Interest Rate Swaps

e Consider an interest rate swap made at time ¢ with
payments to be exchanged at times tq1,to, ... ,t,.

e The fixed rate is ¢ per annum.

e The floating-rate payments are based on the future
annual rates fo, f1,...,fn_1 at times tg,t1,... 1, 1.

e For simplicity, assume t;4+1 —t; is a fixed constant At
for all i, and the notional principal is one dollar.

e If t < ty, we have a forward interest rate swap.

e The ordinary swap corresponds to t = tg.

Interest Rate Swaps (continued)

e The value of the swap at time ¢ is thus
> Ef Tﬂbs. T (fi g —c) DL
i=1

n . 1
_ BT — [ ir(s)ds [ - 1 At
WM t1° P(ti_1,t;) (1+cAt)

n

— MUAE#SLV — (14 cAt) x P(t,t;))

=1

= P(t,tg) — P(t,t,) — cAt W P(t,1;).

=1
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Interest Rate Swaps (continued)

e The amount to be paid out at time t;41 is (f; —¢) At
for the floating-rate payer.

— Simple rates are adopted here.

e Hence f; satisfies

1
P(ti,tiv1) = g
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Interest Rate Swaps (concluded)
e So a swap can be replicated as a portfolio of bonds.

e In fact, it can be priced by simple present value
calculations.
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Swap Rate
e The swap rate, which gives the swap zero value, equals

P(t,to) — P(t,t,)
S Pt t) At

Sn(t) (96)

e The swap rate is the fixed rate that equates the present
values of the fixed payments and the floating payments.

e For an ordinary swap, P(t,tp) = 1.
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The Term Structure Equation (continued)
e The net wealth change follows
—dP(r,t,51) + adP(r,t, 52)
= (=P(r,t,s1) pp(r,t, s1) + aP(r,t, 82) pp(r, t, 52)) dt
+ (=P(r,t,51) 0p(r,t, 51) + aP(r,t, 82) 0p(ry t, 52)) dW.

The Term Structure Equation

e Let us start with the zero-coupon bonds and the money

market account.

e Let the zero-coupon bond price P(r,t,T) follow

dP
ﬂ H\&%&N.ATQ.E&S\

e Suppose an investor at time ¢ shorts one unit of a bond
maturing at time s; and at the same time buys « units
of a bond maturing at time ss.

o Pick
_ P(r,t,s1) 0p(r,t, s1)
o= .
P(r,t,s2)op(r,t, s2)
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The Term Structure Equation (continued)

e Then the net wealth has no volatility and must earn the
riskless return:

—P(r,t,s1) pp(r,t, s1) + aP(r,t, s2) pp(r, L, 52)

—P(r,t,s1) + aP(r,t, s2) -
e Simplify the above to obtain
Qﬁ?ﬁ L, mpv tﬁmﬁ t, mwv - Qﬁ@ﬁ t, mwv .thﬁﬁ t, mHv —r

op(r,t,s1) —op(r,t, s2)
e This becomes

pp(r,t,82) =1 pp(r,t,s1) — 7

op(r.t,s2) op(r,t,s1)

after rearrangement.
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The Term Structure Equation (continued)

e Since the above equality holds for any s; and so,

pp(r,t,s) —r -
Ty nts) A(r, 1) (97)

for some A independent of the bond maturity s.

o As p, =1+ Aoy, all assets are expected to appreciate at
a rate equal to the sum of the short rate and a constant
times the asset’s volatility.

e The term A(r,t) is called the market price of risk.

e The market price of risk must be the same for all bonds
to preclude arbitrage opportunities.
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The Term Structure Equation (continued)

e Assume a Markovian short rate model,
dr = p(r,t)dt + o(r,t) dW.

e Then the bond price process is also Markovian.
e By Eq. (56) on p. 478,

a\r, 2 2
fip = A‘w\w + u(r, 1) w\w UL % WU /B (98)
oP ,
op = AQA\} t) %v /P, (98")

subject to P(-,T,T) = 1.

