Martingale Pricing

e Recall that the price of a European option is the
expected discounted future payoff at expiration in a

risk-neutral economy.

e This principle can be generalized using the concept of

martingale.
e Recall the recursive valuation of European option via
C=[pCu+ (1-p)Cal/R.

— p is the risk-neutral probability.
— 81 grows to $R in a period.
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Martingale Pricing (continued)
e Let C(i) denote the value of the option at time i.

e Consider the discount process
{C()/Ri=0,1,... ,n}.
e Then,

Cl+1) . pCu+(1-p)Cs C
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Martingale Pricing (continued)

e In general,

C(k) . c .
{ Tk ‘C(z) C} R 1<k (42)
e The discount process is a martingale:
C(7) C(k) .
2\ _ pr | 22 <k. 4
Rz 2 |: Rk I ? — k ( 3)

— ET is taken under the risk-neutral probability

conditional on the price information up to time 4.

e This risk-neutral probability is also called the EMM, or
the equivalent martingale (probability) measure.
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Martingale Pricing (continued)
e In general, Eq. (43) holds for all assets, not just options.
e When interest rates are stochastic, the equation becomes

) _ C(k)

T _

M@ JM(k)}’ sk

(44)

— M(j) is the balance in the money market account at
time j using the rollover strategy with an initial
investment of $1.

— So it is called the bank account process.

e It says the discount process is a martingale under .
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Martingale Pricing (concluded)

e If interest rates are stochastic, then M (j) is a random
variable.

- M(0)=1.
— M(j) is known at time j — 1.

e Identity (44) on p. 427 is the general formulation of
risk-neutral valuation.

Theorem 18 A discrete-time model is arbitrage-free if and
only if there exists a probability measure such that the
discount process is a martingale. This probability measure is
called the risk-neutral probability measure.
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Futures Price under the BOPM

e Futures prices form a martingale under the risk-neutral
probability.

— The expected futures price in the next period is

1—-d u—1
pfFu+(1—pf)Fd—F<u_du+u_dd) =F

(see p. 394).
e Can be generalized to
Fi=E7[F], i<k,
where Fj; is the futures price at time 1.

e It holds under stochastic interest rates.
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Martingale Pricing and Numeraire

e The martingale pricing formula (44) on p. 427 uses the
money market account as numeraire.?
— It expresses the price of any asset relative to the

money market account.

e The money market account is not the only choice for

numeraire.

e Suppose asset S’s value is positive at all times.

2Walras (1834-1910).
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Martingale Pricing and Numeraire (concluded)
e Choose S as numeraire.

e Martingale pricing says there exists a risk-neutral
probability # under which the relative price of any asset
C is a martingale:

— S(j) denotes the price of S at time j.

e So the discount process remains a martingale.
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Example _
Example (continued)
e Take the binomial model with two assets.
e This yields
e In a period, asset one’s price can go from S to Sy or
PQC1 — P1CQ 5201 — 5102
So. a=————=and f=—"—F+—-—"".
PQSl — P152 SgPl — Slpz
e In a period, asset two’s price can go from P to P; or
P e The derivative costs
2.
e Assume ¢ = aS+pP
S S S P,S — PS PSS, — P S
_1<_<_2 = S22 2C1—‘,——1 ! Cs.
P1 P P2 PgSl—Pl.S'Q P251—P152
to rule out arbitrage opportunities.
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Example (continued) Example (concluded)
e For any derivative security, let C; be its price at time e It is easy to verify that
one if asset one’s price moves to Si. c. G L ) Cy
e Let Cy be its price at time one if asset one’s price P~ Pp Py,
moves to Ss. — Above,
e Replicate the derivative by solving = (5/P) = (5:/Py) .
(S1/P1) — (S2/P2)
aS1+pP = Ch, e The derivative’s price using asset two as numeraire is
aSo+ PPy = Co thus a martingale under the risk-neutral probability p.
using « units of asset one and A3 units of asset two. e The expected returns of the two assets are irrelevant.
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Brownian Motion?
e Brownian motion is a stochastic process { X(¢),t >0}
with the following properties.
1. X(0) = 0, unless stated otherwise.
2. for any 0 <ty <ty <:---<ty, the random variables

X(tk) — X(tkfl)

for 1 < k <n are independent.”

3. for 0 <s<t, X(t)— X(s) is normally distributed
with mean u(t — s) and variance o?(t — s), where pu
and o # 0 are real numbers.

aRobert Brown (1773-1858).
bSo X (t) — X(s) is independent of X (r) for r < s < t.

