Definitions and Basic Results (continued)

e A square matrix A is said to be symmetric if AT = A.

— Such matrices are nonsingular.

e A diagonal m x n matrix D = [d;;];; may be denoted

Matrix Computation by diag[D1,Ds,...,Dgy], where ¢ = min(m,n) and
Dz:d” for ].SZS(]

e The identity matrix is the square matrix

I =diag[1,1,...,1].
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Definitions and Basic Results

e Let A =[ai;li<i<m,1<j<n, Or simply A € R™*",

e The rank of a matrix is the largest number of linearly

denote an m x n matrix. Diagonal Matrices
e It can also be represented as [a1,a2,... ,a,] where - -
a; € R™ are vectors. x 00
— Vectors are column vectors unless stated otherwise. x 0000 x 00 0 x 0
) ) 0 x 0 0 0 0 x 0 0 0 x
e A is a square matrix when m = n.
0 0 x 0 0 0 0 x 0 0 O
0 0 O

independent columns. - -

e An m X n matrix is rank deficient if its rank is less than
min(m, n); otherwise, it has full rank.
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Definitions and Basic Results (concluded)

e A matrix has full column rank if its columns are linearly Decompositions

independent.

e Positive definite matrices can be factored as
e A real symmetric matrix A is positive definite if

— T
2TAz =) i.; @ijTizj > 0 for any nonzero vector z. A=LL",
,

e It is known that a matrix A is positive definite if and called the Cholesky decomposition.
only if there exists a matrix W such that A =W*™W
and W has full column rank.
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Orthogonal and Orthonormal Matrices

_ - e A vector set {z1,z2,...,2p } is orthogonal if all its

X X vectors are nonzero and the inner products z]z; equal

X X X O zero for i # j.

X XX e It is orthonormal if, furthermore,
X X X
X X X . 1 ifi=j
O X X X 0 otherwise
X X
N e e A real square matrix @ is orthogonal if QTQ = I.
e For such matrices, Q! = Q™ and QQ" =I.
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Eigenvalues and Eigenvectors

e An eigenvalue of a square matrix A is a complex
number A such that Az = Az for some nonzero vector . .. . .
. Generation of Multivariate Normal Distribution
z called an eigenvector.
(concluded)

e The eigenvalues for a real symmetric matrix are real. L
e Suppose we want to generate the multivariate normal

e For them, the Schur decomposition theorem? says that distribution with a covariance matrix C = PPT.
there exists a real orthogonal matrix ¢ such that
Q7AQ = diag[ A1, Az, .., A .

— @’s ith column is the eigenvector corresponding to

e We start with independent standard normal

distributions y1,y2,--- , Yn-

\i, and the eigenvectors form an orthonormal set. e Then P[y1,y2,...,yn]" has the desired distribution.

e The eigenvalues of positive definite matrices are positive.

2Also called the principal-axes theorem or the spectral theorem.
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Generation of Multivariate Normal Distribution o o o
Multivariate Derivatives Pricing

e Let  =[z1,22,...,2,]" be a vector random variable

with a positive definite covariance matrix C e Generating the multivariate normal distribution is

essential for the Monte Carlo pricing of multivariate

e As usual, assume E[z] = 0. derivatives.
e This distribution can be generated by Py. e The rainbow option on k assets has payoff

— C = PP" is the Cholesky decomposition of C.

' ' max(max (S, S2,...,Sk) — X,0)
—y=[v1,Y2,...,Yn]" is a vector random variable
with a covariance matrix equal to the identity matrix. at maturity.

e Reason (see text): e The closed-form formula is a multi-dimensional integral.?

Cov[Py] = PCov[y]|P* = PP =C. 2 Johnson (1987).
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Conditional Variance Models for Price Volatility

e Although a stationary model (see text for definition) has
constant variance, its conditional variance may vary.

e Take for example an AR(1) process X; = aX;_1 + €
with |a| < 1.

_ ‘ . — Here, ¢; is a stationary, uncorrelated process with

Time Series Analysis zero mean and constant variance 2.

e The conditional variance,
Var[Xt | Xt—l;Xt—Qa e ],

equals o2, which is smaller than the unconditional

variance Var[X;] = 02/(1 — a?).
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Conditional Variance Models for Price Volatility
(continued)

e In the Black-Scholes model, past information has no
effects on the variance of prediction.

e To address this drawback, consider models for returns
The historian is a prophet in reverse. X, consistent with a changing conditional variance:

— Friedrich von Schlegel (1772-1829)
Xt — U= I/tUt

— U; has zero mean and unit variance for all ¢.
— E[X:]=p for all ¢.
— Var[ X; |V, = v ] = v2.
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Conditional Variance Models for Price Volatility Conditional Variance Models for Price Volatility
(continued) (concluded)

e The process { V2} models the conditional variance. e Suppose we assume that conditional variances are

) deterministic functions of past returns:
e Suppose {U;} and {V;} are independent of each

other, which means {U;,Us,...,U, } and Vi = f(Xi—1, Xp—2,...)

