Numerical Methods
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Finite-Difference Methods

e Place a grid of points on the space over which the
desired function takes value.

e Then approximate the function value at each of these
points (see p. 553).

e Solve the equation numerically by introducing difference
equations in place of derivatives.
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Example: Poisson’s Equation

It is 0%6/0x2 + 0%0/0y? = —p(z,y).

Replace second derivatives with finite differences
through central difference.

Introduce evenly spaced grid points with distance of Az
along the z axis and Ay along the y axis.

The finite difference form is

%R.s. y Yj |M%&.f@ n_l%nhs.l“@A

IEAH?SV — ﬁ +1 uv AADHVMV A 1 L

%AHTN\QV_\HV - M%A&.ﬁ@uv + %Aﬁ&u@u\wv
(Ay)?

A_v
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Example: Poisson's Equation (concluded)

e In the above, Az =2; — ;-1 and Ay =y; —y;—1 for
ij=1,2....

e When the grid points are evenly spaced in both axes so
that Az = Ay = h, the difference equation becomes

—h?p(zi,y5) = O(zis1, ;) + O(Ti-1,95)
+0(zs, yj41) + 0(2i, Y1) — 40(xi, y5)-

e Given boundary values, we can solve for the ;s and the
yjs within the square [+L,+L].

e From now on, ¢; ; will denote the finite-difference
approximation to the exact 6(z;,y;).
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Explicit Methods (continued)

e To assemble Egs. (109) and (110) into a single equation
at (z;,t;), need to decide how to evaluate z in the first
equation and ¢ in the second.

e Since central difference around z; is used in Eq. (110),
we might as well use z; for z in Eq. (109).

e Two choices are possible for ¢ in Eq. (110).

e The first choice uses ¢ =¢; to yield the following
finite-difference equation,

Oij+1 = 0ij _ pOit1g —20i5 +0i1,

At (Az)2 (111)

Explicit Methods

e Consider the diffusion equation

D(820/92) — (96/dt) = 0.

e Use evenly spaced grid points (z;,t;) with distances
Az and At, where Az =z, —x; and At =t;41 —t;.

e Employ central difference for the second derivative and
forward difference for the time derivative to obtain

mmﬁ&“ wv %Aaqwuf_.uv |%AH“SV
et s = 109
Ot 1=y, At e (109)
8%6(z,t) O(@iv1,t) —26(zi, t) + O(wi-1,t)
i Sl = ... (110
oa? |, (o) o o)
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Explicit Methods (concluded)

e The stencil of grid points involves four values, 0; ;41,
%s.L.v %I.HL; and %s.lfw..

e We can therefore calculate 0; ;41 from the other three,
0ij,0it1,5,0i—1,5, at the previous time ¢; (see figure (a)
on next page).

e Starting from the initial conditions at tg, that is,
0io =6(z4,t0),7=1,2,..., we calculate 0; 1,
1=1,2,...,and then 6;2,7=1,2,..., and so on.
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i+l

(a) (b)
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Stability
e The explicit method is numerically unstable unless
At < (Az)?/(2D).
— A numerical method is unstable if the solution is
highly sensitive to changes in initial conditions.

e The stability condition may lead to high running times

and memory requirements.

e For instance, doubling (Az)~! would imply quadrupling
(At)~1, resulting in a running time eight times as much.

Explicit Method and Trinomial Tree
e Rearrange Eq. (111) as

DAt
buse1 = (g 001+ (1 {anys

e When the stability condition is satisfied, the three
coefficients for 0;41;, 0;;, and 0;_1 ; all liec between

5 %&IHQ..

2DAL\, . DA
7 (Ax)?

zero and one and sum to one.

They can therefore be interpreted as probabilities.

So the finite-difference equation becomes identical to
backward induction on trinomial trees.

The freedom in choosing Az corresponds to similar
freedom in the construction of the trinomial trees.
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Implicit Methods

o If we use t =t;41 in Eq. (110) instead, the
finite-difference equation becomes

Oijir = Oiy _ p Oistge1 — 205541 +0io1,541

At (Az)?2 (113

e The stencil involves %ﬁ? %s.t.‘:, %ILL%T and %&\HL‘:.

e This method is implicit because the value of any one of
the three quantities at ¢;11 cannot be calculated unless
the other two are known (see figure (b) on p. 559).
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Implicit Methods (continued)

Equation (112) can be rearranged as
01,541 = (2+7) Oijt1 + Oir 501 = =703 5,
where v = (Az)?/(DAt).

