Term Structure Dynamics . o
y An Approximate Calibration Scheme

e An n-period zero-coupon bond’s price can be computed

by assigning $1 to every node at period n and then e Start with the implied one-period forward rates and

applying backward induction. then equate the expected short rate with the forward

rate (see Exercise 5.6.6 in text).

e Repeating this step for n =1,2,..., one obtains the

market discount function implied by the tree. * For the first period, the forward rate is today’s

one-period spot rate.

e The tree therefore determines a term structure. ] _
e In general, let f; denote the forward rate in period j.

e It also contains a term structure dynamics as taking any ] .
e This forward rate can be derived from the market

discount function via f; = (d(j)/d(j + 1)) — 1 (see
Exercise 5.6.3 in text).

node in the tree as the current state induces a binomial
interest rate tree and, again, a term structure.

e It defines how the term structure evolves over time.
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Sample Term Structure An Approximate Calibration Scheme (continued)

e Since the ith short rate, 1 < ¢ < j, occurs with
probability 270U~ (771, this means

e We shall construct interest rate trees consistent with the
sample term structure in the following table.

e Assume the short rate volatility is such that zjzz_(j_l) (j - 1)r Wil f
v = rn/r¢ = 1.5, independent of time. p i—1) 77 7
Period 1 2 3 e Thus
Spot rate (%) 4 4.2 4.3 9 j—1
One-period forward rate (%) 4 4.4 4.5 rj = (H‘%) - (84)
Discount factor 0.96154 0.92101 0.88135

e The binomial interest rate tree is trivial to set up.
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An Approximate Calibration Scheme (concluded)

The ensuing tree for the sample term structure appears
in figure next page.

For example, the price of the zero-coupon bond paying
$1 at the end of the third period is

1 1 1 1 1 1 1
2% o (o * (o * Toma) * rosms ™ (oama * Tocsa)
4 1.04 1.0352 1.0288 1.0432 1.0528 1.0432 1.0648

or 0.88155, which exceeds discount factor 0.88135.
The tree is thus not calibrated.

Indeed, this bias is inherent (see text).

Issues in Calibration

The model prices generated by the binomial interest rate
tree should match the observed market prices.

Perhaps the most crucial aspect of model building.

Treat the backward induction for the model price of the
m-period zero-coupon bond as computing some function
of the unknown baseline rate r,,, called f(r.;,).

A root-finding method is applied to solve f(r,,) =P for
rm given the zero’s price P and rq,79,... ,7m_1-

This procedure is carried out for m=1,2,... ,n.

Runs in cubic time, hopelessly slow.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University
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Implied forward rates: 4.0% 4.4% 4.5%
period 1 period 2 period 3
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Binomial Interest Rate Tree Calibration

e Calibration can be accomplished in quadratic time by

the use of forward induction (Jamshidian, 1991).

e The scheme records how much $1 at a node contributes

to the model price.

e This number is called the state price.

— It stands for the price of a state contingent claim
that pays $1 at that particular node (state) and 0
elsewhere.

e The column of state prices will be established by moving

forward from time 1 to time n.
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Binomial Interest Rate Tree Calibration (continued)

e Suppose we are at time j and there are j 4+ 1 nodes.
— The baseline rate for period j is 7 = r;.
— The multiplicative ratio be v = v;.
— P, P, ..., P; are the state prices a period prior,
corresponding to rates 7, rv,...  rvi L
e By definition, Zle P; is the price of the (j — 1)-period
zero-coupon bond.

Binomial Interest Rate Tree Calibration (continued)

e Given a decreasing market discount function, a unique
positive solution for r is guaranteed.

e The state prices at time j can now be calculated (see
figure (a) next page).

e We call a tree with these state prices a binomial state
price tree (see figure (b) next page).

e The calibrated tree is depicted in on p. 734.
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Binomial Interest Rate Tree Calibration (continued)

e One dollar at time j has a known market value of
1/[1+ S(4) )%, where S(j) is the j-period spot rate.
e Alternatively, this dollar has a present value of
Py P, P P;

g(r) = (1+r)+(1+7“v)+(1+rv2)+”'+m'

e So we solve
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1
9(r) = ——a~7 (85)
[1+S(G) )
for r.
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0.112832
2805%
3.526% NG 32197
a00% 480769 . 0333501
c 60505
480769 h 0.327842
Implied forward rates: 0.107173

4.0% 4.4% 4.5%
] >l >ia >l

period 1 period 2 period 3

(a) (b)
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A Numerical Example

e One dollar at the end of the second period should have a
present value of 0.92101 by the sample term structure.

e The baseline rate for the second period, ro, satisfies

0.480769 0.480769

= 0.92101.
1+7ry + 1+1.5Xry

e The result is r9 = 3.526%.

e This is used to derive the next column of state prices
shown in figure (b) on p. 733 as 0.232197, 0.460505, and
0.228308.

e Their sum gives the correct market discount factor
0.92101.

