Diagonal Traversal of the Tree (continued)

Two properties of the propagation of early exercise nodes (E) and non-early-exercise nodes (C) during backward induction are:

- 1. A node is an early-exercise node if both its successor nodes are exercised early.
 - A terminal node that is in-the-money is considered an early exercise node.
- 2. If a node is a non-early-exercise node, then all the earlier nodes at the same horizontal level are also non-early-exercise nodes.
 - Here we assume ud = 1.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 273

E * E C C E T C E Rule 1 Rule 2 T

Diagonal Traversal of the Tree (continued)

- Nothing is achieved if the whole tree needs to be explored.
- We need a stopping rule.
- The process stops when a diagonal *D* consisting *entirely* of non-early-exercise nodes has been encountered.
 - By Rule 2, all early-exercise nodes have been found.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 275

Diagonal Traversal of the Tree (continued)

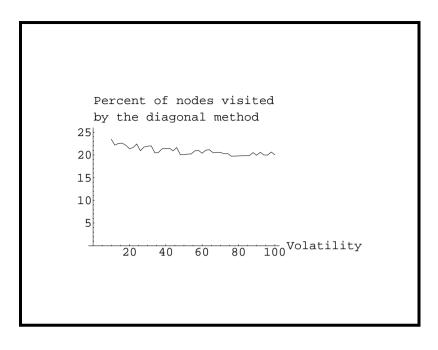
- When the algorithm finds an early exercise node in traversing a diagonal, it can stop immediately and move on to the next diagonal.
 - By Rule 1 and the sequence by which the nodes on the diagonals are traversed, the rest of the nodes on the current diagonal must all be early-exercise nodes.
 - They are hence computable on the fly when needed.

Diagonal Traversal of the Tree (continued)

- Also by Rule 1, the traversal can start from the zero-valued terminal node just above the strike price.
- The upper triangle above the strike price can be skipped since its nodes are all zero valued.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 277



©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 279

Traverse from here Stop at diagonal **D**Visited nodes Strike price Exercise boundary Early exercise nodes Early exercise nodes by Rule 1

Diagonal Traversal of the Tree (continued)

- It remains to calculate the option value.
- It is the weighted sum of the discounted option values of the nodes on D.
 - How does the payoff influence the root?
 - We cannot go from the root to a node at which the option will be exercised without passing through D.
- The weight is the probability that the stock price hits the diagonal for the *first* time at that node.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 278

Diagonal Traversal of the Tree (concluded)

- For a node on D which is the result of i up moves and j down moves, the said probability is $\binom{i+j-1}{i} p^i (1-p)^j$.
 - A valid path must pass through the node which is the result of i up moves and j-1 down moves.
- Call the option value on this node P_i .
- The desired option value then equals

$$\sum_{i=0}^{a-1} {i+j-1 \choose i} p^{i} (1-p)^{j} P_{i} e^{-(i+j) r \Delta t}.$$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 281

The Analysis

- Since each node on D has been evaluated by that time, this part of the computation consumes O(n) time.
- The space requirement is also linear in n since only the diagonal has to be allocated space.
- \bullet This idea can save computation time when D does not take long to find.
- Proof of Rule 1 and 2 is in the text.

Sensitivity Analysis of Options

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 283

Sensitivity Measures ("The Greeks")

- Understanding how the value of a security changes relative to changes in a given parameter is key to hedging.
 - Duration, for instance.
- We now ask the same questions of options.
- Let $x \equiv \frac{\ln(S/X) + (r + \sigma^2/2) \tau}{\sigma \sqrt{\tau}}$ (recall p. 254).
- Note that

$$N'(y) = (1/\sqrt{2\pi}) e^{-y^2/2} > 0,$$

the density function of standard normal distribution.

Delta

- Defined as $\Delta \equiv \partial f/\partial S$.
 - -f is the price of the derivative.
 - -S is the price of the underlying asset.
- The delta of a portfolio of derivatives on the same underlying asset is the sum of their individual deltas.
- The delta used in the BOPM is the discrete analog.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 285

Delta (concluded)

• The delta of a European call on a non-dividend-paying stock equals

$$\frac{\partial C}{\partial S} = N(x) > 0.$$

• The delta of a European put equals

$$\frac{\partial P}{\partial S} = N(x) - 1 < 0.$$

• The delta of a long stock is 1.