This equation is unconditionally stable.

Suppose the boundary conditions are given at = = xg
and £ = TnN41-

After 6;; has been calculated for i =1,2,... N, the
values of 0; ;41 at time ¢;41 can be computed as the
solution to the following tridiagonal linear system,
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Implicit Methods (continued)

) [ 01,5+1 r 1
a 1 0 o 7| Lt 1 =701, ~ f0,5+1
1 a 1 0 0 mmL+H =702 j
o 1 a 1 0 S+ ~793,;
0 cee e 1 a 1 : —79N-1,;
Lo - o . 1 al ' L =70N,; = ON41,5+1 |
L w41 .; ¥ +1,5+
where a = —2 — 7.

Implicit Methods (concluded)

e Tridiagonal systems can be solved in O(N) time and
O(N) space.
e The matrix above is nonsingular when ~ > 0.

— A square matrix is nonsingular if its inverse exists.
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Crank-Nicolson Method

e Take the average of explicit method (111) and implicit
method (112):

Oi,j+1 — 0,5
At
1 Au Oit1,j = 2005 +0iz15 o Q41,41 = 205541 + S.L;.tv )

2 (Az)2 (Az)2

e After rearrangement,

Oit1,5+1 — 204 541 + 051 j41 Oit1,5 — 205, +6,_1,5
¥0i i1 — 1 ¥ J+L _ e, 4 2 23 N

2 2

e This is an unconditionally stable implicit method with
excellent rates of convergence.
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Numerically Solving the Black-Scholes PDE
e We focus on American puts.

e The technique can be applied to any derivative
satisfying the Black-Scholes PDE as only the initial and
the boundary conditions need to be changed.

e The Black-Scholes PDE for American puts is

o?P oP oP
1 2029 & _ or or _
o°S + (r Smwm rP+ wﬁlo

with P(S,T) = max(X — S,0) and
P(S,t) = max(P(S,t),X — S) for t <T.

e P denotes the option value at time ¢ if it is not
exercised for the next instant of time.
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Numerically Solving the Black-Scholes PDE
(continued)

e After the change of variable V =1In S, the option value
becomes U(V,t) = P(e,t) and
opP _0U 0P 10U 0%pP 1 0°U 1 0U

9t ot’ oS SoV'oES  S2ovE: S2 oV
e The Black-Scholes PDE is now transformed into
1 ,0% a2\ oU ou
27 %XTTM v Ut =0

subject to U(V,T) = max(X —e¥,0) and
UV,t) =max(U(V,t),X —eV), t < T.
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Numerically Solving the Black-Scholes PDE
(concluded)

e Along the V axis, the grid will span from Vi, to
Vmin + N X AV at AV apart for some suitably small
a\Er‘_.

e So boundary conditions at the lower (V = Viuin) and
upper (V = Vipin + N X AV') boundaries will have to be
specified.

e S as usual denotes the current stock price.
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Explicit Method

e The explicit scheme for the Black-Scholes differential
equation is

1 oUit1,; —2Uij+ Uit
0 = —-o
2 (AV)?
02\ Uit1,j —Ui-1,5 Usij —Uij—1
_g— — | 2 d T g 4 28 FIT
+ Aﬁ 1 mv 2AV TWig + At

for 1<i<N-—1.
e The computation moves backward in time.

e There are N — 1 difference equations.
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Explicit Method (continued)
e Regroup the terms to obtain
Qﬁulu = QQ.I:. + @qs.t. + QQI.HQ;
where
= ((Z)'- r-q-o’/2) At
“ = \\av AV 2

b = 1-rAt— A%\VME“

= (@)Y

Explicit Method (concluded)

e U, ; is set to the greater of the value derived above and
X — VmintiXAV for early-exercise considerations.

e Repeating this process as we move backward in time, we
will eventually arrive at the solution at time zero, Uy o.
— k is the integer so that Vi, + k X AV is closest to
In Sy.
e By the stability condition, given AV, the value of At
must be small enough for the method to converge.