Implied forward rates: 4.0% 4.4% 4.5%
< >ia >ie >
period 1 period 2 period 3
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Binomial Interest Rate Tree Calibration (concluded)

e The Newton-Raphson method can be used to solve for
the 7 in Eq. (85) on p. 731 as ¢'(r) is easy to evaluate.

e The monotonicity and the convexity of g(r) also
facilitate root finding.

e The above idea is straightforward to implement.

e The total running time is O(Cn?), where C is the
maximum number of times the root-finding routine

iterates, each consuming O(n) work.

e With a good initial guess, the Newton-Raphson method
converges in only a few steps (Lyuu, 1999).
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A Numerical Example (concluded)

e The baseline rate for the third period, r3, satisfies

0.232197 0.460505 0.228308

= 0.88135.
1+4+rs + 14+1.5Xrs + 1+(1.5)2 X T3

e The result is 73 = 2.895%.

e Now, redo the calculation on p. 726 using the new rates:

1 1 1 1 1 1 1 1
- x — x| x ( + )+ X ( + )1
4 1.04 1.03526 1.02895  1.04343 1.05289 1.04343  1.06514

which equals 0.88135, an exact match.

e The tree on p. 734 prices without bias the benchmark

securities.

e The term structure dynamics is shown on p. 738.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 735

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 737



[0.971865]
e
0.965941
0.932250
e N
0.96154
0.92101 [0.958378]
0.88135
N e
0.949767
0.900959
N
[0.938844]
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Spread of Nonbenchmark Bonds

called spread.

the market price.

here.

e Model prices calculated by the calibrated tree as a rule
do not match market prices of nonbenchmark bonds.

e The incremental return over the benchmark bonds is

e We look for the spread that, when added uniformly over
the short rates in the tree, makes the model price equal

e We will apply the spread concept to option-free bonds
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Spread of Nonbenchmark Bonds (continued)
We illustrate the idea with an example.
Start with the tree on p. 741.

Consider a security with cash flow C; at time ¢ for
1=1,2,3.

Its model price is p(s), which is equal to

1 1 1 1 C3 C3
X|[C1+—x —— x[Cq+ — +

1.04+ s 2 1.03526 + s 2 \1.02895 + s 1.04343 + s
1 1 1 C3 C3
- X —— x | C2 + — +
2 1.05289 + s 2 \1.04343 +s  1.06514 + s

Given a market price of P, the spread is the s that
solves P = p(s).

)+
Ik
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Iy 4.00%+s €Y 4 343%+s

5.280%+s
@ 6.514%+
Implied forward rates: 4.0% 4.4% 4.5%
- >ia >ia >
period 1 period 2 period 3
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Spread of Nonbenchmark Bonds (continued)

e The model price p(s) is a monotonically decreasing,

convex function of s.

e We will employ the Newton-Raphson root-finding
method to solve p(s) — P =0 for s.

e But a quick look at the equation above reveals that
evaluating p’(s) directly is infeasible.

e Fortunately, the tree can be used to evaluate both p(s)
and p'(s) during backward induction.
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Spread of Nonbenchmark Bonds (continued)

e Consider an arbitrary node A in the tree associated with
the short rate r.

e In the process of computing the model price p(s), a

price pa(s) is computed at A.

e Prices computed at A’s two successor nodes B and C are
discounted by r + s to obtain pa(s) as follows,

pB(8) + pc(s)

pa(s) =c+ 21+r+s)’

where ¢ denotes the cash flow at A.

Spread of Nonbenchmark Bonds (continued)
e To compute p'y (s) as well, node A calculates

- Ph) FBL(S) _ pas) + pels)
A 2(1+7 +s) 2(1+7r+s)2°

nodes B and C.

p'(s) at the root (see p. 745).

e This is called the differential tree method.?
2Lyuu (1999).

e This is easy if pi(s) and p(s) are also computed at

e Apply the above procedure inductively to yield p(s) and

(86)
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[¢ I/(] +ov’+s)

(a)

_ o Pe($)tpe(s)
pals)=ct 2(1+r+s)

oy Pa($)+pe(s)  py(s)+ pe(s)
pils)= 2(1+r+s) 2(1+r+s)

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 743

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 745



traversed, which takes O(n?) time.

