The Ritchken-Trevor Algorithm (continued)

e The topology of the tree is not a standard combining

multinomial tree.

e For example, a few nodes on p. 666 such as nodes (2,0)
and (2,—1) have multiple jump sizes.

e The reason is the path dependence of the model.

— Two paths can reach node (2,0) from the root node,
each with a different variance for the node.

— One of the variances results in n = 1, whereas the
other results in n = 2.
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The Ritchken-Trevor Algorithm (concluded)

e The possible values of h? at a node are exponential
nature.

e To address this problem, we record only the maximum

and minimum h? at each node.?

e Therefore, each node on the tree contains only two
states (y¢, h2,,.) and (ys, h2;.).

max min

e Each of (y;, h?

max

) and (y:,h32

2 in) carries its own 7 and

set of 2n + 1 branching probabilities.

aCakici and Topyan (2000).

Negative Aspects of the Ritchken-Trevor Algorithm?®
e A small n may yield inaccurate option prices.

e But the tree will grow exponentially if n is large enough.

— Specifically, n > (1 — 31)/B2 when r = ¢ = 0.

A large n has another serious problem: The tree cannot
grow beyond a certain date.

Thus the choice of n may be limited in practice.

e The RT algorithm can be modified to be free of
exponential complexity and shortened maturity.P

2Lyuu and Wu (2003).
bLyuu and Wu (2004).
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Numerical Examples

e Assume Sy = 100, yo = In Sy = 4.60517, r = 0,
h2 = 0.0001096, v = ho = 0.010469, n = 1,
Yo = v/+/n = 0.010469, By = 0.000006575, 5, = 0.9,
B2 =0.04, and ¢ =0.

e A daily variance of 0.0001096 corresponds to an annual
volatility of /365 x 0.0001096 ~ 20%.

e Let h2(i,§) denote the variance at node (3, 7).

e Initially, A%(0,0) = h2 = 0.0001096.
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Numerical Examples (continued)

Let hZ,.(4,7) denote the maximum variance at node
(4,4)-

Let h2; (i,7) denote the minimum variance at node
(4,5)-

Initially, A2, (0,0) = h2,,(0,0) = hZ.

min

The resulting three-day tree is depicted on p. 672.

A top (bottom) number inside a gray box refers to the

minimum (maximum, respectively) variance hZ. (hZ,.,

respectively) for the node. Variances are multiplied by
100,000 for readability. A top (bottom) number inside a
white box refers to n corresponding to hZ; (h2,.,

respectively).
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Numerical Examples (continued)

e Let us see how the numbers are calculated.

e Start with the root node, node (0,0).

e Try n=1 in Egs. (78)—(80) on p. 657 first to obtain
pa = 0.4974,
Pm = 0,
pa = 0.5026.

the root node use single jumps.

As they are valid probabilities, the three branches from
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Numerical Examples (continued)

Move on to node (1,1).

e It has one predecessor node—node (0,0)—and it takes
an up move to reach the current node.

So apply updating rule (81) on p. 663 with £ =1 and
h? = h%(0,0).

The result is A2%(1,1) = 0.000109645.
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Numerical Examples (continued)

e Carry out similar calculations for node (1,0) with
¢ =0 in updating rule (81) on p. 663.

e Carry out similar calculations for node (1,—1) with
¢ = —1 in updating rule (81).

e Single jump 7 =1 works in both nodes.
e The resulting variances are

R%(1,0) = 0.000105215,
R%(1,—1) = 0.000109553.

Numerical Examples (continued)

e Because | h(1,1)/y] =2, we try n =2 in
Egs. (78)—(80) on p. 657 first to obtain

pe = 0.1237,
pm = 0.7499,
ps = 0.1264.

e As they are valid probabilities, the three branches from
node (1,1) use double jumps.
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Numerical Examples (continued)

e Both have to be considered in deriving the variances.
e Let us start with node (1,0).

e Because it takes a middle move to reach the current
node, we apply updating rule (81) on p. 663 with £ =0

and h? = h?(1,0).

e The result is h7,; = 0.000101269.

Node (2,0) has 2 predecessor nodes, (1,0) and (1,-1).
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Numerical Examples (continued)

e Now move on to the other predecessor node (1,—1).