The Term Structure Equation (concluded)
e Substitute p, and o, into Eq. (97) on p. 790 to obtain

2
O lurt) Ao )] 2L 4 Loz 22 —op
oT or 2 or2 (99)

e This is called the term structure equation.

e Once P is available, the spot rate curve emerges via

I P(,T)

e Equation (99) applies to all interest rate derivatives, the
difference being the terminal and the boundary

conditions.
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Risk-Neutral Process

e The local expectations theory is usually imposed for

convenience.

e In fact, a probability measure exists such that bonds can
be priced as if the theory were true to preclude arbitrage
opportunities.

e In the world where the local expectations theory holds,
pp(r,t,s) =7 and the market price of risk is zero.

— No risk adjustment is needed.
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Risk-Neutral Process (continued)

e The term structure equation becomes

oP oP 1 , 2P
|%+1Aﬁ$%+mqﬁﬁ$ %|ﬁw
(100)

e The bond price dynamics (98) on p. 791 is simplified to

P
dP =rPdt+ o(r,t) W|ﬁ dw.
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Risk-Neutral Process (concluded)

e Alternatively, derivatives can be priced by assuming
that the short rate follows the risk-neutral process:

dr = (u(r,t) — Xr,t) o(r,t)) dt + o(r, t) dW.

e The market price of risk will be assumed to be zero in
pricing unless stated otherwise.

The Binomial Model

e The analytical framework can be nicely illustrated with
the binomial model.

e Suppose the bond price P can move with probability ¢
to Pu and probability 1 —q to Pd, where u > d:

1=a_ py
P
Pu
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The Binomial Model (continued)
e Over the period, the bond’s expected rate of return is

gPu+ (1—¢q)Pd

= I3 —1l=qu+(1-q)d—1.
(101)
e The variance of that return rate is
0% =q(1—q)(u—d)>. (102)

e The bond whose maturity is only one period away will
move from a price of 1/(1+ ) to its par value $1.

e This is the money market account modeled by the short
rate.
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The Binomial Model (continued)

e The market price of risk is defined as A = (i —r)/0,
analogous to Eq. (97) on p. 790.

e The same arbitrage argument as in the continuous-time
case can be employed to show that A is independent of
the maturity of the bond (see text).
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Numerical Examples

e Assume this spot rate curve:
Year 1 2
Spot rate 4% 5%

e Assume the one-year rate (short rate) can move up to
8% or down to 2% after a year:
8%
4%
2%

The Binomial Model (concluded)

e Now change the probability from ¢ to

14+r)—d
p=g-Aal g =020 )
which is independent of bond maturity and q.
— Recall the BOPM.
e The bond’s expected rate of return becomes

pPu+ (1 —p) Pd
P

—l=pu+(1-p)d—1=r.

e The local expectations theory hence holds under the
new probability measure p.
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Numerical Examples (continued)
e No real-world probabilities are specified.

e The prices of one- and two-year zero-coupon bonds are,
respectively,

100/1.04 = 96.154,100/(1.05)% = 90.703.

e They follow the binomial processes on p. 802.
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Numerical Examples (continued)

92.593 (= 100/1.08) 100
90.703 96.154
98.039 (= 100/1.02) 100

The price process of the two-year zero-coupon bond is on the
left; that of the one-year zero-coupon bond is on the right.
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Numerical Examples (continued)

e The pricing of derivatives can be simplified by assuming

investors are risk-neutral.

e Suppose all securities have the same expected one-period
rate of return, the riskless rate.

e Then

02503, 98.039
90.703 P 90703

where p denotes the risk-neutral probability of a down

(1-p)x —1=4%,

move in rates.