{V1,Va,...,V,} are independent for all n. for some function f.

Th X} i lated b
* Then {X;} is uncorrelated because e Then V; can be computed given the information set of

Cov[ X;, Xiqr ] =0 (74) past returns:
for 7 > 0 (see text for proof). L 1 ={X; 1,X¢ 0,...}.
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ARCH Models®
Conditional Variance Models for Price Volatility e An influential model in this direction is the
(continued) autoregressive conditional heteroskedastic (ARCH)
model.

e If, furthermore, { V; } is stationary, then { X;} has

. ° is i ..
constant variance because Assume U; is independent of Vi, U;_1, Vi 1,U; o,

for all t.
(Xt . 2 e Consequently { X;} is uncorrelated by Eq. (74) on
= E[V}U, ] p. 641.

2
VA E[U?] e Assume furthermore that {U;} is a Gaussian

|
& = &

B
[
[
[ Vt2 } stationary, uncorrelated process.

e Then X;|I;—1 ~ N(u, V3).

2Engle (1982), co-winner of the 2003 Nobel Prize in Economic Sci-
ences.

e This makes { X;} stationary.
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ARCH Models (continued)
e The ARCH(p) process is defined by

» 1/2
Xi—p= (ao +Zai(Xt—i —,U)Q) Uz,

i=1
where aq,...,ap >0 and ag > 0.

e The variance V;? thus satisfies

p
VZ2=ao+ Zai(Xt_i — )
=1
e The volatility at time ¢ as estimated at time ¢ — 1
depends on the p most recent observations on squared

returns.

GARCH Models?

e A very popular extension of the ARCH model is the
generalized autoregressive conditional heteroskedastic
(GARCH) process.

e The simplest GARCH(1,1) process adds azV,2, to the
ARCH(1) process, resulting in

Vt2 =ag + a1(X¢—1 — M)2 + a2Vt2,1.

e The volatility at time t as estimated at time ¢t — 1
depends on the squared return and the estimated
volatility at time ¢ — 1.

2Bollerslev (1986) and Taylor (1986).
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ARCH Models (concluded)
e The ARCH(1) process
X; — p = (a0 + ar(Xp—1 — )20,
is the simplest.
e For it,
Var[ X; | X¢o1 = 24-1] = a0 +ay(z—1 — p)2.

e The process { X; } is stationary with finite variance if
and only if aq < 1, in which case Var[X;] = ao/(1—a1).
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GARCH Models (concluded)

e The estimate of volatility averages past squared returns
by giving heavier weights to recent squared returns (see
text).

e It is usually assumed that a; + a3 < 1 and ag > 0, in
which case the unconditional, long-run variance is given
by ao/(1 — a1 — az).

e A popular special case of GARCH(1,1) is the
exponentially weighted moving average process, which
sets ag to zero and as to 1 — ay.

e This model is used in J.P. Morgan’s RiskMetrics™.
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GARCH Option Pricing

e Options can be priced when the underlying asset’s
return follows a GARCH process.

e Let S; denote the asset price at date t.

e Let h? be the conditional variance of the return over
the period [¢,t+ 1] given the information at date .
— “One day” is merely a convenient term for any

elapsed time At.
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GARCH Option Pricing (continued)

e Adopt the following risk-neutral process for the price

€41 ~ N(0,1) given information at date ¢,

r

daily riskless return,

c 0.

v

2Duan (1995).

dynamics:?
S h?
In ;—:1 =7r— 7t + ht€t+1,
where
his = Bo+ Bk + Bahi (€1 — €)%, (75)

GARCH Option Pricing (continued)
e The five unknown parameters of the model are ¢, hq, Bo,
B1, and fs.
e It is postulated that (g, 81,82 > 0 to make the

conditional variance positive.

e The above process, called the nonlinear asymmetric
GARCH model, generalizes the GARCH(1, 1) model (see
text).
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GARCH Option Pricing (concluded)

e With y; =In S; denoting the logarithmic price, the
model becomes

2
Yer1 =Yg + 7 — ?t + he€rta.

e The pair (y;, h?) completely describes the current state.

e The conditional mean and variance of y;y1 are clearly
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h2
Elyii1 |y, hi] = yt"f-r—?t; (76)
Var[ Yt+1 | Yt, h? ] = hf (77)
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The Ritchken-Trevor (RT) Algorithm®

e The GARCH model is a continuous-state model.

e To approximate it, we turn to trees with discrete states.

e Path dependence in GARCH makes the tree for asset
prices explode exponentially.

e We need to mitigate this combinatorial explosion
somewhat.

aRitchken and Trevor (1999).
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The Ritchken-Trevor Algorithm (continued)

It remains to pick the jump size and the three branching
probabilities.