The total running time is O(Cn?).

In practice C is a small constant.

e The memory requirement is O(n).

Spread of Nonbenchmark Bonds (continued)

Let C represent the number of times the tree is
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Spread of Nonbenchmark Bonds (continued)

Number of Running Number of Number of Running Number of
partitions n time (s) iterations partitions time (s) iterations
500 7.850 5 10500 3503.410 5
1500 71.650 5 11500 4169.570 5
2500 198.770 5 12500 4912.680 5
3500 387.460 5 13500 5714.440 5
4500 641.400 5 14500 6589.360 5
5500 951.800 5 15500 7548.760 5
6500 1327.900 5 16500 8502.950 5
7500 1761.110 5 17500 9523.900 5
8500 2269.750 5 18500 10617.370 5
9500 2834.170 =
75MHz Sun SPARCstation 20.
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Spread of Nonbenchmark Bonds (concluded)

Consider a three-year, 5% bond with a market price of
100.569.

Assume the bond pays annual interest.

The spread can be shown to be 50 basis points over the
tree (see p. 749).

Note that the idea of spread does not assume parallel
shifts in the term structure.

It also differs from the yield spread and static spread of
the nonbenchmark bond over an otherwise identical
benchmark bond.
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105
- 3.395%
-..106.552
105
"'4.843%
105.150
105
105
Cash flows: 5 5 105
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Black-Derman-Toy (in seconds)

More Applications of the Differential Tree: Calibrating

Number Running Number Running Number Running
of years time of years time of years time
3000 398.880 39000 8562.640 75000 26182.080
6000 1697.680 42000 9579.780 78000 28138.140
9000 2539.040 45000 10785.850 81000 30230.260
12000 2803.890 48000 11905.290 84000 32317.050
15000 3149.330 51000 13199.470 87000 34487.320
18000 3549.100 54000 14411.790 90000 36795.430
21000 3990.050 57000 15932.370 120000 63767.690
24000 4470.320 60000 17360.670 150000 98339.710
27000 5211.830 63000 19037.910 180000 140484.180
30000 5944.330 66000 20751.100 210000 190557.420
33000 6639.480 69000 22435.050 240000 249138.210
36000 7611.630 72000 24292.740 270000 313480.390

75MHz Sun SPARCstation 20, one period per year.
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5% Treasury.

Fixed-Income Options

e Assume the Treasury pays annual interest.

e Consider a two-year 99 European call on the three-year,

e From p. 753 the three-year Treasury’s price minus the $5
interest could be $102.046, $100.630, or $98.579 two

years from now.

e Since these prices do not include the accrued interest,
we should compare the strike price against them.

e The call is therefore in the money in the first two
scenarios, with values of $3.046 and $1.630, and out of
the money in the third scenario.
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Implied Volatility (in seconds)

More Applications of the Differential Tree: Calculating

American call American put
Number of Running Number of Number of Running Number of
partitions time iterations partitions time iterations
100 0.008210 2 100 0.013845 3
200 0.033310 2 200 0.036335 3
300 0.072940 2 300 0.120455 3
400 0.129180 2 400 0.214100 3
500 0.201850 2 500 0.333950 3
600 0.290480 2 600 0.323260 2
700 0.394090 2 700 0.435720 2
800 0.522040 2 800 0.569605 2

Intel 166MHz Pentium, running on Microsoft Windows 95.
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. Q 105 . Q 105
2:895% 2895%
€9 102046 €9 102.046
. 3:526% 3:046 .3:526% 0.000
O 1276 @ s © 102716 @ s
L 400% 28 4343% L 400% 0000 4343
@: 101955 {9 100.630 . 101.955 {9 100630
1:458 5089% 1630 0:096 .5089%  0:000
) 99350 @ s ) 99350 Q s
0774 6:514% 0200 _  6:514%
. 98.579 . 98.579
0:000 0421
Q 105 Q 105
(a) (b)
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Fixed-Income Options (continued)
The option value is calculated to be $1.458 on p. 753(a).
FEuropean interest rate puts can be valued similarly.

Consider a two-year 99 European put on the same
security.

At expiration, the put is in the money only if the
Treasury is worth $98.579 without the accrued interest.