Delta Neutrality

- A position with a total delta equal to 0 is delta-neutral.
- A delta-neutral portfolio is immune to small price changes in the underlying asset.
- Creating one serves for hedging purposes.
 - A portfolio consisting of a call and $-\Delta$ shares of stock is delta-neutral.
 - Short Δ shares of stock to hedge a long call.
- Hedge a position in a security with a delta of Δ_1 by shorting Δ_1/Δ_2 units of a security with a delta of Δ_2 .

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 287

Theta (Time Decay)

- Defined as the rate of change of a security's value with respect to time, or $\Theta \equiv -\partial f/\partial \tau$.
- For a European call on a non-dividend-paying stock,

$$\Theta = -\frac{SN'(x)\,\sigma}{2\sqrt{\tau}} - rXe^{-r\tau}N(x - \sigma\sqrt{\tau}) < 0.$$

- The call loses value with the passage of time.
- For a European put,

$$\Theta = -\frac{SN'(x)\,\sigma}{2\sqrt{\tau}} + rXe^{-r\tau}N(-x + \sigma\sqrt{\tau}).$$

- Can be negative or positive.

Gamma

- Defined as the rate of change of its delta with respect to the price of the underlying asset, or $\Gamma \equiv \partial^2 \Pi / \partial S^2$.
- Measures how sensitive delta is to changes in the price of the underlying asset.
- A portfolio with a high gamma needs in practice be rebalanced more often to maintain delta neutrality.
- Delta \sim duration; gamma \sim convexity.
- The gamma of a European call or put on a non-dividend-paying stock is $N'(x)/(S\sigma\sqrt{\tau}) > 0$.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 289

Vega^a (Lambda, Kappa, Sigma)

- Defined as the rate of change of its value with respect to the volatility of the underlying asset $\Lambda \equiv \partial \Pi / \partial \sigma$.
- Volatility often changes over time.
- A security with a high vega is very sensitive to small changes in volatility.
- The vega of a European call or put on a non-dividend-paying stock is $S\sqrt{\tau} N'(x) > 0$.
 - Higher volatility increases option value.

Rho

- Defined as the rate of change in its value with respect to interest rates $\rho \equiv \partial \Pi / \partial r$.
- The rho of a European call on a non-dividend-paying stock is

$$X\tau e^{-r\tau}N(x-\sigma\sqrt{\tau})>0.$$

• The rho of a European put on a non-dividend-paying stock is

$$-X\tau e^{-r\tau}N(-x+\sigma\sqrt{\tau})<0.$$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 291

Numerical Greeks

- Needed when closed-form formulas do not exist.
- Take delta as an example.
- A standard method computes the finite difference,

$$\frac{f(S+\Delta S)-f(S-\Delta S)}{2\Delta S}.$$

• The computation time roughly doubles that for evaluating the derivative security itself.

^aVega is not Greek.

An Alternative Numerical Delta^a

- Use intermediate results of the binomial tree algorithm.
- When the algorithm reaches the end of the first period, f_u and f_d are computed.
- These values correspond to derivative values at stock prices Su and Sd, respectively.
- Delta is approximated by

$$\frac{f_u - f_d}{Su - Sd}.$$

• Almost zero extra computational effort.

^aPelsser and Vorst (1994).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 293

Numerical Gamma

- At the stock price (Suu + Sud)/2, delta is approximately $(f_{uu} f_{ud})/(Suu Sud)$.
- At the stock price (Sud + Sdd)/2, delta is approximately $(f_{ud} f_{dd})/(Sud Sdd)$.
- Gamma is the rate of change in deltas between (Suu + Sud)/2 and (Sud + Sdd)/2, that is,

$$\frac{\frac{f_{uu}-f_{ud}}{Suu-Sud} - \frac{f_{ud}-f_{dd}}{Sud-Sdd}}{(Suu - Sdd)/2}$$

Finite Difference Fails for Numerical Gamma

• Numerical differentiation gives

$$\frac{f(S + \Delta S) - 2f(S) + f(S - \Delta S)}{(\Delta S)^2}.$$

- It does not work (see text).
- Why did the binomial tree version work?