Because it takes an up move to reach the current node,
apply updating rule (81) on p. 663 with £ =1 and
h? = h%(1,-1).

The result is h7,; = 0.000109603.

e We hence record
hZ..(2,0) = 0.000101269,
R?..(2,0) = 0.000109603.
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Numerical Examples (continued)

e Now consider state h?2

min

(2,0).

e Because | Amin(2,0)/7 | =1, we first try n =1 in
Egs. (78)—(80) on p. 657 to obtain

pe = 0.4596,
pm = 0.0760,
pq = 0.4644.

e As they are valid probabilities, the three branches from

node (2,0) with the minimum variance use single jumps.

Numerical Examples (continued)

e Consider state hfnax

(2,0) first.

e Because | Amax(2,0)/v | =2, we first try =2 in
Egs. (78)—(80) on p. 657 to obtain

pe = 0.1237,
pm = 0.7500,
ps = 0.1263.

e As they are valid probabilities, the three branches from
node (2,0) with the maximum variance use double
jumps.
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Numerical Examples (continued)

Node (2,—1) has 3 predecessor nodes.

Start with node (1,1).

Because it takes a down move to reach the current node,
we apply updating rule (81) on p. 663 with £ = —1 and
h? = R%(1,1).

e The result is h7,; = 0.0001227.
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Numerical Examples (continued)

e Consider state hZ . (2, —1).

Numerical Examples (continued) e Because | hmax(2,—1)/7 | = 2, we first try 7 =2 in

e Now move on to predecessor node (1,0). Eqgs. (78)-(80) on p. 657 to obtain
e Because it also takes a down move to reach the current p. = 0.1385,
node, we apply updating rule (81) on p. 663 with pm = 0.7201,

¢=—1 and h? = h%(1,0). pg = 0.1414.

e The result is h7, ; = 0.000105609.
e As they are valid probabilities, the three branches from

node (2,—1) with the maximum variance use double
jumps.
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Numerical Examples (continued) Numerical Examples (continued)

. 2 _
e Finally, consider predecessor node (1,—1). * Next, consider state fp,,(2,—1).
e Because | Amin(2,—1)/7] =1, we first try n =1 in

Egs. (78)—(80) on p. 657 to obtain

e Because it takes a middle move to reach the current
node, we apply updating rule (81) on p. 663 with £=0

and h? = h2(1,-1). Py = 04773,
e The result is h? ; = 0.000105173. pm = 0.0404,
e We hence record pa = 0.4823.
RZ..(2,—1) = 0.000105173, e As they are valid probabilities, the three branches from
R2. (2,—1) = 0.0001227. node (2,—1) with the minimum variance use single
jumps.
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Numerical Examples (concluded)

25000
e Other nodes at dates 2 and 3 can be handled similarly. 20000
e In general, if a node has k predecessor nodes, then 2k 15000
variances will be calculated using the updating rule.
10000
— This is because each predecessor node keeps two
variance numbers. 5000
e But only the maximum and minimum variances will be 25 56 75 100 125 150 175 Dat e
kept.

Dotted line: n = 3; dashed line: n = 4; solid line: n = 5.
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Negative Aspects of the RT Algorithm Revisited®

Backward Induction on the RT Tree
e Recall the problems mentioned on p. 669.

e After the RT tree is constructed, it can be used to price
e In our case, combinatorial explosion occurs when

1-— 1-0.9
> b = = 2.5. e Recall that each node keeps two variances h
B 0.04 B2

min*

options by backward induction.

2

ax and

n

e Suppose we are willing to accept the exponential
bp & P P e We now increase that number to K equally spaced

and h2. at each node.

min

running time and pick n = 100 to seek accuracy. . 9
variances between hZ ..

e But the problem of shortened maturity forces the tree to

e Besides the minimum and maximum variances, the other
stop at date 9!

K — 2 variances in between are linearly interpolated.

2Lyuu and Wu (2003).
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Backward Induction on the RT Tree (continued)

e For example, if K = 3, then a variance of
10.5436 x 10~% will be added between the maximum
and minimum variances at node (2,0) on p. 672.

e In general, the kth variance at node (7,j) is

hinax (1, J) — hiayin (4,9)
h2 (i 4 J, —max ’ min\%
mln(la ]) + K _ 1 )
k=0,1,... , K —1.
e Each interpolated variance’s jump parameter and
branching probabilities can be computed as before.
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Numerical Examples

We next use the numerical example on p. 672 to price a
European call option with a strike price of 100 and
expiring at date 3.

