Trees

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 509

The Combinatorial Method

- The combinatorial method can often cut the running time by an order of magnitude.
- The basic paradigm is to count the number of admissible paths that lead from the root to any terminal node.
- We first used this method in the linear-time algorithm for standard European option pricing on p. 241.
- It cannot apply to American options.
- We will now apply it to price barrier options.

The Reflection Principle (André, 1887)

- Imagine a particle at position (0, -a) on the integral lattice that is to reach (n, -b).
- Without loss of generality, assume a > 0 and $b \ge 0$.
- This particle's movement:

$$(i,j) \overbrace{\hspace{1cm} (i+1,j+1) \text{ up move } S \to Su}$$

$$(i+1,j-1) \text{ down move } S \to Sd$$

• How many paths touch the x axis?

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 511

The Reflection Principle (continued)

- ullet For a path from (0,-a) to (n,-b) that touches the x axis, let J denote the first point this happens.
- Reflect the portion of the path from (0,-a) to J.
- A path from $(0, \mathbf{a})$ to $(n, -\mathbf{b})$ is constructed.
- It also hits the x axis at J for the first time (see figure next page).
- The one-to-one mapping shows the number of paths from (0, -a) to (n, -b) that touch the x axis equals the number of paths from (0, a) to (n, -b).

The Reflection Principle (concluded)

• Since a path of this kind has (n+b+a)/2 down moves and (n-b-a)/2 up moves, there are

$$\left(\frac{n}{\frac{n+a+b}{2}}\right)$$
(103)

such paths for even n + a + b.

- Convention: $\binom{n}{k} = 0$ for k < 0 or k > n.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 513

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 514

Pricing Barrier Options (Lyuu, 1998)

- Focus on the down-and-in call with barrier H < X.
- Assume H < S without loss of generality.
- Define

$$a \equiv \left\lceil \frac{\ln\left(X/(Sd^n)\right)}{\ln(u/d)} \right\rceil = \left\lceil \frac{\ln(X/S)}{2\sigma\sqrt{\Delta t}} + \frac{n}{2} \right\rceil, \tag{104}$$

$$h \equiv \left\lfloor \frac{\ln\left(H/(Sd^n)\right)}{\ln(u/d)} \right\rfloor = \left\lfloor \frac{\ln(H/S)}{2\sigma\sqrt{\Delta t}} + \frac{n}{2} \right\rfloor. \tag{105}$$

- h is such that $\tilde{H} \equiv Su^h d^{n-h}$ is the terminal price that is closest to, but does not exceed H.
- a is such that $\tilde{X} \equiv Su^a d^{n-a}$ is the terminal price that is closest to, but is not exceeded by X.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 515

Pricing Barrier Options (continued)

- \bullet The true barrier is replaced by the effective barrier \tilde{H} in the binomial model.
- A process with n moves hence ends up in the money if and only if the number of up moves is at least a.
- The price Su^kd^{n-k} is at a distance of 2k from the lowest possible price Sd^n on the binomial tree.

$$Su^k d^{n-k} = Sd^{-k} d^{n-k} = Sd^{n-2k}. (106)$$

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 517

Pricing Barrier Options (continued)

- The number of paths from S to the terminal price $Su^{j}d^{n-j}$ is $\binom{n}{j}$, each with probability $p^{j}(1-p)^{n-j}$.
- With reference to p. 517, the reflection principle can be applied with a=n-2h and b=2j-2h in Eq. (103) by treating the S line as the x axis.
- Therefore,

$$\binom{n}{\frac{n+(n-2h)+(2j-2h)}{2}} = \binom{n}{n-2h+j}$$

paths hit \tilde{H} in the process for $h \leq n/2$.