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

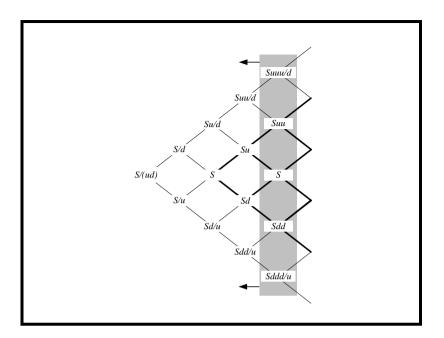
Page 295

Other Numerical Greeks

• The theta can be computed as

$$\frac{f_{ud}-f}{2(\tau/n)}$$
.

- In fact, the theta of a European option will be shown to be computable from delta and gamma.
- For vega and rho, there is no alternative but to run the binomial tree algorithm twice.



©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 297

Extensions of Options Theory

Pricing Corporate Securities^a

- Interpret the underlying asset interpretated as the total value of the firm.
- The option pricing methodology can be applied to pricing corporate securities.
- Assume:
 - A firm can finance payouts by the sale of assets.
 - If a promised payment to an obligation other than stock is missed, the claim holders take ownership of the firm and the stockholders get nothing.

^aBlack and Scholes (1973).

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 299

Risky Zero-Coupon Bonds and Stock

- Consider XYZ.com.
- Capital structure:
 - -n shares of its own common stock, S.
 - Zero-coupon bonds with an aggregate par value of X.
- What is the value of the bonds, B?
- What is the value of the XYZ.com stock?

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 298

Risky Zero-Coupon Bonds and Stock (continued)

- On the bonds' maturity date, if the total value of the firm V^* is less than the bondholders' claim X, the firm declares bankruptcy and the stock becomes worthless.
- If $V^* > X$, then the bondholders obtain X and the stockholders $V^* X$.

	$V^* \leq X$	$V^* > X$
Bonds	V^*	X
Stock	0	$V^* - X$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 301

Risky Zero-Coupon Bonds and Stock (continued)

- The stock is a call on the total value of the firm with a strike price of X and an expiration date equal to the bonds'.
 - This call provides the limited liability for the stockholders.
- The bonds are a covered call on the total value of the firm.
- \bullet Let V stand for the total value of the firm.
- Let C stand for the call.

Risky Zero-Coupon Bonds and Stock (continued)

- Thus nS = C and B = V C.
- Knowing C amounts to knowing how the value of the firm is divided between the stockholders and the bondholders.
- Whatever the value of C, the total value of the stock and bonds at maturity remains V^* .
- The relative size of debt and equity is irrelevant to the firm's current value V.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 303

Risky Zero-Coupon Bonds and Stock (concluded)

• From Theorem 12 (p. 254) and the put-call parity,

$$nS = VN(x) - Xe^{-r\tau}N(x - \sigma\sqrt{\tau}),$$

$$B = VN(-x) + Xe^{-r\tau}N(x - \sigma\sqrt{\tau}).$$

- where

$$x \equiv \frac{\ln(V/X) + (r + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}.$$

• The continuously compounded yield to maturity of the firm's bond is

$$\frac{\ln(X/B)}{\tau}$$
.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 302

A Numerical Example

- XYZ.com's assets consist of 1,000 shares of Merck as of March 20, 1995.
 - Merck's market value per share is \$44.5.
- XYZ.com's securities consist of 1,000 shares of common stock and 30 zero-coupon bonds maturing on July 21, 1995.
- Each bond promises to pay \$1,000 at maturity.
- n = 1000, $V = 44.5 \times n = 44500$, and $X = 30 \times n = 30000$.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 305