The role of ¢ in the Black-Scholes option pricing model
is played by h; in the GARCH model.

As a jump size proportional to o/y/n is picked in the
BOPM, a comparable magnitude will be chosen here.

Define v = hg, though other multiples of hg are
possible, and

B

Tn

The jump size will be some integer multiple n of ~,.

We call i the jump parameter (see p. 656).
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The Ritchken-Trevor Algorithm (continued)
e Partition a day into n periods.
e Three states follow each state (y;,h2) after a period.

e As the trinomial model combines, 2n + 1 states at date
t + 1 follow each state at date ¢ (recall p. 550).

e These 2n + 1 values must approximate the distribution
of (yt+1aht2+1)'

e So the conditional moments (76)—(77) at date ¢+ 1 on
p- 652 must be matched by the trinomial model to

:4 1 day .

Page 655

guarantee convergence to the continuous-state model. The seven values on the right approximate the distribution

of logarithmic price y;41.
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The Ritchken-Trevor Algorithm (continued)

e The middle branch does not change the underlying
asset’s price.

e The probabilities for the up, middle, and down branches

are
h? r— (h2/2
Du 2t 5 t/ ) , (78)
2ny 2myvn
L (79)
Pm = — 5 o
Ul
h? r—(h2/2
2n2y 2myv/n
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The Ritchken-Trevor Algorithm (continued)

e We can dispense with the intermediate nodes between
dates to create a (2n + 1)-nomial tree (see p. 660).

e The resulting model is multinomial with 2n + 1
branches from any state (y;, h?).
e There are two reasons behind this manipulation.

— Interdate nodes are created merely to approximate
the continuous-state model after one day.

— Keeping the interdate nodes results in a tree that is
n times as large.

The Ritchken-Trevor Algorithm (continued)

e It can be shown that the trinomial model takes on
2n + 1 values at date ¢t + 1 with a matching mean and
variance for y41 .

e The central limit theorem thus guarantees the desired

convergence as n increases.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 659

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 658

IUVn

Yt o

:~ 1 day >
This heptanomial tree is the outcome of the trinomial tree
on p. 656 after its intermediate nodes are removed.
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The Ritchken-Trevor Algorithm (continued)

e A node with logarithmic price y; + ¢ny, at date ¢t +1
follows the current node at date ¢ with price y; for
some —n < {<mn.

e To reach that price in n periods, the number of up
moves must exceed that of down moves by exactly £.

e The probability that this happens is
n! o
PO 2. T Pered
JusIm,Jd

with ju,jm,Ja > 0, n = ju + Jjm + Ja, and € = jy — ja-

The Ritchken-Trevor Algorithm (continued)

e The updating rule (75) on p. 650 must be modified to
account for the adoption of the discrete-state model.

e The logarithmic price y; + £y, at date ¢+ 1 following
state (y;, h?) at date t has a variance equal to

h§+1 = B + ,Blh? + 52h§(€;+1 — 6)2, (81)
— Above,
2
o — (r — h2/2
€y = by (f; W/2)  y_o 41,42, 4n,

is a discrete random variable with 2n + 1 values.
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The Ritchken-Trevor Algorithm (continued)

e A particularly simple way to calculate the P({)s starts
by noting that

(Pu + Pm +paz )" = Y P(f)at.
b=—n

e So we expand (puZ + pm + paz~1)™ and retrieve the
probabilities by reading off the coefficients.

e It can be computed in O(n?) time.
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The Ritchken-Trevor Algorithm (continued)

e Different conditional variances h? may require different
n so that the probabilities calculated by Eqs. (78)—(80)
on p. 657 lie between 0 and 1.

e This implies varying jump sizes.
e The necessary requirement p,, > 0 implies 5 > h; /7.

e Hence we try

n= [ht/7—|’ [ht/’y—| +1, [ht/’)/] +2,...

until valid probabilities are obtained or until their

nonexistence is confirmed.
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The Ritchken-Trevor Algorithm (continued)

e The sufficient and necessary condition for valid
probabilities to exist is

_ (p2 2 (B2
|7 — (h{/2)| < M (1 K (ht/2)|’1 ‘
2nmyv/n 272 2nyvn 2

e Obviously, the magnitude of 7 tends to grow with h;.

e The plot on p. 666 uses n =1 to illustrate our points
for a 3-day model.

e For example, node (1,1) of date 1 and node (2,3) of
date 2 pick n = 2.
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