Numerical Examples (concluded)
e Solving the equation leads to p = 0.319.

e Interest rate contingent claims can be priced under this
probability.
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Numerical Examples: Fixed-Income Options

e A one-year European call on the two-year zero with a

$95 strike price has the payoffs,
0.000

C
3.039
e To solve for the option value C, we replicate the call by
a portfolio of x one-year and y two-year zeros.
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Numerical Examples: Fixed-Income Options
(continued)

e This leads to the simultaneous equations,

x x 100 4+ y x 92.593 0.000,
z x 100 +y x 98.039 = 3.039.

e They give x = —0.5167 and y = 0.5580.

e Consequently,
C =1z x96.154 4+ y x 90.703 =~ 0.93

to prevent arbitrage.
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Numerical Examples: Fixed-Income Options
(continued)

e This price is derived without assuming any version of an

expectations theory.

e Instead, the arbitrage-free price is derived by replication.

e The price of an interest rate contingent claim does not

depend directly on the real-world probabilities.

e The dependence holds only indirectly via the current
bond prices.

Numerical Examples: Fixed-Income Options
(concluded)

e An equivalent method is to utilize risk-neutral pricing.

e The above call option is worth

(1-p)x0+px3.039

¢= 1.04

~ 0.93,

the same as before.

e This is not surprising, as arbitrage freedom and the

existence of a risk-neutral economy are equivalent.
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Numerical Examples: Futures and Forward Prices

e A one-year futures contract on the one-year rate has a
payoff of 100 — r, where r is the one-year rate at

maturity, as shown below.
92 (=100 — 8)

r
98 (=100 — 2)
e As the futures price F is the expected future payoff (see
text), F'= (1 —p) x 92 + p x 98 = 93.914.

e On the other hand, the forward price for a one-year
forward contract on a one-year zero-coupon bond equals
90.703/96.154 = 94.331%.

e The forward price exceeds the futures price.
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Numerical Examples: Mortgage-Backed Securities

e Consider a 5%-coupon, two-year mortgage-backed
security without amortization, prepayments, and default
risk.

e Its cash flow and price process are illustrated on p. 811.
e Its fair price is

(1—p) x 102.222 + p x 107.941

M = = 100.045.
1.04
e Identical results could have been obtained via arbitrage
considerations.
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e
5
/ \ 102.222 (= 5 + (105/1.08))
105 /
0 M
105 N
N J 107.941 (= 5 + (105/1.02))
5
N\
105

The left diagram depicts the cash flow; the right diagram
illustrates the price process.

Numerical Examples: MBSs (continued)

e Suppose that the security can be prepaid at par.

It will be prepaid only when its price is higher than par.

Prepayment will hence occur only in the “down” state
when the security is worth 102.941 (excluding coupon).

The price therefore follows the process,
102.222
M A
105

The security is worth

1 —p) x 102.222 + p x 105
1.04

M = ( = 99.142.
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Numerical Examples: MBSs (continued)

The cash flow of the principal-only (PO) strip comes
from the mortgage’s principal cash flow.

e The cash flow of the interest-only (IO) strip comes from
the interest cash flow (see p. 814(a)).
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e Their prices hence follow the processes on p. 814(b).
e The fair prices are
1-— 92.593 % 100
po — U=PX tp — 91.304,
1.04
(1—p)x9.630+px5
H = = . .
O 104 7.839
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PO: 100 10: 5

e e
0 5
e ~N e ~N
100 5
0 0
0 0
~N e ~N e
100 5
~N ~N
0 0
(@)
92.593 9.630
e e
PO 10
~N N
100 5
(b)

The price 9.630 is derived from 5+ (5/1.08).
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Numerical Examples: MBSs (continued)

e Suppose the mortgage is split into half floater and half
inverse floater.
e Let the floater (FLT) receive the one-year rate.

e Then the inverse floater (INV) must have a coupon rate
of
(10% — one-year rate)

to make the overall coupon rate 5%.

e Their cash flows as percentages of par and values are
shown on p. 816.