Recall that the riskless interest rate is zero.

Assume K = 2; hence there are no interpolated
variances.

The pricing tree is shown on p. 694 with a call price of
0.66346.

— The branching probabilities needed in backward
induction can be found on p. 695.

Backward Induction on the RT Tree (concluded)

e During backward induction, if a variance falls between
two of the K variances, linear interpolation of the
option prices corresponding to the two bracketing

e The above ideas are reminiscent of the ones on p. 341,
where we dealt with arithmetic average-rate options.
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variances will be used as the approximate option price.
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Numerical Examples (continued)
Let us derive some of the numbers on p. 694.

The option price for a terminal node at date 3 equals
max(S3 — 100, 0), independent of the variance level.

Now move on to nodes at date 2.

The option price at node (2,3) depends on those at
nodes (3,5), (3,3), and (3,1).
It therefore equals

0.1387 x 5.37392 + 0.7197 x 3.19054 4 0.1416 x 1.05240 = 3.19054.

Option prices for other nodes at date 2 can be computed
similarly.

Numerical Examples (continued)
e For node (1,1), the option price for both variances is
0.1237 X 3.19054 + 0.7499 x 1.05240 + 0.1264 X 0.14573 = 1.20241.

e Node (1,0) is most interesting.

e We knew that a down move from it gives a variance of
0.000105609.

e This number falls between the minimum variance
0.000105173 and the maximum variance 0.0001227 at
node (2,—1) on p. 672.
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Numerical Examples (continued)

e The option price corresponding to the minimum

variance is 0.

e The option price corresponding to the maximum
variance is 0.14573.

e The equation
x % 0.000105173 + (1 — ) x 0.0001227 = 0.000105609

is satisfied by x = 0.9751.

e So the option for the down state is approximated by

zx 0+ (1—2x)x0.14573 = 0.00362.
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Numerical Examples (continued)

e The up move leads to the state with option price
1.05240.

e The middle move leads to the state with option price
0.48366.
e The option price at node (1,0) is finally calculated as

Interest Rate Derivative Securities

0.4775 x 1.05240 + 0.0400 x 0.48366 + 0.4825 x 0.00362 = 0.52360.
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Numerical Examples (concluded)

e It is possible for some of the three variances following an
interpolated variance to exceed the maximum variance

or be exceeded by the minimum variance.

e When this happens, the option price corresponding to
the maximum or minimum variance will be used during

backward induction. Term Structure Fitting

e An interpolated variance may choose a branch that goes
into a node that is not reached in the forward-induction
tree-building phase.?

aLyuu and Wu (2004).
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Outline

e Use the binomial interest rate tree to model stochastic

term structure.

— Illustrates the basic ideas underlying future models.

— Applications are generic in that pricing and hedging
methodologies can be easily adapted to other models.

Introduction to Term Structure M Odehng e Although the idea is similar to the earlier one used in

option pricing, the current task is more complicated.

— The evolution of an entire term structure, not just a
single stock price, is to be modeled.

— Interest rates of various maturities cannot evolve

arbitrarily or arbitrage profits may occur.
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Issues

e A stochastic interest rate model performs two tasks.

The fox often ran to the hole — Provides a stochastic process that defines future term

by which they had come in, structures without arbitrage profits.

to find out if his body was still thin enough — “Consistent” with the observed term structures.

to slip through it.

— Grimm’s Fairy Tales e The unbiased expectations theory, the liquidity

preference theory, and the market segmentation theory
can all be made consistent with the model.
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History
e Methodology founded by Merton (1970).

e Modern interest rate modeling is often traced to 1977 Binomial Interest Rate Tree (continued)

when Vasicek and Cox, Ingersoll, and Ross developed ) ) .
. o . e A binomial tree of future short rates is constructed.
simultaneously their influential models.

E short rate is followed by two short rates in the
e Early models have fitting problems because they may * very' . W W
. , following period (see next page).
not price today’s benchmark bonds correctly.