— The conditions to satisfy are a > 0, b > 0, and ¢ > 0.
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Explicit Method (continued)

e These N — 1 equations express option values at time
step j — 1 in terms of those at time step j.

e For American puts, we assume for U’s lower boundary

that the first derivative at grid point (0,5) for every
A\Ewd

time step j equals —e
e This essentially makes the put value X — S =X —¢e".
e So Uy 1="Usj 1+ (e"mintAV _ gVmin),

e For the upper boundary, we set Uy ;—1 = 0.

e The put’s value at any grid point at time step 7 —1 is
therefore an explicit function of its values at time step j.

Region of Influence

e The explicit method evaluates all the grid points in a
rectangle.

e But we are only interested in the single grid point at
time zero, (0, k), that corresponds to the current stock
price.

e The grid points that may influence the desired value
form a triangular subset of the rectangle.

e This triangle could be truncated further by the two
boundary conditions (see figure on next page).

e Only those points within the truncated triangle need be
evaluated.
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v\ Boundary condition

(0K)

Backward induction -v/ nitial
condition

Computed area

v\ Boundary condition
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Implicit Method (continued)

Regroup the terms to obtain

aUi-1,j +0Uij + cUit1,5 = Ui 1,

where
co () Y
b = TI;DIA%\VME“

Implicit Method

The partial differential equation now becomes the following
N — 1 difference equations,
0 = Y,2Uit1;=2Ui; +Uica;

2 (AV)2

0%\ Uit1,j —Ui=1,5 Uij+1 — Ui
—q— — | 22T TR g g AT TR
+ Aﬂ 1775 v 28V g At

for 1<i<N-—-1.
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Implicit Method (continued)

The system of equations can be written in matrix form,

[ b* c 0 B (I Ui,j [ Ui,j+1 — K ]
a b c 0 0 Uz, Uz,jt+1
0 a b c 0 o 0 Us,j Us,jt1
0 0 a b C . QZINL.+H

L O . 0 a b | Un_1, | L Un-1,+1

where b* =a+b and K = a(e"mntAV — gVmin),
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Implicit Method (concluded)

e The values of
U1,j:Uz,... ,Un-1,
can be obtained by inverting the tridiagonal matrix.

e As before, at every time step and before going to the
next, we should set the option value to the intrinsic
value of the option if the latter is larger.
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The Big Idea

e Assume Xq,Xs,...,X, have a joint distribution.

e 0= E[g9(X1,X2,...,X,)] for some function g is
desired.

e We generate
(o028, 2}, 1<i<N

independently with the same joint distribution as
(X1,X2,...,Xy) and set

Y=g A&m&“&m&f: “amvv .

Monte Carlo Simulation
e Monte Carlo simulation is a sampling scheme.

e In many important applications within finance and
without, Monte Carlo is one of the few feasible tools.

e It is also one of the most important elements of studying

econometrics.

e When the time evolution of a stochastic process is not
easy to describe analytically, Monte Carlo may very well
be the only strategy that succeeds consistently.
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The Big Idea (concluded)

Y1,Ys, ..., Yy are independent and identically
distributed random variables.

Each Y; has the same distribution as
Y = QANH,»NM“ e u;vmwzv

Since the average of these N random variables, Y,

satisfies E[Y ] = 6, it can be used to estimate 6.

The strong law of large numbers says that this
procedure converges almost surely.

The number of replications (or independent trials), N, is
called the sample size.
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Example

e Suppose we want to evaluate the definite integral
bw g(z) dz numerically.
e Consider the random variable Y = (b — a) g(X).
— X is uniformly distributed over [a,b].
— Note that Prob[X < z]|=(z —a)/(b— a) for
a<z<hb.

>rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 583

Accuracy

e The Monte Carlo estimate and true value may differ
owing to two reasons:

1. Sampling variation.

2. The discreteness of the sample paths.
e The first can be controlled by the number of replications.

e The second can be controlled by the number of
observations along the sample path.