Pricing Barrier Options (concluded)

• The terminal price $Su^{j}d^{n-j}$ is reached by a path that hits the effective barrier with probability

$$\binom{n}{n-2h+j}p^{j}(1-p)^{n-j}.$$
 (107)

• The option value equals

$$R^{-n} \sum_{j=a}^{2h} \binom{n}{n-2h+j} p^{j} (1-p)^{n-j} \left(Su^{j} d^{n-j} - X \right).$$
(108)

- $-R \equiv e^{r\tau/n}$ is the riskless return per period.
- It implies a linear-time algorithm.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 519

Convergence of BOPM

- Equation (108) results in the sawtooth-like convergence shown on p. 320.
- The reasons are not hard to see.
- The true barrier most likely does not equal the effective barrier.
- The same holds for the strike price and the effective strike price.
- The issue of the strike price is less critical
- The issue of the barrier is not negligible.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 518 Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 520

Convergence of BOPM (continued)

- Convergence is actually good if we limit n to certain values—191, for example.
- These values make the true barrier coincide with or occur just above one of the stock price levels, that is, $H \approx S d^j = S e^{-j\sigma} \sqrt{\tau/n} \text{ for some integer } j.$
- The preferred n's are thus

$$n = \left\lfloor \frac{\tau}{(\ln(S/H)/(j\,\sigma))^2} \right\rfloor, \ \ j = 1, 2, 3, \dots$$

• There is only one minor technicality left.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 521

Convergence of BOPM (continued)

- We picked the effective barrier to be one of the n+1 possible terminal stock prices.
- However, the effective barrier above, Sd^{j} , corresponds to a terminal stock price only when n-j is even by Eq. (106).^a
- To close this gap, we decrement n by one, if necessary, to make n-j an even number.

Convergence of BOPM (concluded)

• The preferred n's are now

$$n = \begin{cases} \ell & \text{if } \ell - j \text{ is even} \\ \ell - 1 & \text{otherwise} \end{cases} , \tag{109}$$

 $j=1,2,3,\ldots,$ where

$$\ell \equiv \left\lfloor rac{ au}{\left(\ln(S/H)/(j\sigma)
ight)^2}
ight
floor.$$

• So evaluate pricing formula (108) only with the n's above.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 522 Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 524

 $^{^{\}mathrm{a}}\mathrm{We}$ could have adopted the form $Sd^{j}~(-n\leq j\leq n)$ for the effective barrier.

Practical Implications

- Now that barrier options can be efficiently priced, we can afford to pick very large n's (see p. 526).
- This has profound consequences.
- For example, pricing is prohibitively time consuming when $S \approx H$ because $n \sim 1/\ln^2(S/H)$.
- This observation is indeed true of standard quadratic-time binomial tree algorithms.
- \bullet But it no longer applies to linear-time algorithms (see p. 527).

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 525

			76.70	5.659981	6177
			68.70	5.660122	5472
.0	130000.0	5.660454	51.60	5.659955	4809
.0	92000.0	5.660466	44.10	5.660388	4190
.0	67500.0	5.660478	43.70	5.660498	3613
.0	48800.0	5.660488	36.70	5.660099	3078
.0	34800.0	5.660493	30.20	5.660592	2587
.0	23400.0	5.660491	24.70	5.660511	2138
.0	15400.0	5.660474	19.40	5.659416	1731
.0	9500.0	5.660432	15.00	5.659711	1368
.0	5700.0	5.660338	11.10	5.658622	1047
.0	3080.0	5.660137	8.00	5.654609	768
.0	1440.0	5.659692	5.60	5.652253	533
.0	590.0	5.658590	3.60	5.655812	342
.0	185.0	5.655082	2.00	5.635415	191
.0	35.0	5.634936	0.90	5.597597	84
			0.30	5.507548	21
ne	Time	Value	Time	Value	
	Trinomial tree algorithm	Trinomial	al method	Combinatorial method	n