FLT: 108 INV: 102
e e
4 6
e N e ~N
108 102
0 0
0 0
~N e ~N e
104 106
~N ~N
0 0
(a)
104 100.444
e e
FLT INV
N N
104 106
(b)
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Numerical Examples: MBSs (concluded)

e On p. 816, the floater’s price in the up node, 104, is
derived from 4 + (108/1.08).

e The inverse floater’s price 100.444 is derived from
6 + (102/1.08).

e The current prices are
FLT = - x— =50,

INV =

2
L (1—p) x 100.444 + p x 106
2 1.04

= 49.142.
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Equilibrium Term Structure Models
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8. What’s your problem? Any moron
can understand bond pricing models.
— Top Ten Lies Finance Professors

Tell Their Students

Introduction
e This chapter surveys equilibrium models.

e Since the spot rates satisfy
In P(¢,T)
T—t
the discount function P(¢,T) suffices to establish the
spot rate curve.

r(t,T) =

e All models to follow are short rate models.

e Unless stated otherwise, the processes are risk-neutral.
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The Vasicek Model?®

e The short rate follows
dr = B(p —r)dt + o dW.
e The short rate is pulled to the long-term mean level p
at rate (.

e Superimposed on this “pull” is a normally distributed
stochastic term o dW.

e Since the process is an Ornstein-Uhlenbeck process,
B[r(D)|r(t) =] = p+ (r = )7

from Eq. (55) on p. 474.
aVasicek (1977).
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The Vasicek Model (continued)

e The price of a zero-coupon bond paying one dollar at
maturity can be shown to be

P(t,T) = A(t,T) e"BEDIr®), (104)
where
_ 2 \D.M 2 QM R 2 .
exp ﬁ (Bt.T) HMWQW = 2 me D Q if B#0,
A(t,T) =
muﬁu_ﬁﬁu_ if 3 =0.
and
BTt
Le T2 i B0,
B(t,T) =
T —t if 3=0.
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The Vasicek Model (concluded)
o If B =0, then P goes to infinity as T — oo.
e Sensibly, P goes to zero as T — oo if G # 0.
e Even if 8 # 0, P may exceed one for a finite T'.

e The spot rate volatility structure is the curve

(or(t, T)/or)o =oB(t,T)/(T —t).
e When (8 > 0, the curve tends to decline with maturity.
e The speed of mean reversion, 3, controls the shape of

the curve; indeed, higher 8 leads to greater attenuation
of volatility with maturity.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 823

Yield
nor nmal

0.2

0.15 hunped
0.1

inverted
0. 05

Term
2 4 6 8 10
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The Vasicek Model: Options on Zeros?®

e Consider a European call with strike price X expiring
at time T on a zero-coupon bond with par value $1 and
maturing at time s > T'.

e [ts price is given by

P(t,s)N(z) — XP(t,T) N(x — 0y).

aJamshidian (1989).
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The Vasicek Model: Options on Zeros (concluded)

e Above
1 P(t,s Oy
x = Q‘e_s NUQMNJVVN +Mq
o, = v(t,T)B(T.,s),
o2 [1—e=2P(T-1)] it 840
v(t, T)? = 28 ’
oX(T —t), if =0

e By the put-call parity, the price of a European put is

XP(t,T)N(—x+ 0,) — P(t,s) N(—zx).

Binomial Vasicek (continued)

e Above, {(k) = £1 with

p(r(k)) if 0 <p(r(k)) <1

Prob[&(k)=1]=4¢ 0 if p(r(k)) <0
1 if 1< p(r(k))

e Observe that the probability of an up move, p, is a
decreasing function of the interest rate r.

e This is consistent with mean reversion.
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Binomial Vasicek

e Consider a binomial model for the short rate in the time
interval [0,T'] divided into n identical pieces.

e Let At=T/n and
B(p—r) VAL

1
p(r) = 2 * 20

e The following binomial model converges to the Vasicek
model,®

r(k+1) = r(k) + oVAt £(k), 0<k < n.

aNelson and Ramaswamy (1990).
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Binomial Vasicek (concluded)

e The rate is the same whether it is the result of an up
move followed by a down move or a down move followed

by an up move.
e The binomial tree combines.

e The key feature of the model that makes it happen is its
constant volatility, o.

e For a general process Y with nonconstant volatility, the
resulting binomial tree may not combine.

e A way out is to transform Y into one with constant
volatility (see later).
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The Cox-Ingersoll-Ross Model®

It is the following square-root short rate model:

dr = B(p —r) dt + ov/r dW. (105)

The diffusion differs from the Vasicek model by a
multiplicative factor /7.