Example (concluded)

e Note that

E[Y] = (b—a)E[g(X)]
b
= @I@v\ 9() dz

b—a

= \a@ g(x)dz.

e So any unbiased estimator of E[Y ] can be used to
evaluate the integral.
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Accuracy and Number of Replications

e The statistical error of the sample mean Y of the
random variable Y grows as 1/v/N.

— Because Var[Y ] = Var[Y ]/N.

e In fact, this convergence rate is asymptotically optimal
by the Berry-Esseen theorem.

e So the variance of the estimator Y can be reduced by a
factor of 1/N by doing N times as much work.

e This is amazing because the same order of convergence
holds independently of the dimension n.
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Accuracy and Number of Replications (concluded)

e In contrast, classic numerical integration schemes have
an error bound of O(N~¢") for some constant ¢ > 0.
— n is the dimension.

e The required number of evaluations thus grows
exponentially in n to achieve a given level of accuracy.
— The familiar curse of dimensionality.

e The Monte Carlo method, for example, is more efficient

than alternative procedures for securities depending on
more than one asset, the multivariate derivatives.
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Variance Reduction

e The statistical efficiency of Monte Carlo simulation can
be measured by the variance of its output.

If this variance can be lowered without changing the
expected value, fewer replications are needed.

Methods that improve efficiency in this manner are
called variance-reduction techniques.

e Such techniques become practical when the added costs
are outweighed by the reduction in sampling.

Monte Carlo Option Pricing

e For the pricing of European options on a
dividend-paying stock, we may proceed as follows.

e Stock prices Si,S2,853,... at times At,2At,3At, ...
can be generated via
Siv1 = Sl /A AEOVALE ¢ N(0,1)
when dS/S = pdt+ o dW.

e Non-dividend-paying stock prices in a risk-neutral
economy can be generated by setting p = 7.

e Pricing Asian options is easy.
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Pricing American-Style Options

e Standard Monte Carlo simulation is inappropriate for
American options because of early exercise.

e It is difficult to determine the early-exercise point based

on one single path.

e Recent work: Monte Carlo simulation can be modified
to price American options with bias.
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Variance Reduction: Antithetic Variates

e We are interested in estimating E[g(X1, Xa,...,Xn)],
where X1, Xo,...,X, are independent.

e Let Y; and Y5 be random variables with the same
distribution as g(X1, Xa,...,Xn).

e Then

Cov[Y1,Ys]
2 + 2 '

<NH _HM\H MM\NH— _ /\MHﬁM\H;

— Var[Y7]/2 is the variance of the Monte Carlo
method with two (independent) replications.

e The variance Var[(Y; + Y2)/2] is smaller than
Var[Y7]/2 when Y] and Y, are negatively correlated.

Variance Reduction: Antithetic Variates (continued)
e Consider process dX = a; dt + b\/dt £.

e Let g be a function of n samples Xq, X5,...,X, on
the sample path.

e We are interested in E[g(X1, Xo,...,Xn)].

e Suppose one simulation run has realizations

£1,&,...,&, for the normally distributed fluctuation

term £.
e This generates samples z1,T2,...,Tp.
e The estimate is then g(z), where = (z1,22...,2p).
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Variance Reduction: Antithetic Variates (continued)

e For each simulated sample path X, a second one is
obtained by reusing the random numbers on which the
first path is based.

e This yields a second sample path Y.

e Two estimates are then obtained: One based on X and
the other on Y.

e If N independent sample paths are generated, the
antithetic-variates estimator averages over 2NV
estimates.

Variance Reduction: Antithetic Variates (concluded)

e We do not sample n more numbers from £ for the
second estimate.

e The antithetic-variates method computes g(z’) from
the sample path @’ = (2], 24 ... ,2},) generated by

=1, =82, .., —&n-
e We then output (g(x) + g(z'))/2.
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Variance Reduction: Conditioning

We are interested in estimating E[ X |.

Suppose here is a random variable Z such that
E[X|Z = z] can be efficiently and precisely computed.

E[X]|=E[E[X|Z]] by the law of iterated conditional
expectations.

Hence the random variable E[X | Z] is also an unbiased
estimator of E[X |.
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Control Variates

e Use the analytic solution of a similar yet simpler
problem to improve the solution.

e Suppose we want to estimate E[X ] and there exists a
random variable Y with a known mean p= E[Y].

e Then W =X + (Y — p) can serve as a “controlled”
estimator of E[X ] for any constant S.