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 526

		1			ı		
Value	Time	n	Value	Time	3 0	Value	Time
٠							
		795	7.47761	00	19979	8.11304	253
2.56095	31.1	3184	7.47626	38	79920	8.11297	1013
2.56065	35.5	7163	7.47682	80	179819	8.11300	2200
2.56098	40.1	12736	7.47661	166	319680	8.11299	4100
2.56055	43.8	19899	7.47676	253	499499	8.11299	6300
2.56152	48.1	28656	7.47667	368	719280	8.11299	8500
2.5615			7.4767			8.1130	
nes in mi	lliseco	$\mathrm{onds.})$					
	Barrier at 95.0 Value 2.56095 2.56098 2.5605 2.56055 2.56152 2.56152 2.5615	Value Time 2.56095 31.1 2.56095 35.5 2.56098 40.1 2.56155 43.8 2.56152 48.1 2.5615	Time n 795 31.1 3184 35.5 7163 40.1 12736 43.8 19899 48.1 28656 illiseconds.)	_ B	Barrier at 99.5 Value 7.47761 7.47626 7.47682 7.47661 7.47667 7.47667	Banier at 99.5 Value Time 7.47761 8 19979 7.47626 38 79920 7.47682 88 179819 7.47661 166 319680 7.47667 253 489499 7.47667 368 719280 7.4767	Barrier at 99.5 Value Time 7.47761 8 19979 7.47626 3.8 79920 7.47682 8.8 179819 7.47661 1.66 319680 7.47667 253 499499 7.47667 368 719280 7.4767

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 527

Trinomial Tree

- Set up a trinomial approximation to the geometric Brownian motion $dS/S = r dt + \sigma dW$ (Boyle, 1988).
- The three stock prices at time Δt are S, Su, and Sd, where ud = 1.
- Impose the matching of mean and that of variance:

$$1 = p_{u} + p_{m} + p_{d},$$

$$SM \equiv (p_{u}u + p_{m} + (p_{d}/u)) S,$$

$$S^{2}V \equiv p_{u}(Su - SM)^{2} + p_{m}(S - SM)^{2} + p_{d}(Sd - SM)^{2},$$
where $M \equiv e^{r\Delta t}$ and $V \equiv M^{2}(e^{\sigma^{2}\Delta t} - 1)$ by Eqs. (41).

$S \xrightarrow{p_d} S$ $S \xrightarrow{p_d} S$

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 529

Trinomial Tree (continued)

• Use linear algebra to verify that

$$p_u = rac{u \left(V + M^2 - M\right) - (M - 1)}{\left(u - 1\right)\left(u^2 - 1\right)},$$
 $p_d = rac{u^2 \left(V + M^2 - M\right) - u^3 (M - 1)}{\left(u - 1\right)\left(u^2 - 1\right)}.$

- In practice, must make sure the probabilities lie between 0 and 1.
- Countless variations.

Trinomial Tree (concluded)

- Use $u = e^{\lambda \sigma \sqrt{\Delta t}}$, where $\lambda \ge 1$ is a tunable parameter.
- Then

$$p_u
ightarrow rac{1}{2\lambda^2} + rac{\left(r + \sigma^2
ight)\sqrt{\Delta t}}{2\lambda\sigma}, \ p_d
ightarrow rac{1}{2\lambda^2} - rac{\left(r - 2\sigma^2
ight)\sqrt{\Delta t}}{2\lambda\sigma}.$$

• A nice choice for λ is $\sqrt{\pi/2}$.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 531

Barrier Options Revisited

- BOPM introduces a specification error by replacing the barrier with a nonidentical effective barrier.
- The trinomial model solves the problem by adjusting λ so that the barrier is hit exactly (Ritchken, 1995).
- It takes

$$h = \frac{\ln(S/H)}{\lambda \sigma \sqrt{\Delta t}}$$

consecutive down moves to go from S to H if h is an integer, which is easy to achieve by adjusting λ .

Barrier Options Revisited (continued)

• Typically, we find the smallest $\lambda \geq 1$ such that h is an integer, that is,

$$\lambda = \max_{j=1,2,3,\dots} \frac{\ln(S/H)}{j\sigma\sqrt{\Delta t}}.$$

- Such a λ may not exist for very small n's.
- This is not hard to check.
- This done, one of the layers of the trinomial tree coincides with the barrier.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 533

Barrier Options Revisited (concluded)

The following probabilities may be used,

$$p_u = \frac{1}{2\lambda^2} + \frac{\mu'\sqrt{\Delta t}}{2\lambda\sigma},$$

 $p_m = 1 - \frac{1}{\lambda^2},$
 $p_d = \frac{1}{2\lambda^2} - \frac{\mu'\sqrt{\Delta t}}{2\lambda\sigma}.$

$$-\mu' \equiv r - \sigma^2/2.$$

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 535

Algorithms Comparison (Lyuu, 1998)

- So which algorithm is better?
- Algorithms are often compared based on the n value at which they converge.
- The one with the smallest n wins.
- Giraffes are faster than cheetahs because they take fewer strides to travel the same distance.