Example

o If {X(t),t >0} is the Wiener process, then
X(t)— X(s) ~N(0,t—s).

e A (u,0) Brownian motion Y ={Y (¢),t > 0} can be
expressed in terms of the Wiener process:

Y(t) = ut + o X (2).

e As Y(t+s) —Y(t) ~ N(us,o%s), uncertainty about the
future value of Y grows as the square root of how far
we look into the future.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 436

Brownian Motion (concluded)

e Such a process will be called a (u, o) Brownian motion

with drift g and variance o?.

e The existence and uniqueness of such a process is
guaranteed by Wiener’s theorem.?

e Although Brownian motion is a continuous function of ¢
with probability one, it is almost nowhere differentiable.

e The (0,1) Brownian motion is also called the Wiener
process.

aNorbert Wiener (1894-1964).
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Brownian Motion as Limit of Random Walk

Claim 1 A (u,0) Brownian motion is the limiting case of
random walk.

A particle moves Az to the left with probability 1 — p.

It moves to the right with probability p after At time.

Assume n =t/At is an integer.

Its position at time ¢ is

Yt)=Az (X1 +Xo+--+ Xn).
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Brownian Motion as Limit of Random Walk
(continued)

e (continued)

— Here

X, = 41 if the ith move is to the right,
o —1 if the ith move is to the left.

— X, are independent with
Prob[X; =1] =p=1— Prob[ X; = —1].

e Recall E[X;]=2p—1 and Var[X;]=1- (2p— 1)

Brownian Motion as Limit of Random Walk
(concluded)

e Thus, {Y(t),t > 0} converges to a (u,o) Brownian
motion by the central limit theorem.

e Brownian motion with zero drift is the limiting case of
symmetric random walk by choosing u = 0.

e Note that
Var[Y (¢t + At) — Y ()]
=Var[Az X,,11] = (Az)? x Var[ X, 1] — o?At.

e Similarity to the the BOPM: The p is identical to the
probability in Eq. (25) on p. 249 and Az = Inwu.
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Brownian Motion as Limit of Random Walk
(continued)

e Therefore,
EY(t)] =n(Az)(2p - 1),
Var[Y (t)] = n(Az)* [1— (2p—1)*].
e With Az =oVAt and p=[1+ (u/o)VAt]/2,
E[Y(t)] = noVAt(u/o)VAt=pt,
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Geometric Brownian Motion
e Let X ={X(t),t >0} be a Brownian motion process.

e The process
{v(t) =¥t >0},

is called geometric Brownian motion.
e Suppose further that X is a (i, o) Brownian motion.
e X(t) ~ N(ut,0%t) with moment generating function
E |:esX(t):| =~ E[Y(t)*] = hts+(o?ts/2)

from Eq. (17) on p 146.

Var[Y(t)] = no’At[1— (u/0)’At] — ot
as At — 0.
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Geometric Brownian Motion (continued)
e In particular,
E[Y(t)] = eut+(02t/2)’
Var[Y (¢)] = E [Y(t)*] — E[Y(t)]?

2 2
— p2ut+o’t (eu t 1) ‘

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 444
Y(t)
=== Time (t
0.2 0.4 0.6 0=8-~ _ 1 (t)
~~.
-1
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Geometric Brownian Motion (concluded)

Useful for situations in which percentage changes are
independent and identically distributed.

e Let Y,, denote the stock price at time n and Yy = 1.

e Assume relative returns X; =Y;/Y;_1 are independent
and identically distributed.

e Then

n
InYy, = Z In X;
i=1
is a sum of independent, identically distributed random
variables.

e Thus {InY,,n >0} is approximately Brownian motion.
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Continuous-Time Financial Mathematics
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Stochastic Integrals
e Use W={W(t),t >0} to denote the Wiener process.
e The goal is to develop integrals of X from a class of
stochastic processes,?
t
I(X) z/ X dw, t>0.
0
e I,(X) is a random variable called the stochastic integral
of X with respect to W.

e The stochastic process {I;(X),t > 0} will be denoted
by [XdW.

ato (1915-).
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Ito Integral
e A theory of stochastic integration.
e As with calculus, it starts with step functions.

e A stochastic process { X(¢)} is simple if there exist
0=ty <ty <--- such that

X(t) = X(tg—1) for t € [tx—1,tx), k=1,2,...

for any realization (see figure next page).