The option value is computed to be $0.096 on p. 753(b).
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Delta or Hedge Ratio

e How much does the option price change in response to
changes in the price of the underlying bond?
e This relation is called delta (or hedge ratio) defined as
On — Oy
P,— P
e In the above P, and P; denote the bond prices if the

short rate moves up and down, respectively.

e Similarly, Oy and O; denote the option values if the
short rate moves up and down, respectively.
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Fixed-Income Options (concluded)

The present value of the strike price is
PV(X) =99 x 0.92101 = 91.18.

The Treasury is worth B = 101.955.

The present value of the interest payments during the
life of the options is

PV(I) =5 x0.96154 + 5 x 0.92101 = 9.41275.

The call and the put are worth C = 1.458 and
P = 0.096, respectively.

Hence the put-call parity is preserved:

C=P+B-PV(I)-PV(X).
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Delta or Hedge Ratio (concluded)

e Since delta measures the sensitivity of the option value
to changes in the underlying bond price, it shows how to
hedge one with the other.

e Take the call and put on p. 753 as examples.

e Their deltas are

0.774 — 2.258 — 0441,
99.350 — 102.716
0.200 — 0.000 — 0059,

99.350 — 102.716

respectively.
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Volatility Term Structures

e The binomial interest rate tree can be used to calculate
the yield volatility of zero-coupon bonds.

e Consider an n-period zero-coupon bond.

e First find its yield to maturity yn (ys, respectively) at
the end of the initial period if the rate rises (declines,
respectively).

e The yield volatility for our model is defined as
(1/2) In(yn/ye)-
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Volatility Term Structures (continued)
Consider the three-year zero-coupon bond.

If the rate rises, the price of the zero one year from now
will be

2 X 105289 * (1_04343 + 1.06514) = 0.90096.

Thus its yield is |/ 5gag9s — 1 = 0.053531.

If the rate declines, the price of the zero one year from

now will be

1 1 1 1
- — 0.93225.
2~ 1.03526 (1.02895 * 1.04343)
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Volatility Term Structures (continued)

e For example, based on the tree on p. 734, the two-year
zero’s yield at the end of the first period is 5.289% if the
rate rises and 3.526% if the rate declines.

e Its yield volatility is therefore

1 (0.05289
In

2 0.03526

5 ) = 20.273%.
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Volatility Term Structures (continued)

Thus its yield is |/ 5ga555 — 1 = 0.0357.

The yield volatility is hence

1 (0.053531
In{ ———-

- =20.2
2 0.0357) 0.256%,

slightly less than the one-year yield volatility.

This is consistent with the reality that longer-term
bonds typically have lower yield volatilities than
shorter-term bonds.

The procedure can be repeated for longer-term zeros to
obtain their yield volatilities.
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Spot rate volatility

0. 104 Volatility Term Structures (concluded)

0.103 e Suppose the user supplies the volatility term structure
which results in (vy,vs,vs,...) for the tree.

0.102 e The volatility term structure one period from now will

0. 101 be determined by (ve,vs,vs,...) not (vi,vs,vs,...).

e The volatility term structure supplied by the user is
0' 1 . . .
) 100 500 300 700 500 hence not maintained through time.
Time period e This issue will be addressed by other types of (complex)

models.

Short rate volatility given flat %10 volatility term structure.
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Volatility Term Structures (continued)

o We started with v; and then derived the volatility term
structure.

e In practice, the steps are reversed.

e The volatility term structure is supplied by the user Foundations Of Term Structure Modelmg

along with the term structure.

e The v;—hence the short rate volatilities via Eq. (82) on
p- 714—and the r; are then simultaneously determined.

e The result is the Black-Derman-Toy model.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 763 ©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 765



Standard Notations

The following notation will be used throughout.

[Meriwether| scoring especially high marks o
in mathematics — an indispensable subject t: a pownt in time.

for a bond trader. r(t): the one-period riskless rate prevailing at time ¢ for
— Roger Lowenstein, repayment one period later (the instantaneous spot rate,
When Genius Failed (2000) or short rate, at time t).