Page 306

			<u></u> —С	Call—	—Р	ut—
Option	Strike	Exp.	Vol.	Last	Vol.	Last
Merck	30	Jul	328	151/4		
441/2	35	Jul	150	91/2	10	1/16
441/2	40	Apr	887	43/4	136	1/16
441/2	40	Jul	220	51/2	297	1/4
441/2	40	Oct	58	6	10	1/2
441/2	45	Apr	3050	7/8	100	11/8
441/2	45	May	462	13/8	50	13/8
441/2	45	Jul	883	115/16	147	13/4
441/2	45	Oct	367	23/4	188	21/16

A Numerical Example (continued)

- The Merck option relevant for pricing is the July call with a strike price of X/n = 30 dollars.
- Such a call is selling for \$15.25.
- So XYZ.com's stock is worth $15.25 \times n = 15250$ dollars.
- The entire bond issue is worth B = 44500 15250 = 29250 dollars.
 - Or \$975 per bond.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 307

A Numerical Example (continued)

- The XYZ.com bonds are equivalent to a default-free zero-coupon bond with \$X par value plus n written European puts on Merck at a strike price of \$30.
 - By the put-call parity.
- The difference between B and the price of the default-free bond is the value of these puts.
- The table next page shows the total market values of the XYZ.com stock and bonds under various debt amounts X.

Promised payment to bondholders ${\it X}$	Current market value of bonds ${\cal B}$	Current market value of stock nS	Current total value of firm ${\it V}$
30,000	29,250.0	15,250.0	44,500
35,000	35,000.0	9,500.0	44,500
40,000	39,000.0	5,500.0	44,500
45,000	$42,\!562.5$	1,937.5	44,500

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 309

A Numerical Example (continued)

- Suppose the promised payment to bondholders is \$45,000.
- Then the relevant option is the July call with a strike price of 45000/n = 45 dollars.
- Since that option is selling for \$115/16, the market value of the XYZ.com stock is $(1+15/16) \times n = 1937.5$ dollars.
- The market value of the stock decreases as the debt-equity ratio increases.

A Numerical Example (continued)

- There are conflicts between stockholders and bondholders.
- An option's terms cannot be changed after issuance.
- But a firm can change its capital structure.
- There lies one difference between options and corporate securities.
- So parameters such volatility, dividend, and strike price are under partial control of the stockholders.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 311

A Numerical Example (continued)

- Suppose XYZ.com issues 15 more bonds with the same terms to buy back stock.
- The total debt is now X = 45,000 dollars.
- The table on p. 309 says the total market value of the bonds should be \$42,562.5.
- The *new* bondholders pay $42562.5 \times (15/45) = 14187.5$ dollars.
- The remaining stock is worth \$1,937.5.

A Numerical Example (continued)

• The stockholders therefore gain

$$14187.5 + 1937.5 - 15250 = 875$$

dollars.

• The original bondholders lose an equal amount,

$$29250 - \frac{30}{45} \times 42562.5 = 875. \tag{28}$$

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 313

A Numerical Example (continued)

- Suppose the stockholders distribute \$14,833.3 cash dividends by selling $(1/3) \times n$ Merck shares.
- They now have \$14,833.3 in cash plus a call on $(2/3) \times n$ Merck shares.
- The strike price remains X = 30000.
- This is equivalent to owning two-thirds of a call on n Merck shares with a total strike price of \$45,000.
- The n such calls are worth \$1,937.5 (see p. 306).
- So the total market value of the XYZ.com stock is $(2/3) \times 1937.5 = 1291.67$ dollars.

A Numerical Example (concluded)

- The market value of the XYZ.com bonds is hence $(2/3) \times n \times 44.5 1291.67 = 28375$ dollars.
- Hence the stockholders gain

 $14833.3 + 1291.67 - 15250 \approx 875$

dollars.

• The bondholders watch their value drop from \$29,250 to \$28,375, a loss of \$875.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 315

Other Examples

- Subordinated debts as bull call spreads.
- Warrants as calls.
- Callable bonds as American calls with 2 strike prices.
- Convertible bonds.

©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 314