The short rate can reach zero only if 28y < o2.

e See text for the bond pricing formula.

2Cox, Ingersoll, and Ross (1985).

The parameter 3 determines the speed of adjustment.
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Binomial CIR (continued)
e Instead, consider the transformed process

z(r) = 2y/r/o.

e It follows
dx = m(z)dt + dW,

where
m(z) = 2Bp/(0%x) — (Bx/2) — 1/(2x).

e Since this new process has a constant volatility, its
associated binomial tree combines.

Binomial CIR

time interval [0,T].

Divide it into n periods of duration At = T/n.

Assume pu, > 0.

A direct discretization of the process is problematic
because the resulting binomial tree will not combine.

We want to approximate the short rate process in the
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Binomial CIR (continued)
e Construct the combining tree for r as follows.
e First, construct a tree for zx.

e Then transform each node of the tree into one for r via
the inverse transformation r = f(z) = z202/4 (see
p. 834).
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z + 2VAt f(z + 2VAY)
e e
z + VAt flz + VAT
e N e N
x x f(=) f(=)
N e N e
z — VAT flz — VAYL)
N N
z — 2vV/AT f(z — 2VAY)
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Binomial CIR (concluded)
e The probability of an up move at each node r is

p(r) = B = Nb\ﬁmﬁ - (106)

— rT = f(z + VAt) denotes the result of an up move

from 7.

— r~ = f(z — VAt) the result of a down move.

e Finally, set the probability p(r) to one as r goes to zero
to make the probability stay between zero and one.
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Numerical Examples

e Consider the process,
0.2 (0.04 — r) dt + 0.1y/7 dW,

for the time interval [0,1] given the initial rate
r(0) = 0.04.
e We shall use At =0.2 (year) for the binomial

approximation.

e See p. 837(a) for the resulting binomial short rate tree
with the up-move probabilities in parentheses.
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0.08377708764
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(0.472049150276)
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Numerical Examples (continued)

e To give an idea how these numbers come into being,
consider the node which is the result of an up move from
the root.

e Since the root has = = 2,/r(0)/o = 4, this particular
node’s x value equals 4 + At = 4.4472135955.

e Use the inverse transformation to obtain the short rate
2 x AQ.CME ~ 0.0494442719102.

A General Method for Constructing Binomial Models®
e We are given a continuous-time process
dy = a(y,t)dt+o(y,t) dW.

e Make sure the binomial model’s drift and diffusion
converge to the above process by setting the probability

of an up move to

aly,t) At +y — yu
Yu — Yd .

e Here y, =y +0(y,t)VAL and ya =y — o(y,t)VAL
represent the two rates that follow the current rate y.

e The displacements are identical, at o(y,t)VAt.

aNelson and Ramaswamy (1990).
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Numerical Examples (concluded)

Once the short rates are in place, computing the
probabilities is easy.

Note that the up-move probability decreases as interest
rates increase and decreases as interest rates decline.

This phenomenon agrees with mean reversion.

Convergence is quite good (see text).
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A General Method (continued)

But the binomial tree may not combine:
o(y, ) VAL — o(yy, ) VAL # —o(y, ) VAL + o(ya, t) VAL

in general.

When o(y,t) is a constant independent of y, equality
holds and the tree combines.

To achieve this, define the transformation

z(y,t) = \@ o(z,t) tdz.