Algorithms Comparison (concluded)

- Pages 320 and 535 show the trinomial model converges at a smaller n than BOPM.
- It is in this sense when people say trinomial models converge faster than binomial ones.
- But is trinomial model then better?
- The linear-time binomial tree algorithm actually performs better than the trinomial model (p. 526).

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 537

Multivariate Contingent Claims

- They depend on two or more underlying assets.
- The basket call on m assets has the terminal payoff $\max(\sum_{i=1}^{m} \alpha_i S_i(\tau) X, 0)$, where α_i is the percentage of asset i.
- Basket options are essentially options on a portfolio of stocks or index options.
- Option on the best of two risky assets and cash has a terminal payoff of $\max(S_1(\tau), S_2(\tau), X)$.

Correlated Trinomial Model

- Two risky assets S_1 and S_2 follow $dS_i/S_i = r\,dt + \sigma_i\,dW_i$ in a risk-neutral economy, i=1,2.
- Let

$$\begin{array}{rcl} M_i & \equiv & e^{r\Delta t}, \\ \\ V_i & \equiv & M_i^2 \big(e^{\sigma_i^2 \Delta t} - 1 \big). \end{array}$$

- $-S_iM_i$ is the mean of S_i at time Δt .
- $-S_i^2V_i$ the variance of S_i at time Δt

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 539

Correlated Trinomial Model (continued)

- The value of S_1S_2 at time Δt has a joint lognormal distribution with mean $S_1S_2M_1M_2e^{\rho\sigma_1\sigma_2\Delta t}$, where ρ is the correlation between dW_1 and dW_2 .
- Next match the 1st and 2nd moments of the approximating discrete distribution to those of the continuous counterpart.
- At time Δt from now, there are five distinct outcomes.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 538

Correlated Trinomial Model (continued)

• The five-point probability distribution of the asset prices is (as usual, we impose $u_id_i=1$)

p_5	p_4	p_3	p_2	p_1	Probability
S_1	S_1d_1	S_1d_1	S_1u_1	S_1u_1	Asset 1
S_2	S_2u_2	S_2d_2	S_2d_2	S_2u_2	Asset 2

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 541

Correlated Trinomial Model (continued)

• The probabilities must sum to one, and the means must be matched:

$$1 = p_1 + p_2 + p_3 + p_4 + p_5,$$

$$S_1 M_1 = (p_1 + p_2) S_1 u_1 + p_5 S_1 + (p_3 + p_4) S_1 d_1,$$

$$S_2 M_2 = (p_1 + p_4) S_2 u_2 + p_5 S_2 + (p_2 + p_3) S_2 d_2.$$

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 542

Correlated Trinomial Model (continued)

- Let $R \equiv M_1 M_2 e^{\rho \sigma_1 \sigma_2 \Delta t}$.
- Match the variances and covariance:

$$\begin{split} S_1^2 V_1 &= (p_1 + p_2)((S_1 u_1)^2 - (S_1 M_1)^2) + p_5(S_1^2 - (S_1 M_1)^2) \\ &+ (p_3 + p_4)((S_1 d_1)^2 - (S_1 M_1)^2), \\ S_2^2 V_2 &= (p_1 + p_4)((S_2 u_2)^2 - (S_2 M_2)^2) + p_5(S_2^2 - (S_2 M_2)^2) \\ &+ (p_2 + p_3)((S_2 d_2)^2 - (S_2 M_2)^2), \\ S_1 S_2 R &= (p_1 u_1 u_2 + p_2 u_1 d_2 + p_3 d_1 d_2 + p_4 d_1 u_2 + p_5) S_1 S_2. \end{split}$$

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 543

Correlated Trinomial Model (continued)

