su/d


S


Sd/u


Su


Sd


Suu/d


Sdd/u


Suuu/d


Suu


S


Sdd


Sddd/u


c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 272



Extensions of Options Theory
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As I never learnt mathematics,

so I have had to think.

— Joan Robinson (1903–1983)
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Pricing Corporate Securitiesa

• Interpret the underlying asset interpretated as the total

value of the firm.

• The option pricing methodology can be applied to

pricing corporate securities.

• Assume:

– A firm can finance payouts by the sale of assets.

– If a promised payment to an obligation other than

stock is missed, the claim holders take ownership of

the firm and the stockholders get nothing.

aBlack and Scholes (1973).
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Risky Zero-Coupon Bonds and Stock

• Consider XYZ.com.

• Capital structure:

– n shares of its own common stock, S.

– Zero-coupon bonds with an aggregate par value of X .

• What is the value of the bonds, B?

• What is the value of the XYZ.com stock?
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Risky Zero-Coupon Bonds and Stock (continued)

• On the bonds’ maturity date, suppose the total value of

the firm V ∗ is less than the bondholders’ claim X .

• Then the firm declares bankruptcy and the stock

becomes worthless.

• If V ∗ > X , then the bondholders obtain X and the

stockholders V ∗ − X .

V ∗ ≤ X V ∗ > X

Bonds V ∗ X

Stock 0 V ∗ − X
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Risky Zero-Coupon Bonds and Stock (continued)

• The stock is a call on the total value of the firm with a

strike price of X and an expiration date equal to the

bonds’.

– This call provides the limited liability for the

stockholders.

• The bonds are a covered call on the total value of the

firm.

• Let V stand for the total value of the firm.

• Let C stand for the call.
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Risky Zero-Coupon Bonds and Stock (continued)

• Thus nS = C and B = V − C.

• Knowing C amounts to knowing how the value of the

firm is divided between the stockholders and the

bondholders.

• Whatever the value of C, the total value of the stock

and bonds at maturity remains V ∗.

• The relative size of debt and equity is irrelevant to the

firm’s current value V .
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Risky Zero-Coupon Bonds and Stock (continued)

• From Theorem 8 (p. 239) and the put-call parity,

nS = V N(x) − Xe−rτN(x − σ
√

τ),

B = V N(−x) + Xe−rτN(x − σ
√

τ).

– where

x ≡
ln(V/X) + (r + σ2/2)τ

σ
√

τ
.

• The continuously compounded yield to maturity of the

firm’s bond is
ln(X/B)

τ
.
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Risky Zero-Coupon Bonds and Stock (concluded)

• Define default premium as the yield difference between

risky and riskless bonds,

(1/τ) ln(X/B) − r

= −
1

τ
ln

(

N(−z) +
1

ω
N(z − σ

√
τ)

)

.

– ω ≡ Xe−rτ/V .

– z ≡ (lnω)/(σ
√

τ) + (1/2) σ
√

τ = −x + σ
√

τ .

– Note that ω is the debt-to-total-value ratio.
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A Numerical Example

• XYZ.com’s assets consist of 1,000 shares of Merck as of

March 20, 1995.

– Merck’s market value per share is $44.5.

• XYZ.com’s securities consist of 1,000 shares of common

stock and 30 zero-coupon bonds maturing on July 21,

1995.

• Each bond promises to pay $1,000 at maturity.

• n = 1000, V = 44.5 × n = 44500, and

X = 30 × n = 30000.
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—Call— —Put—

Option Strike Exp. Vol. Last Vol. Last

Merck 30 Jul 328 151/4 . . . . . .

441/2 35 Jul 150 91/2 10 1/16

441/2 40 Apr 887 43/4 136 1/16

441/2 40 Jul 220 51/2 297 1/4

441/2 40 Oct 58 6 10 1/2

441/2 45 Apr 3050 7/8 100 11/8

441/2 45 May 462 13/8 50 13/8

441/2 45 Jul 883 115/16 147 13/4

441/2 45 Oct 367 23/4 188 21/16
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A Numerical Example (continued)

• The Merck option relevant for pricing is the July call

with a strike price of X/n = 30 dollars.

• Such a call is selling for $15.25.

• So XYZ.com’s stock is worth 15.25 × n = 15250 dollars.

• The entire bond issue is worth

B = 44500 − 15250 = 29250 dollars.

– Or $975 per bond.
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A Numerical Example (continued)

• The XYZ.com bonds are equivalent to a default-free

zero-coupon bond with $X par value plus n written

European puts on Merck at a strike price of $30.

– By the put-call parity.

• The difference between B and the price of the

default-free bond is the value of these puts.