P(t,T): the present value at time t of one dollar at time 7.
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Terminology Standard Notations (continued)
* A period denotes a unit of elapsed time. r(t,T): the (T — t)-period interest rate prevailing at time ¢
— Viewed at time ¢, the next time instant refers to time stated on a per-period basis and compounded once per
t 4+ dt in the continuous-time model and time ¢ + 1 period—in other words, the (T — t)-period spot rate at
in the discrete-time case. time t.
e Bonds will be assumed to have a par value of one unless e The long rate is defined as r(t,0).
stated otherwise. F(t,T,M): the forward price at time ¢ of a forward
e The time unit for continuous-time models will usually be contract that delivers at time T' a zero-coupon bond
measured by the year. maturing at time M > T.
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Standard Notations (concluded) Fundamental Relations (continued)

f(t,T,L): the L-period forward rate at time 7' implied at e Forward prices and zero-coupon bond prices are related:
time ¢ stated on a per-period basis and compounded P(t, M)
once per period. F(t,T,M) = TT)’ T<M. (87)
f(t,T): the one-period or instantaneous forward rate at — The forward price equals the future value at time T
time 71" as seen at time ¢ stated on a per period basis of the underlying asset (see text for proof).

and compounded once per period.

e Itis f(¢,7,1) in the discrete-time model and
f(t,T,dt) in the continuous-time model.
e Note that f(¢,t) equals the short rate r(¢). F(t,T,M)=F(T,S) F(t,5M), T<S<M

e Equation (87) holds whether the model is discrete-time

or continuous-time, and it implies
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Fundamental Relations

e The price of a zero-coupon bond equals . .
Fundamental Relations (continued)

(147t T)) "9 in discrete time, e Forward rates and forward prices are related
o~ (1) (T—1) definitionally by

_ 1 1/L B P(t,T) 1/L
10r0=(rarrrn) = (Feren) s

P(t,T) =
in continuous time.

e r(t,T) as a function of T defines the spot rate curve at

time ¢.
in discrete time.

- f(t,T,L) =+ (% — 1) is the analog to

r(t,t+1) in discrete time, Eq. (88) under simple compounding.

e By definition,

f(tat) =

r(t,t) in continuous time.
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Fundamental Relations (continued)

e In continuous time,

_WF(T,T+L) W(P(t,T)/Pt,T+ L))

L L

ft,T, L) =
(89)

by Eq. (87) on p. 772.

e Furthermore,

In(P(t,T)/P(t,T + At) Ol P(t,T)

t,T,At) =
f( ) ) ) At 6T
dP(t,T)/dT
P(t,T)
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Fundamental Relations (continued)

e So
= _ _0P(t,T)/0T
(90)
e Because Eq. (90) is equivalent to
P(t’T) = 67 ftT f(t:s) dS’ (91)

the spot rate curve is

T
rujjzf%7ﬂiﬂtgw.

Fundamental Relations (concluded)

e The discrete analog to Eq. (91) is

1

B (e O) (e T (X Y

)

e The short rate and the market discount function are

related by
OP(t,T)

T=t

— This can be verified with Eq. (90) on p. 775 and the
observation that P(t,t) =1 and r(t) = f(¢,1).
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Risk-Neutral Pricing

e Under the local expectations theory, the expected rate of
return of any riskless bond over a single period equals
the prevailing one-period spot rate.

—Forall t+1<T,

E,([P(t+1,T)]

P =Lt (93)

— Relation (93) in fact follows from the risk-neutral
valuation principle, Theorem 18 (p. 428).
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Risk-Neutral Pricing (continued)

e The local expectations theory is thus a consequence of
the existence of a risk-neutral probability .

e Rewrite Eq. (93) as

ET[P(t+1,T)]
14 r(t)

= P(t,T).

— It says the current spot rate curve equals the
expected spot rate curve one period from now
discounted by the short rate.

Risk-Neutral Pricing (concluded)

e Equation (93) on p. 777 can also be expressed as
Et[P(t+ 1aT)] = F(t’t'i_ 13T)

e Hence the forward price for the next period is an
unbiased estimator of the expected bond price.
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Risk-Neutral Pricing (continued)

e Apply the above equality iteratively to obtain

P(t,T)

_ o [ PE+1,T)

- Et[ 1+r(t) }
,,[ EL,[P(t+2,T)] ]
Cla+r@)a+rt+1)

- 1
K [(1+r<t>)(1+r(t+1))---<1+r<T—1>>

(94)
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Continuous-Time Risk-Neutral Pricing

e In continuous time, the local expectations theory implies

T

P(t,T) = E, [e* . T<S>d5} , t<T. (95)
e Note that eJi' "(9)4s is the bank account process, which

denotes the rolled-over money market account.

e When the local expectations theory holds, riskless
arbitrage opportunities are impossible.
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