• The solutions are

$$\begin{array}{lll} p_1 & = & \dfrac{u_1u_2(R-1) - f_1(u_1^2-1) - f_2(u_2^2-1) + (f_2+g_2)(u_1u_2-1)}{(u_1^2-1)(u_2^2-1)}, \\ p_2 & = & \dfrac{-u_1u_2(R-1) + f_1(u_1^2-1)u_2^2 + f_2(u_2^2-1) - (f_2+g_2)(u_1u_2-1)}{(u_1^2-1)(u_2^2-1)}, \\ p_3 & = & \dfrac{u_1u_2(R-1) - f_1(u_1^2-1)u_2^2 + g_2(u_2^2-1)u_1^2 + (f_2+g_2)(u_1u_2-u_2^2)}{(u_1^2-1)(u_2^2-1)}, \\ p_4 & = & \dfrac{-u_1u_2(R-1) + f_1(u_1^2-1) + f_2(u_2^2-1)(u_1^2-(f_2+g_2)(u_1u_2-1)}{(u_1^2-1)(u_2^2-1)}. \end{array}$$

Correlated Trinomial Model (concluded)

• In the above,

$$\begin{split} f_1 &= p_1 + p_2 = \frac{u_1 \left(V_1 + M_1^2 - M_1 \right) - \left(M_1 - 1 \right)}{\left(u_1 - 1 \right) \left(u_1^2 - 1 \right)}, \\ f_2 &= p_1 + p_4 = \frac{u_2 \left(V_2 + M_2^2 - M_2 \right) - \left(M_2 - 1 \right)}{\left(u_2 - 1 \right) \left(u_2^2 - 1 \right)}, \\ g_1 &= p_3 + p_4 = \frac{u_1^2 \left(V_1 + M_1^2 - M_1 \right) - u_1^3 \left(M_1 - 1 \right)}{\left(u_1 - 1 \right) \left(u_1^2 - 1 \right)}, \\ g_2 &= p_2 + p_3 = \frac{u_2^2 \left(V_2 + M_2^2 - M_2 \right) - u_2^3 \left(M_2 - 1 \right)}{\left(u_2 - 1 \right) \left(u_2^2 - 1 \right)}. \end{split}$$

• As $f_1 + g_1 = f_2 + g_2$, we can solve for u_2 given $u_1 = e^{\lambda \sigma_1 \sqrt{\Delta t}}$ for an appropriate $\lambda > 1$.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 545

Extrapolation

- Is a method to speed up numerical convergence.
- Say f(n) converges to an unknown limit f at rate of 1/n:

$$f(n) = f + \frac{c}{n} + o\left(\frac{1}{n}\right). \tag{110}$$

- Assume that c is an unknown constant independent of n.
- Convergence is basically monotonic and smooth

Extrapolation (concluded)

• From two approximations $f(n_1)$ and $f(n_2)$ and by ignoring the smaller terms,

$$f(n_1) = f + \frac{c}{n_1},$$

 $f(n_2) = f + \frac{c}{n_2}.$

ullet A better approximation to the desired f is

$$f = \frac{n_1 f(n_1) - n_2 f(n_2)}{n_1 - n_2}.$$
 (111)

- This estimate should converge faster than 1/n.
- The Richardson extrapolation uses $n_2 = 2n_1$.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 547

Improving BOPM with Extrapolation

- Consider standard European options
- Denote the option value under BOPM using n time periods by f(n).
- It is known that BOPM convergences at the rate of 1/n, consistent with Eq. (110).
- But the plots on p. 255 demonstrate that convergence to the true option value oscillates with n.
- Extrapolation is inapplicable at this stage.

Improving BOPM with Extrapolation (concluded)

- Take the at-the-money option in the left plot on p. 255.
- The sequence with odd n turns out to be monotonic and smooth (see the left plot on p. 550).
- Apply extrapolation (111) with $n_2 = n_1 + 2$, where n_1 is odd.
- Result is shown in the right plot on p. 550.
- The convergence rate is amazing.
- See Exercise 9.3.8 (p. 111) of the textbook for ideas in the general case.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 549

