Barrier Options?

Their payoff depends on whether the underlying asset’s

price reaches a certain price level H.

A knock-out option is an ordinary European option
which ceases to exist if the barrier H is reached by the
price of its underlying asset.

A call knock-out option is sometimes called a
down-and-out option if H < §.

A put knock-out option is sometimes called an
up-and-out option when H > S.

2A former student told me on March 26, 2004, she did not understand
what I meant by barrier options until she started working in a bank.
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Barrier Options (concluded)

e A knock-in option comes into existence if a certain
barrier is reached.

A down-and-in option is a call knock-in option that
comes into existence only when the barrier is reached
and H < S.

An up-and-in is a put knock-in option that comes into
existence only when the barrier is reached and H > S.

Formulas exist for all kinds of barrier options.

Binomial Tree Algorithms

e Barrier options can be priced by binomial tree
algorithms.

e Below is for the down-and-out option.
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S=8 X=6 H=4, R=125, u=2, and d = 0.5.
Backward-induction: C = (0.5 x C,, + 0.5 x Cy)/1.25.
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Daily Monitoring

e Almost all barrier options monitor the barrier only for

Binomial Tree Algorithms (concluded) the daily closing prices.
e But convergence is erratic because H is not at a price e In that case, only nodes at the end of a day need to
level on the tree (see plot on next page). check for the barrier condition.
— Typically, the barrier has to be adjusted to be at a e We can even remove intraday nodes to create a
price level. multinomial tree.
e Solutions will be presented later. — A node is then followed by d + 1 nodes if each day is

partitioned into d periods.

e This saves time and space.
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A Heptanomial Tree (6 Periods Per Day)

Down- and-in call val ue
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Foreign Currencies

e S denotes the spot exchange rate in domestic/foreign

terms.
e o denotes the volatility of the exchange rate.
e 1 denotes the domestic interest rate.
e 7 denotes the foreign interest rate.

e A foreign currency is analogous to a stock paying a
known dividend yield.
— Foreign currencies pay a “continuous dividend yield”
equal to 7 in the foreign currency.
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Foreign Exchange Options

e Foreign exchange options are settled via delivery of the
underlying currency.

e A primary use of foreign exchange (or forex) options is
to hedge currency risk.

e Consider a U.S. company expecting to receive 100
million Japanese yen in March 2000.

e Those 100 million Japanese yen will be exchanged for
U.S. dollars.

Foreign Exchange Options (continued)

e The contract size for the Japanese yen option is
JPY6,250,000.

e The company purchases 100,000,000/6,250,000 = 16
puts on the Japanese yen with a strike price of $.0088
and an exercise month in March 2000.

e This gives the company the right to sell 100,000,000
Japanese yen for 100,000,000 x .0088 = 880,000 U.S.
dollars.
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Foreign Exchange Options (concluded)

e The formulas derived for stock index options in Eqs. (26)
on p. 268 apply with the dividend yield equal to 7:
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C=8e""N(z)— Xe ""N(z — ay/7), (29)
P=Xe ""N(—z +0y7)— Se ""N(-=z),
(29')
— where
_ In(§/X) +(r—F+0%/2)7
r = .
oVT
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Path-Dependent Derivatives (continued)

e In contrast, some derivatives are path-dependent in that

| their terminal payoff depends “critically” on the path.
Bar the roads!

Bar the paths! e The (arithmetic) average-rate call has a terminal value

Wert thou to flee from here, wert thou given by

to find all the roads of the world, max ( 1 isi ~ X, 0) _
the way thou seekst n+1 =

the path to that thou’dst find not|.|

— Richard Wagner (1813-1883), Parsifal

e The average-rate put’s terminal value is given by

1
max (X— n+1¥5,~,0).
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Path-Dependent Derivatives

e Let Sg,S1,...,S, denote the prices of the underlying Path-Dependent Derivatives (Continued)
asset over the life of the option.

. . . e Average-rate options are also called Asian options.
e S; is the known price at time zero.