Stochastic Integrals (concluded)

e Typical requirements for X in financial applications are:
Prob[fOtX2(s) ds <oc]=1 forall t >0 or the
stronger fot E[X?(s)]ds < o0.

The information set at time ¢ includes the history of

X and W up to that point in time.

— But it contains nothing about the evolution of X or
W after t (nonanticipating, so to speak).

— The future cannot influence the present.

e {X(s),0<s<t} isindependent of
{W({t+u)—W(t),u>0}.
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Ito Integral (continued)

e The Ito integral of a simple process is defined as

n—1

L(X) = X ()W (ter1) — W(t) ], (45)
k=0

where t, = t.
— The integrand X is evaluated at tx, not tgi1.
e Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple
stochastic processes.

Ito Integral (concluded)

e It is a fundamental fact that f X dW is continuous
almost surely.

e The following theorem says the Ito integral is a

martingale.

e A corollary is the mean value formula

b
/ XdW] =0.

Theorem 19 The Ito integral [ X dW is a martingale.

E
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Ito Integral (continued)
e Let X ={X(¢),t >0} be a general stochastic process.

e Then there exists a random variable I;(X), unique
almost certainly, such that I,(X,,) converges in
probability to I;(X) for each sequence of simple
stochastic processes X7, Xo,... such that X, converges
in probability to X.

e If X is continuous with probability one, then I;(X,,)
converges in probability to I;(X) as
0n = maxi<k<n(ty —tg—1) goes to zero.
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Discrete Approximation
e Recall Eq. (45) on p. 452.

e The following simple stochastic process {)? (t) } can be
used in place of X to approximate the stochastic
integral f; X dw,

)/(:(s) = X(tg-1) for s € [tg_1,tk), k=1,2,... ,n.

e Note the nonanticipating feature of X.

— The information up to time s,
{X(0),W(t),0<t<s},

cannot determine the future evolution of X or W.
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Discrete Approximation (concluded)

e Suppose we defined the stochastic integral as

n—1

D X (k) [ W (trgr) — Wte) ]
k=0

e Then we would be using the following different simple
stochastic process in the approximation,

}7(5) = X(tg) for s € [tp_1,tx), k=1,2,...,n.

e This clearly anticipates the future evolution of X.

Ito Process

e The stochastic process X = { X;,t > 0} that solves

t t
Xt:X0+/ a(Xs,s)ds—i—/ b(X,,8)dW,, t>0
0 0

is called an Ito process.

— Xp is a scalar starting point.

— {a(Xs,t):t >0} and {b(X;,t):t>0} are
stochastic processes satisfying certain regularity

conditions.

e The terms a(X¢,t) and b(Xy,t) are the drift and the
diffusion, respectively.
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Ito Process (continued)

e A shorthand? is the following stochastic differential
equation for the Ito differential dXg,

dXt = CL(Xt, t) dt + b(Xt, t) th (46)
— Or simply dX; = a; dt + by dW;.

e This is Brownian motion with an instantaneous drift a;

and an instantaneous variance b?.

e X is a martingale if the drift a; is zero by Theorem 19
(p. 454).

2Langevin (1904).
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Ito Process (concluded)

e dW is normally distributed with mean zero and

variance dt.
e An equivalent form to Eq. (46) is
dX, = ay dt + bVdt €, (47)
where £ ~ N(0,1).

e This formulation makes it easy to derive Monte Carlo
simulation algorithms.

More Discrete Approximations

e Under fairly loose regularity conditions, approximation
(48) on p. 461 can be replaced by

X(tn+1)
=X (tn) + a(X (tn), tn) At + b(X (tn), tn) VALY (t,).

— Y(t9),Y(t1),... are independent and identically
distributed with zero mean and unit variance.
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Euler Approximation

The following approximation follows from Eq. (47),

~

X (tn+1)

=X (tn) + a(X (), tn) At + b(X (tn), tn) AW (t,),
(48)

where t,, = nAt.

It is called the Euler or Euler-Maruyama method.
e Under mild conditions, X (tn) converges to X (t,).

Recall that AW (t,,) should be interpreted as
W (tny1) — W(t,) instead of W(t,) — W(t,_1)-

More Discrete Approximations (concluded)

e A simpler discrete approximation scheme:

~

X(tn+1)
=X (tn) + a(X (tn), tn) At + b(X (tn), tn)VALE.
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(49)
— Prob[{ =1] =Prob[{ = —-1] =1/2.
— Note that E[¢] =0 and Var[{] =1.
e This clearly defines a binomial model.
e As At goes to zero, X converges to X.
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