Ornstein-Uhlenbeck Process
e The Ornstein-Uhlenbeck process:
dX = —kX dt + o dW, (92)

where k,0 > 0.

e It is known that

E[X(®#)] = e "tt=t0) g[g],
2
Var[X()] = o (1-e7?7000) 4 e 710 Var[a ),
K
2
Cov[X(s),X(t)] = mﬂmi:;vT|m|§T5;

+er(tFe—2to) Var[zg ],

for tg < s <t and X(to) = xq.
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Ornstein-Uhlenbeck Process (continued)

X (t) is normally distributed if z¢ is a constant or
normally distributed.

X is said to be a normal process.
e E[zg] =xzo and Var[zo] =0 if zo is a constant.

e The Ornstein-Uhlenbeck process has the following mean
reversion property.
— When X >0, X is pulled X toward zero.

— When X <0, it is pulled toward zero again.

Ornstein-Uhlenbeck Process (continued)

e Another version:
dX = k(p — X) dt + o dW, (93)
where o > 0.

e Given X(tp) = xo, a constant, it is known that

E[X(®)] = p+(zo—p)e 7t (94)

Var[ X (t)] = mlz T - QL%LL (95)

for to <'t.
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Ornstein-Uhlenbeck Process (concluded)

e The mean and standard deviation are roughly p and
o /v2k , respectively.

e For large t, the probability of X < 0 is extremely
unlikely in any finite time interval when p > 0 is large
relative to o/v2k (say p > 40/vV2k).

e The process is mean-reverting.

— X tends to move toward u.

— Useful for modeling term structure, stock price
volatility, and stock price return.
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Interest Rate Models (Merton, 1970)

e Suppose the short rate r follows process
dr = p(r,t)dt+o(r,t) dW.

e Let P(r,t,T) denote the price at time ¢ of a
zero-coupon bond that pays one dollar at time 7.

e Write its dynamics as

dP
5z = pp dt + op dW.

— The expected instantaneous rate of return on a
(T — t)-year zero-coupon bond is fip.

— The instantaneous variance is Qm.
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Interest Rate Models (continued)
e Surely P(r,T,T) =1 for any T.
e By Ito’s lemma (Theorem 21 on p. 469),

dP = w|M%+ w|w%+ W www (dr)?
_ |w\w dt + w\w ((r, ) dt + o (r, t) W)
+3 www (ulr, £) dt + o(r, £) dW)?
+o(r,t) op aw.

or
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Interest Rate Models (concluded)

e Hence,
oP P o(r,t)? 8%P
- —F ——— ——— =P
gr tHrD Gt Ty g = P (99)
oP
Q.Aﬂ.“ﬂv % = wQ.%.

e Models with the short rate as the only explanatory
variable are called short rate models.
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The Merton Model

e Assume the local expectations theory, which means u,
equals the prevailing short rate r(t) for all T.

e Assume further that y and o are constants.

e Then the partial differential equations (96) yield

52  o2(T—)3
w(T=t)® | o*(T—t)

P(r,t,T) = e "I~ (97)
e The dynamics of P is dP/P =rdt— o(T —t)dW.

e Now, P has no upper limits as 7" becomes large, which
does not square with the reality.
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Duration under Parallel Shifts

e Consider duration with respect to parallel shifts in the
spot rate curve.

e For convenience, assume t = 0.

e Parallel shift means S(r + Ar,T) = S(r,T) + Ar for
any Ar;so 0S(r,T)/0r = 1.

e This implies S(r,T) =r + g(T") for some function g
with ¢g(0) =0 because S(r,0) =r.

e Consequently, P(r,T) = e~ [r+9(D)]IT,
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Continuous-Time Derivatives Pricing

Duration under Parallel Shifts (concluded)

e Substitute this identity into the left-hand part of
Eq. (96) and assume the local expectations theory to
obtain

o(r)?
2

g @)+ 20— e -

T.

e As the left-hand side is independent of 7, so must the
right-hand side.

e Since this holds for all T, both u(r) and o(r) must be
constants, i.e., the Merton model.

e As mentioned before, this model is flawed, so must
duration as such.
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Towards the Black-Scholes Differential Equation

e The price of any derivative on a non-dividend-paying
stock must satisfy a partial differential equation.

e The key step is recognizing that the same random
process drives both securities.