. . .. e They are useful hedging tools for firms that will make a
e S, is the price at expiration. . .
stream of purchases over a time period because the costs

e The standard European call has a terminal value are likely to be linked to the average price.

depending only on the last price, max(S, — X, 0). Th iy B
e They are mostly European.

e Its value thus depends only on the underlying asset’s
terminal price regardless of how it gets there.
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Path-Dependent Derivatives (concluded)

e A lookback call option on the minimum has a terminal
payoft of S, — ming<;<n S;.

e A lookback put option on the maximum has a terminal
payoff of maxg<i<n Si — Sn.

e The fixed-strike lookback option provides a payoff of
max(maxo<;<n S; — X,0) for the call and
maX(X - minosz'sn S,L', 0) for the put.

e Lookback call and put options on the average are called
average-strike options.
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Average-Rate Options
e Average-rate options are notoriously hard to price.
e The binomial tree for the averages does not combine.

e A straightforward algorithm is to enumerate the 2"
price paths for an n-period binomial tree and then
average the payoffs.

e But the exponential complexity makes this naive
algorithm impractical.

e As a result, the Monte Carlo method and approximation
algorithms are some of the alternatives left.
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Pricing Some Path-Dependent Options
e Not all path-dependent derivatives are hard to price.
e Barrier options are easy to price.

e When averaging is done geometrically, the option payoffs
are

max ((5051 S SVt X 0) ,

max (X (881 -+ Sp) /(D). 0) :
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Pricing Some Path-Dependent Options (concluded) Approximation Algorithm for Asian Options

continued
e The limiting analytical solutions are the Black-Scholes ( )

formulas. e Divide this value by j+ 1 and call it Apnax(J,17).
— With the volatility set to 0, = 0/V/3. e Similarly, the running sum has a minimum value of
— With the dividend yield set to g, = (r + ¢+ 02/6)/2. J
e The formula is therefore So(l+d+d?+---+d +du+ -+ du ™)
C =Se %" N(z) — Xe ""N(z — 0,\/T), — S 1—d*! + Sodiu 1- ujfi‘

1-d 1—u
P=Xe ""N(—z + 0a\/T) — Se %" N(-x),

Divide this value by j + 1 and call it Amin(7,1%).

_ where z = ln(S/X)+a(-r:/f1’_—a+aa/2)'r.

Amin and Apax are running averages.
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Approximation Algorithm for Asian Options
e Based on the BOPM.

Path with maximum
running average

Consider a node at time j with the underlying asset

price equal to Sou? ~td’.

e Name such a node N(j,1).

The running sum an:o S at this node has a

maximum value of

7 Path with minimum
So(l+u+u?+ - 4w~ +u/~id 4 -+ ul i) rHnning evereee
1 — ui=it 1
=8y ——— + Sgu! " d .
0T, TP ATy
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Approximation Algorithm for Asian Options
(continued)

e The possible running averages at N(j,7) are far too
many: (z)
e But all lie between Amin(j, i) and Amax(J,1)-

e Pick £+ 1 equally spaced values in this range and treat
them as the true and only running averages:

.. k—m .. m .
Am(]al) = ( L Amin(]al) + (Z) Amax(]az)
for m=0,1,... k.
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Approximation Algorithm for Asian Options
(continued)

e Such “bucketing” introduces errors, but it works
reasonably well in practice.?

e A better alternative is to pick values whose logarithms
are equally spaced.

e Still other alternatives are possible.

e Generally, k¥ must scale with at least n to show

convergence. b

aHull and White (1993).
bDai, Huang, and Lyuu (2002).

Approximation Algorithm for Asian Options
(continued)

e Backward induction calculates the option values at each
node for the k + 1 running averages.

e Suppose the current node is N(j,4) and the running
average is a.

e Assume the next node is N(j + 1,1), after an up move.

o As the asset price there is Sou?t17d!, we seek the
option value corresponding to the running average

. i+1—4 71
4 = (j+1)a+ Souw Tt 'd"
u — . .
Jj+2
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Approximation Algorithm for Asian Options
(continued)

e But A, is not likely to be one of the £+ 1 running
averages at N(j + 1,7)!

e Find the running averages that bracket it, that is,

A[(j + 1,’i) <A, < Az+1(j + 1,i).

e Express A, as a linearly interpolated value of the two

running averages,

Ay =aAi(j+1,0)+ (1 —a) Ap1(+1,4), 0<az<1.
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Approximation Algorithm for Asian Options
(continued)

e Obtain the approximate option value given the running
average A, via

Co=2Ce(j+1,4) + (1 — ) Cpy1(5 + 1,9).

— Cy(t,s) denotes the option value at node N(t,s)
with running average A(t, s).

e This interpolation introduces the second source of error.