• The table next page shows the total market values of the

XYZ.com stock and bonds under various debt amounts

X .
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Promised payment Current market Current market Current total

to bondholders value of bonds value of stock value of firm

X B nS V

30,000 29,250.0 15,250.0 44,500

35,000 35,000.0 9,500.0 44,500

40,000 39,000.0 5,500.0 44,500

45,000 42,562.5 1,937.5 44,500
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A Numerical Example (continued)

• Suppose the promised payment to bondholders is

$45,000.

• Then the relevant option is the July call with a strike

price of 45000/n = 45 dollars.

• Since that option is selling for $115/16, the market value

of the XYZ.com stock is (1 + 15/16) × n = 1937.5

dollars.

• The market value of the stock decreases as the

debt-equity ratio increases.
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A Numerical Example (continued)

• There are conflicts between stockholders and

bondholders.

• An option’s terms cannot be changed after issuance.

• But a firm can change its capital structure.

• There lies one key difference between options and

corporate securities.

• So parameters such volatility, dividend, and strike price

are under partial control of the stockholders.
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A Numerical Example (continued)

• Suppose XYZ.com issues 15 more bonds with the same

terms to buy back stock.

• The total debt is now X = 45,000 dollars.

• The table on p. 286 says the total market value of the

bonds should be $42,562.5.

• The new bondholders pay 42562.5 × (15/45) = 14187.5

dollars.

• The remaining stock is worth $1,937.5.
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A Numerical Example (continued)

• The stockholders therefore gain

14187.5 + 1937.5 − 15250 = 875

dollars.

• The original bondholders lose an equal amount,

29250 −
30

45
× 42562.5 = 875. (28)
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A Numerical Example (continued)

• Suppose the stockholders distribute $14,833.3 cash

dividends by selling (1/3) × n Merck shares.

• They now have $14,833.3 in cash plus a call on

(2/3) × n Merck shares.

• The strike price remains X = 30000.

• This is equivalent to owning two-thirds of a call on n

Merck shares with a total strike price of $45,000.

• The n such calls are worth $1,937.5 (p. 283).

• So the total market value of the XYZ.com stock is

(2/3) × 1937.5 = 1291.67 dollars.
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A Numerical Example (concluded)

• The market value of the XYZ.com bonds is hence

(2/3) × n × 44.5 − 1291.67 = 28375 dollars.

• Hence the stockholders gain

14833.3 + 1291.67 − 15250 ≈ 875

dollars.

• The bondholders watch their value drop from $29,250 to

$28,375, a loss of $875.

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 292



Other Examples

• Subordinated debts as bull call spreads.

• Warrants as calls.

• Callable bonds as American calls with 2 strike prices.

• Convertible bonds.
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Barrier Optionsa

• Their payoff depends on whether the underlying asset’s

price reaches a certain price level H.

• A knock-out option is an ordinary European option

which ceases to exist if the barrier H is reached by the

price of its underlying asset.

• A call knock-out option is sometimes called a

down-and-out option if H < S.

• A put knock-out option is sometimes called an

up-and-out option when H > S.

aA former student told me on March 26, 2004, that she did not un-

derstand why I covered barrier options until she started working in a

bank.
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Barrier Options (concluded)

• A knock-in option comes into existence if a certain

barrier is reached.

• A down-and-in option is a call knock-in option that

comes into existence only when the barrier is reached

and H < S.

• An up-and-in is a put knock-in option that comes into

existence only when the barrier is reached and H > S.

• Formulas exist for all kinds of barrier options.
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Binomial Tree Algorithms

• Barrier options can be priced by binomial tree

algorithms.

• Below is for the down-and-out option.

0
 H
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H


8


16


4


32


8


2


64


16


4


1


4.992


12.48


1.6


27.2


4.0


0


58


10


0


0


X


0.0


S = 8, X = 6, H = 4, R = 1.25, u = 2, and d = 0.5.

Backward-induction: C = (0.5 × Cu + 0.5 × Cd)/1.25.
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Binomial Tree Algorithms (concluded)

• But convergence is erratic because H is not at a price

level on the tree (see plot on next page).

– Typically, the barrier has to be adjusted to be at a

price level.

• Solutions will be presented later.
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Daily Monitoring

• Almost all barrier options monitor the barrier only for

the daily closing prices.

• In that case, only nodes at the end of a day need to

check for the barrier condition.

• We can even remove intraday nodes to create a

multinomial tree.

– A node is then followed by d + 1 nodes if each day is

partitioned into d periods.

• This saves time and space.
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A Heptanomial Tree (6 Periods Per Day)

-� 1 day
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Foreign Currencies

• S denotes the spot exchange rate in domestic/foreign

terms.

• σ denotes the volatility of the exchange rate.