Then z follows dz = m(y,t)dt +dW for some m(y,t)
(see text).
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A General Method (continued)

e The key is that the diffusion term is now a constant, and
the binomial tree for x combines.

e The probability of an up move remains

QAQA.&.“S“ S At + @A&“S - QQAH“S
.@:AHAV - @QAHQ wv

where y(z,t) is the inverse transformation of z(y,t)
from x back to y.

e Note that y,(z,t) = y(z + VALt + At) and
ya(z,t) = y(z — VALt + At).
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A General Method (concluded)
e The transformation is
[ (ovayta:=2vijo
for the CIR model.

e The transformation is

s
\ (02)~dz = (1/0)In S
for the Black-Scholes model.

e The familiar binomial option pricing model in fact
discretizes In S not S.

Model Calibration

e In the time-series approach, the time series of short rates
is used to estimate the parameters of the process.
e This approach may help in validating the proposed

interest rate process.

e But it alone cannot be used to estimate the risk
premium parameter .

e The model prices based on the estimated parameters
may also deviate a lot from those in the market.
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Model Calibration (concluded)

e The cross-sectional approach uses a cross section of
bond prices observed at the same time.

e The parameters are to be such that the model prices
closely match those in the market.

e After this procedure, the calibrated model can be used
to price interest rate derivatives.

e Unlike the time-series approach, the cross-sectional
approach is unable to separate out the interest rate risk

premium from the model parameters.
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An Example On One-Factor Short Rate Models (continued)

e Suppose the short rate r follows e One-factor models therefore cannot accommodate
dr = p(r)dt + o(r) dW in the real world. nondegenerate correlation structures across maturities.

o It follows dr = p*(r)dt+ o dW™ in the risk-neutral e Derivatives whose values depend on the correlation
world. structure will be mispriced.

e As prices are derived in the risk-neutral world, e The calibrated models may not generate term structures
cross-sectional data are used to estimate p*(r). as concave as the data suggest.

e Because short rates are generated under the real-world e The term structure empirically changes in slope and
probability measure, historical short-rate time series is curvature as well as makes parallel moves.

used to estimate p(r) and o(r). e This is inconsistent with the restriction that all

e Set the market price of risk to [u(r) — p*(r)]/o(r). segments of the term structure be perfectly correlated.
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On One-Factor Short Rate Models
On One-Factor Short Rate Models (concluded)
e By using only the short rate, they ignore other rates on

the yield curve. e Multi-factor models lead to families of yield curves that

can take a greater variety of shapes and can better

e Such models also restrict the volatility to be a function .
represent, reality.

of interest rate levels only.
e But they are much harder to think about and work with.
e The prices of all bonds move in the same direction at

the same time (their magnitudes may differ). e They also take much more computer time the curse of

dimensionality.
e The returns on all bonds thus become highly correlated.
e These practical concerns limit the use of multifactor

e In reality, there seems to be a certain amount of
models to two-factor ones.

independence between short- and long-term rates.
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Options on Coupon Bonds®

e The price of a European option on a coupon bond can

be calculated from those on zero-coupon bonds. Options on Coupon Bonds Ano:n_cam&

° Owbmaoﬁ a Furopean call expiring at time 7" on a bond e Note that P(r(T),T.t;) > X; if and only if #(T) < r*.
with par value $1.

. -3 o X ion’s T Is
e Let X denote the strike price. o As X =3, ¢;X;, the option’s payoff equals

e The bond has cash flows ¢y, cs,...,c, at times Mn. x max(P(r(T), T, t;) — Xi,0)
(3 9 b2 (2 .
t1,to, ..., tn, where t; > T for all i. =1

e The payoff for the option is e Thus the call is a package of n options on the

n underlying zero-coupon bond.
max M ¢ P(r(T),T,t;) — X,0
i=1

aJamshidian (1989).
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Options on Coupon Bonds (continued)

e At time T, there is a unique value r* for r(7') that
renders the coupon bond’s price equal the strike price
X.

e This 7* can be obtained by solving
X =>,¢P(r,T,t;) numerically for r. L
Finis
e The solution is also unique for one-factor models whose
bond price is a monotonically decreasing function of 7.

e Let X; = P(r*,T,t;), the value at time T of a
zero-coupon bond with par value $1 and maturing at
time t; if r(1T') = r*.
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