Approximation Algorithm for Asian Options
(continued)

e The same steps are repeated for the down node
N(j+41,i+ 1) to obtain another approximate option
value Cy.

e Finally obtain the option value as
[pCu + (1= p)Cale 8"
e The running time is O(kn?).

— There are O(n?) nodes.

— Each node has O(k) buckets.
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— f+1

— 41
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Approximation Algorithm for Asian Options
(concluded)

e Arithmetic average-rate options were assumed to be
newly issued: There was no historical average to deal
with.
e This problem can be easily dealt with (see text).
e How about the Greeks??
2Thanks to a lively class discussion on March 31, 2004.
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A Numerical Example

e Consider a European arithmetic average-rate call with
strike price 50.

e Assume zero interest rate in order to dispense with
discounting.

e The minimum running average at node A in the figure
on p. 350 is 48.925.

e The maximum running average at node A in the same
figure is 51.149.

A Numerical Example (continued)

e Each node picks k£ =3 for 4 equally spaced running
averages.

e The same calculations are done for node A’s successor
nodes B and C.

e Suppose node A is 2 periods from the root node.

e Consider the up move from node A with running
average 49.666.
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53.447
50,056 | 0.056
51206 | 1.206
52.356 | 2.356
53506 | 3.506
B
50
48.925 | 0.0269
49,666 | 0.2956
50.408 | 0.5782
51.149 | 0.8617
A ; 46.775
’ 46,827 | 0.000
47.903 | 0.000
u=1.069 48.979 | 0.000
d=0.936
p=0483 50.056 | 0.056
C
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A Numerical Example (continued)

e Because the stock price at node B is 53.447, the new
running average will be

3 x 49.666 + 53.447

~ 50.612.
1 50.6

we solve
50.612 = z x 50.056 + (1 — z) x 51.206

to obtain z ~ 0.517.
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e With 50.612 lying between 50.056 and 51.206 at node B,




A Numerical Example (concluded)

e The option values corresponding to running averages

A Numerical Example (continued) 47.903 and 48.979 at node C are both 0.0.
e The option values corresponding to running averages e Their contribution to the option value corresponding to
50.056 and 51.206 at node B are 0.056 and 1.206, running average 49.666 at node A is 0.0.
respectively.

e Finally, the option value corresponding to running
e Their contribution to the option value corresponding to average 49.666 at node A equals

running average 49.666 at node A is weighted linearly as px 0.611+ (1 — p) x 0.0 ~ 0.2956,

z x 0.056 + (1 — z) x 1.206 ~ 0.611. where p — 0.483.

e The remaining three option values at node A can be
computed similarly.
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A Numerical Example (continued) Remarks on Asian Option Pricing
e Now consider the down move from node A with running e Asian option pricing is an active research area.

average 49.666. . '
e The above algorithm overestimates the “true” value.?

e Because the stock price at node C is 46.775, the new .
) X e To guarantee convergence, k needs to grow with n.
running average will be

3 x 49.666 + 46.775 e Analytical approximations for European Asian options
1 ~ 48.944. exist.
e With 48.944 lying between 47.903 and 48.979 at node C, e There is a convergent approximation algorithm that
we solve does away with interpolation with a provable running

time of 20(vVn) b
48.944 = x x 47.903 4+ (1 — ) x 48.979

aDai, Huang, and Lyuu (2002).

. bDai and L 2002, 2004).
to obtain = ~ 0.033. ai and Lyuu (2002, 2004)
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Remarks on Asian Option Pricing (continued)

e There is an O(kn?)-time algorithm with an error bound
of O(Xn/k) from the naive O(2")-time binomial tree
algorithm in the case of European Asian options.?

— k can be varied for trade-off between time and

accuracy.
— So if we pick k = O(n?), then the error is O(1/n),
and the running time is O(n?).

e In practice, log-linear interpolation works better.

aAingworth, Motwani, and Oldham (2000).
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Remarks on Asian Option Pricing (concluded)

e Another approximation algorithm reduces the error to
O(X/n/k).2
— It varies the number of buckets per node.
— If we pick k proportional to n, the error is O(n~°9).
— So if we pick k = O(n!%), then the error is O(1/n),

and the running time is O(n>?®).

e Under some “reasonable assumptions,” Hsu and Lyuu
(2004) produce an O(n?)-time algorithm with an error
bound of O(1/n).

2Dai, Huang, and Lyuu (2002).
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