— B can scale the deviation Y — p to arrive at an
adjustment for X.

— However ( is chosen, W remains an unbiased
estimator of E[X |.

Variance Reduction: Conditioning (concluded)

As Var[E[X | Z]] < Var[X |, E[X | Z] has a smaller
variance than observing X directly.

First obtain a random observation z on Z.

Then calculate E[X |Z = z] as our estimate.

— There is no need to resort to simulation in computing
EX|Z=z]

The procedure can be repeated a few times to reduce
the variance.
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Control Variates (continued)

e Note that
Var[W | = Var[ X | + 8* Var[ Y | 4+ 28 Cov[ X, Y],
(113)
e Hence W is less variable than X if and ounly if
B2 Var[Y | 4 26 Cov[ X,Y ] < 0. (114)

e The success of the scheme clearly depends on both S
and the choice of Y.
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Control Variates (concluded)

e For example, arithmetic average-rate options can be
priced by choosing Y to be the otherwise identical
geometric average-rate option’s price and 8 = —1.

e This approach is much more effective than the
antithetic-variates method.

e In general, the choice of Y is ad hoc.
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Optimal Choice of (3
e Equation (113) is minimized when
B =—Cov[X,Y|/Var]Y ],
which was called beta earlier in the book.

e For this specific 3,

~ Cov[X,Y]?

Var[W| = Var[ X ] Var[Y ]

= (1= ) Var[ X,
where pxy is the correlation between X and Y.

e The stronger X and Y are correlated, the greater the
reduction in variance.

Optimal Choice of 3 (continued)

e For example, if this correlation is nearly perfect (£1),
we could control X almost exactly, eliminating
practically all of its variance.

e Typically, neither Var[Y] nor Cov[X,Y ] is known.

e Therefore, we cannot obtain the maximum reduction in

variance.

e We can guess these values and hope that the resulting
W does indeed have a smaller variance than X.

e A second possibility is to use the simulated data to
estimate these quantities.
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Optimal Choice of 3 (concluded)

e Observe that —f has the same sign as the correlation
between X and Y.

e Hence, if X and Y are positively correlated, 8 < 0,
then X is adjusted downward whenever Y > p and
upward otherwise.

e The opposite is true when X and Y are negatively
correlated, in which case > 0.
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Problems with the Monte Carlo Method
e The error bound is only probabilistic.

e The probabilistic error bound of v/N does not benefit
from regularity of the integrand function.

e The requirement that the points be independent random
samples are wasteful because of clustering.

e In reality, pseudorandom numbers generated by
completely deterministic means are used.

e Monte Carlo simulation exhibits a great sensitivity on
the seed of the pseudorandom-number generator.

>rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 603

Problems with Quasi-Monte Carlo Methods

e Their theories are valid for integration problems, but
may not be directly applicable to simulations because of
the correlations between points in a quasi-random

sequence.

e This problem may be overcome by writing the desired
result as an integral.

e But the integral often has a very high dimension.

Quasi-Monte Carlo Methods

e The low-discrepancy sequences (or quasi-random
sequences) address the above-mentioned problems.

e It is a deterministic version of the Monte Carlo method
in that random samples are replaced by deterministic

quasi-random points.

e If a smaller number of samples suffices as a result,
efficiency has been gained.

e Aim is to select deterministic points for which the
deterministic error bound is smaller than Monte Carlo’s
probabilistic error bound.
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Problems with Quasi-Monte Carlo Methods
(concluded)

e The improved accuracy is generally lost for problems of
high dimension or problems in which the integrand is
not smooth.

e No theoretical basis for empirical estimates of their
accuracy, a role played by the central limit theorem in
the Monte Carlo method.
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Assessment
e The results are somewhat mixed.

e The application of such methods in finance seems
promising.
e A speed-up as high as 1,000 over the Monte Carlo

method, for example, is reported.

e The success of the quasi-Monte Carlo method when
compared with traditional variance-reduction techniques
is problem dependent.

e For example, the antithetic-variates method outperforms
the quasi-Monte Carlo method in bond pricing.
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