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• Review of Derivatives Research.

• Risk Magazine.
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Introduction
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A Very Brief History of Modern Finance

• 1900: Ph.D. thesis Mathematical Theory of Speculation

of Bachelier (1870–1946).

• 1950s: modern portfolio theory (MPT) of Markowitz.

• 1960s: the Capital Asset Pricing Model (CAPM) of

Treynor, Sharpe, Lintner (1916–1984), and Mossin.

• 1960s: the efficient markets hypothesis of Samuelson and

Fama.

• 1970s: theory of option pricing of Black (1938–1995) and

Scholes.

• 1970s–present: new instruments and pricing methods.
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A Very Brief and Biased History of Modern Computers

• 1930s: theory of Gödel (1906–1978), Turing (1912–1954), and

Church (1903–1995).

• 1940s: first computers (Z3, ENIAC, etc.) and birth of

solid-state transistor (Bell Labs).

• 1950s: Texas Instruments patented integrated circuits;

Backus (IBM) invented FORTRAN.

• 1960s: Internet (ARPA) and mainframes (IBM).

• 1970s: relational database (Codd) and PCs (Apple).

• 1980s: IBM PC and Lotus 1-2-3.

• 1990s: Windows 3.1 (Microsoft) and World Wide Web

(Berners-Lee).

c©2004 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 6

What This Course Is About

• Financial theories in pricing.

• Mathematical backgrounds.

• Derivative securities.

• Pricing models.

• Efficient algorithms in pricing financial instruments.

• Research problems.

• Finding your thesis directions.
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What This Course Is Not About

• How to program.

• Basic mathematics in calculus, probability, and algebra.

• Details of the financial markets.

• How to be rich.

• How the market will perform tomorrow.
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Outstanding U.S. Debts (bln)

Year Municipal Treasury
Mortgage−

related
U.S.

corporate
Fed

agencies
Money
market

Asset−
backed Total

85 859.5 1,437.7 372.1 776.5 293.9 847.0 0.9 4,587.6

86 920.4 1,619.0 534.4 959.6 307.4 877.0 7.2 5,225.0

87 1,010.4 1,724.7 672.1 1,074.9 341.4 979.8 12.9 5,816.2

88 1,082.3 1,821.3 772.4 1,195.7 381.5 1,108.5 29.3 6,391.0

89 1,135.2 1,945.4 971.5 1,292.5 411.8 1,192.3 51.3 7,000.0

90 1,184.4 2,195.8 1,333.4 1,350.4 434.7 1,156.8 89.9 7,745.4

91 1,272.2 2,471.6 1,636.9 1,454.7 442.8 1,054.3 129.9 8,462.4

92 1,302.8 2,754.1 1,937.0 1,557.0 484.0 994.2 163.7 9,192.8

93 1,377.5 2,989.5 2,144.7 1,674.7 570.7 971.8 199.9 9,928.8

94 1,341.7 3,126.0 2,251.6 1,755.6 738.9 1,034.7 257.3 10,505.8

95 1,293.5 3,307.2 2,352.1 1,937.5 844.6 1,177.3 316.3 11,228.5

96 1,296.0 3,459.7 2,486.1 2,122.2 925.8 1,393.9 404.4 12,088.1

97 1,367.5 3,456.8 2,680.2 2,346.3 1,022.6 1,692.8 535.8 13,102.0

98 1,464.3 3,355.5 2,955.2 2,666.2 1,296.5 1,978.0 731.5 14,447.2

99 1,532.5 3,281.0 3,334.2 3,022.9 1,616.5 2,338.2 900.8 16,026.4

00 1,567.8 2,966.9 3,564.7 3,372.0 1,851.9 2,661.0 1,071.8 17,056.1

01 1,688.4 2,967.5 4,125.5 3,817.4 2,143.0 2,542.4 1,281.1 18,565.3

02 1,783.8 3,204.9 4,704.9 3,997.2 2,358.5 2,577.5 1,543.3 20,170.1
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Analysis of Algorithms
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Computability and Algorithms

• Algorithms are precise procedures that can be turned

into computer programs.

• Uncomputable problems.

– Does this program have infinite loops?

– Is this program bug free?

• Computable problems.

– Intractable problems.

– Tractable problems.
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Complexity

• Start with a set of basic operations which will be

assumed to take one unit of time.

• The total number of these operations is the total work

done by an algorithm (its computational complexity).

• The space complexity is the amount of memory space

used by an algorithm.

• Concentrate on the abstract complexity of an algorithm

instead of its detailed implementation.

• Complexity is a good guide to an algorithm’s actual

running time.
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Asymptotics

• Consider the search algorithm on p. 14.

• The worst-case complexity is n comparisons (why?).

• There are operations besides comparison.

• We care only about the asymptotic growth rate not the

exact number of operations.

– So the complexity of maintaining the loop is

subsumed by the complexity of the body of the loop.

• The complexity is hence O(n).
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Algorithm for Searching an Element

1: for k = 1, 2, 3, . . . , n do

2: if x = Ak then

3: return k;

4: end if

5: end for

6: return not-found;
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Common Complexities

• Let n stand for the “size” of the problem.

– Number of elements, number of cash flows, etc.

• Linear time if the complexity is O(n).

• Quadratic time if the complexity is O(n2).

• Cubic time if the complexity is O(n3).

• Exponential time if the complexity is 2O(n).

• Superpolynomial if the complexity is less than

exponential but higher than any polynomial.

• It is possible for an exponential-time algorithm to

perform well on “typical” inputs.
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Growths of Various Functions
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A Common Misconception about Performance

• A reduction of the running time from 10s to 5s is not as

significant as that from 10h to 5h.

• But this is wrong.

– What if you have 1,000 securities to price.

– What if you must meet a certain deadline.
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A Word on “Recursion”

• In computer science, it means the way of attacking a

problem by solving smaller instances of the same

problem.

• In finance, “recursion” loosely means “iteration.”
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Basic Financial Mathematics
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The Time Line

-

Time 0 Time 1 Time 2 Time 3 Time 4

Period 1 Period 2 Period 3 Period 4
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Time Value of Money

FV = PV(1 + r)n,

PV = FV × (1 + r)−n.

FV (future value); PV (present value); r: interest rate.
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Periodic Compounding

If interest is compounded m times per annum,

FV = PV
(

1 +
r

m

)nm

. (1)
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Common Compounding Methods

• Annual compounding: m = 1.

• Semiannual compounding: m = 2.

• Quarterly compounding: m = 4.

• Monthly compounding: m = 12.

• Weekly compounding: m = 52.

• Daily compounding: m = 365.
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Easy Translations

• An interest rate of r compounded m times a year is

equivalent to an interest rate of r/m per 1/m year.

• If a loan asks for a return of 1% per month, the annual

interest rate will be 12% with monthly compounding.
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Example

• Annual interest rate is 10% compounded twice per

annum.

• Each dollar will grow to be

[ 1 + (0.1/2) ]2 = 1.1025

one year from now.

• The rate is equivalent to an interest rate of 10.25%

compounded once per annum.
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Continuous Compounding

• As m → ∞ and (1 + r

m
)m

→ er in Eq. (1),

FV = PVern,

where e = 2.71828 . . . .

• Continuous compounding is easier to work with.

– Suppose the annual interest rate is r1 for n1 years

and r2 for the following n2 years.

– Then the FV of one dollar will be

er1n1+r2n2 .
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