• r denotes the domestic interest rate.

• r̂ denotes the foreign interest rate.

• A foreign currency is analogous to a stock paying a

known dividend yield.

– Foreign currencies pay a “continuous dividend yield”

equal to r̂ in the foreign currency.
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Foreign Exchange Options

• Foreign exchange options are settled via delivery of the

underlying currency.

• A primary use of foreign exchange (or forex) options is

to hedge currency risk.

• Consider a U.S. company expecting to receive 100

million Japanese yen in March 2000.

• Those 100 million Japanese yen will be exchanged for

U.S. dollars.
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Foreign Exchange Options (continued)

• The contract size for the Japanese yen option is

JPY6,250,000.

• The company purchases 100,000,000/6,250,000 = 16

puts on the Japanese yen with a strike price of $.0088

and an exercise month in March 2000.

• This gives the company the right to sell 100,000,000

Japanese yen for 100,000,000 × .0088 = 880,000 U.S.

dollars.
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Foreign Exchange Options (concluded)

• The formulas derived for stock index options in Eqs. (26)

on p. 255 apply with the dividend yield equal to r̂:

C = Se−r̂τN(x) − Xe−rτN(x − σ
√

τ), (29)

P = Xe−rτN(−x + σ
√

τ) − Se−r̂τN(−x),

(29′)

– where

x ≡
ln(S/X) + (r − r̂ + σ2/2) τ

σ
√

τ
.
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Bar the roads!

Bar the paths!

Wert thou to flee from here, wert thou

to find all the roads of the world,

the way thou seekst

the path to that thou’dst find not[.]

— Richard Wagner (1813–1883), Parsifal
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Path-Dependent Derivatives

• Let S0, S1, . . . , Sn denote the prices of the underlying

asset over the life of the option.

• S0 is the known price at time zero.

• Sn is the price at expiration.

• The standard European call has a terminal value

depending only on the last price, max(Sn − X, 0).

• Its value thus depends only on the underlying asset’s

terminal price regardless of how it gets there.
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Path-Dependent Derivatives (continued)

• In contrast, some derivatives are path-dependent in that

their terminal payoff depends “critically” on the path.

• The (arithmetic) average-rate call has a terminal value

given by

max

(

1

n + 1

n
∑

i=0

Si − X, 0

)

.

• The average-rate put’s terminal value is given by

max

(

X −
1

n + 1

n
∑

i=0

Si, 0

)

.
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Path-Dependent Derivatives (continued)

• Average-rate options are also called Asian options.

• They are very popular.a

• They are useful hedging tools for firms that will make a

stream of purchases over a time period because the costs

are likely to be linked to the average price.

• They are mostly European.

• Like painting on a canvas, each brush stroke leaves less

room for the future composition.

aAs of the late 1990s, the outstanding volume was in the range of

5–10 billion U.S. dollars; see Nielsen and Sandmann (2003).
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Path-Dependent Derivatives (concluded)

• A lookback call option on the minimum has a terminal

payoff of Sn − min0≤i≤n Si.

• A lookback put option on the maximum has a terminal

payoff of max0≤i≤n Si − Sn.

• The fixed-strike lookback option provides a payoff of

max(max0≤i≤n Si − X, 0) for the call and

max(X − min0≤i≤n Si, 0) for the put.

• Lookback call and put options on the average are called

average-strike options.

c©2005 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 310

Average-Rate Options

• Average-rate options are notoriously hard to price.

• The binomial tree for the averages does not combine.

• A straightforward algorithm is to enumerate the 2n

price paths for an n-period binomial tree and then

average the payoffs.

• But the exponential complexity makes this naive

algorithm impractical.

• As a result, the Monte Carlo method and approximation

algorithms are some of the alternatives left.
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Pricing Some Path-Dependent Options

• Not all path-dependent derivatives are hard to price.

• Barrier options are easy to price.

• When averaging is done geometrically, the option payoffs

are

max
(

(S0S1 · · ·Sn)1/(n+1) − X, 0
)

,

max
(

X − (S0S1 · · ·Sn)1/(n+1), 0
)

.
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Pricing Some Path-Dependent Options (concluded)

• The limiting analytical solutions are the Black-Scholes

formulas.

– With the volatility set to σa ≡ σ/
√

3 .

– With the dividend yield set to qa ≡ (r + q + σ2/6)/2.

• The formula is therefore

C = Se−qaτN(x) − Xe−rτN(x − σa

√
τ), (30)

(31)

P = Xe−rτN(−x + σa

√
τ) − Se−qaτN(−x),

(31′)

– where x ≡ ln(S/X)+(r−qa+σ2
a/2)τ

σa

√
τ

.
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