In the fi . 710 node A coincid ith the start of
e An alternative approach pioneered by Ho and Lee (1986) * i ¢ gure (.)n P . node A cotmades YVI_ ¢ start o
. . period j during which the short rate r is in effect.

makes fitting the market yield curve mandatory.

e Models based on such a paradigm are called (somewhat

misleadingly) arbitrage-free or no-arbitrage models.
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Binomial Interest Rate Tree

e Goal is to construct a no-arbitrage interest rate tree
consistent with the yields and/or yield volatilities of
zero-coupon bonds of all maturities.

05 (B)re

— This procedure is called calibration.

e Pick a binomial tree model in which the logarithm of the r @
future short rate obeys the binomial distribution.

— Exactly like the CRR tree. 0.5 Q "h
period j — 1 | period j | period j + 1
e The limiting distribution of the short rate at any future

time is hence lognormal.
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Binomial Interest Rate Tree (continued)

e At the conclusion of period j, a new short rate goes into
effect for period j + 1.

e This may take one of two possible values:
— ry: the “low” short-rate outcome at node B.
— rp: the “high” short-rate outcome at node C.

e Each branch has a fifty percent chance of occurring in a

risk-neutral economy.
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Binomial Interest Rate Tree (continued)

e Note that
T'_h — e2am
Ty '
e Thus greater volatility, hence uncertainty, leads to larger
rn/r¢ and wider ranges of possible short rates.

e The ratio ry/r; may depend on time if the volatility is a

function of time.

e Note that ry/r; has nothing to do with the current
short rate r if o is independent of r.

Binomial Interest Rate Tree (continued)

e We shall require that the paths combine as the binomial
process unfolds.

e The short rate r can go to r, and r, with equal
risk-neutral probability 1/2 in a period of length At.

e Hence the volatility of Inr after At time is

1 1 1 (’I‘h)
g —=—— —— In _
2 VAL T
(see Exercise 23.2.3 in text).

e Above, o is annualized, whereas r, and r, are period
based.
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Binomial Interest Rate Tree (continued)

e In general there are j possible rates in period j,

ri, TV, U2 riol T
VAR A RILN A EERRIE IR A B
where
v; = e2IVAL (82)

is the multiplicative ratio for the rates in period j (see
figure on next page).

e We shall call r; the baseline rates.

e The subscript j in o; is meant to emphasize that the
short rate volatility may be time dependent.
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Memory Issues

e Path independency: The term structure at any node is
independent of the path taken to reach it.

e So only the baseline rates r; and the multiplicative
ratios v; need to be stored in computer memory.

e This takes up only O(n) space.?
e Storing the whole tree would have taken up O(n?)
space.

— Daily interest rate movements for 30 years require
roughly (30 x 365)%/2 ~ 6 x 107 double-precision
floating-point numbers (half a gigabyte!).

aThroughout this chapter, n denotes the depth of the tree.
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Binomial Interest Rate Tree (concluded)

e In the limit, the short rate follows the following process, Set Thi in Moti
e Ings In otion
1) = u(t) e ® W) 83

r(t) = p(t)e ’ (83) e The abstract process is now in place.

in which the (percent) short rate volatility o(t) is a e Now need the annualized rates of return associated with

deterministic function of time. the various riskless bonds that make up the benchmark

e As the expected value of r(t) equals p(t)e?®°t/2 a yield curve and their volatilities.
declining short rate volatility is usually imposed to — In the U.S., for example, the on-the-run yield curve
preclude the short rate from assuming implausibly high obtained by the most recently issued Treasury
values. securities may be used as the benchmark curve.

e Incidentally, this is how the binomial interest rate tree

achieves mean reversion.
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Set Things in Motion (concluded)

e The term structure of (yield) volatilities® can be
estimated from either the historical data (historical
volatility) or interest rate option prices such as cap
prices (implied volatility).

e The binomial tree should be consistent with both term
structures.

e Here we focus on the term structure of interest rates.

20r simply the volatility (term) structure.

Cash flows:
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Model Term Structures
e The model price is computed by backward induction.
e Refer back to the figure on p. 710.

e Given that the values at nodes B and C are Pg and Pc,
respectively, the value at node A is then

Py + Pc

m + cash flow at node A.

e We compute the values column by column without
explicitly expanding the binomial interest rate tree (see
figure next page).

e This takes quadratic time and linear space.
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