e As their prices are perfectly correlated, we figure out the
amount of stock such that the gain from it offsets
exactly the loss from the derivative.

e The removal of uncertainty forces the portfolio’s return
to be the riskless rate.
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Assumptions
e The stock price follows dS = uSdt+ oS dW.
e There are no dividends.
e Trading is continuous, and short selling is allowed.
e There are no transactions costs or taxes.
e All securities are infinitely divisible.
e The term structure of riskless rates is flat at 7.
e There is unlimited riskless borrowing and lending.

e ¢t is the current time, T is the expiration time, and
T=T—1t.
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Black-Scholes Differential Equation (continued)

e The change in the value of the portfolio at time dt is

ocC
II=- —dS.
d &Q._.wmgm

e Substitute the formulas for dC and dS into the partial
differential equation to yield

2
dll = A|| — Z %82 m|Qv dt.

e As this equation does not involve dW, the portfolio is
riskless during dt time: dII = rIldt.

Black-Scholes Differential Equation
e Let C be the price of a derivative on S.
e From Ito’s lemma (p. 469),

| QQQQHMNQMQ @Q
&Qlﬁtm@m._‘ gD +wqm mmmv&._‘qmmm%\ﬁ

— The same W drives both C and S.

e Short one derivative and long dC/0S shares of stock
(call it II).

e By construction,

Il = —C + S(8C/dS).

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 486

>rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 485

Black-Scholes Differential Equation (concluded)

e So,

@QH:%Q| @Q

e Equate the terms to finally obtain

e When there is a dividend yield gq,

oc oC 1 ,.,0°C
M.T?ISM%.TMQ% %Iﬁg
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Rephrase

e The Black-Scholes differential equation can be expressed

in terms of sensitivity numbers,
1
O +rSA + 3 0?8 = rC. (99)
e Identity (99) leads to an alternative way of computing

O numerically from A and T.

e When a portfolio is delta-neutral,

O+ qummﬁ =rC.

— A definite relation thus exists between I' and ©.
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General Derivatives Pricing (continued)

e A portfolio consisting of o3 fy units of the first
derivative and —oq f; units of the second derivative is
instantaneously riskless:

o2 f2df1 — o1 f1df2
= oafefi(prdt + o1 dW) — o1 fifa(pz dt + a2 dW)
= (oafafipr — o1 fifapz)dt.

e Therefore,

(o2f2fip1 — o1 frfapz) dt = r(oafefi — o1fife)dt,

or gguy — orpe = r(og — o1).

General Derivatives Pricing
e In general the underlying asset S may not be traded.
— Interest rate, for instance, is not a traded security.

e Let S follow the Ito process dS/S = pdt + o dW,
where pu and o may depend only on S and ¢.

e Let f1(S,t) and f2(S,t) be the prices of two derivatives
with dynamics df;/fi = pidt + 0;dW, 1 =1,2.

— They share the same Wiener process as S.
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General Derivatives Pricing (continued)

e After rearranging the terms,

EI%Htmlﬁm» for some .
g1 g2

e A derivative whose value depends only on S and t and
which follows the Ito process df/f = pudt + o dW must
thus satisfy

w—r
o

= X\ or, alternatively, u=r+ Ao. (100)

e We call A the market price of risk, which is independent
of the specifics of the derivative.
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General Derivatives Pricing (continued)

e Ito’s lemma can be used to derive the formulas for u

and o:
_ 1 [of of 1 5. 0%
=g A& THS e T 595 552 )
, _ oS0
- f oS
e Substitute the above into Eq. (100) to obtain
of Of | 1 ,00*f
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General Derivatives Pricing (concluded)

e The presence of pu shows that the investor’s risk

preference is relevant.

e The derivative may be dependent on the underlying
asset’s growth rate and the market price of risk.

e Only when the underlying variable is the price of a
traded security can we assume g = r in pricing.
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Hedging
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Delta Hedge

The delta (hedge ratio) of a derivative f is defined as
A=0f/08S.

Thus Af ~ A x AS for relatively small changes in the
stock price, AS.

e A delta-neutral portfolio is hedged in the sense that it is
immunized against small changes in the stock price.

e A trading strategy that dynamically maintains a
delta-neutral portfolio is called delta hedge.
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Delta Hedge (concluded)
Delta changes with the stock price.

A delta hedge needs to be rebalanced periodically in
order to maintain delta neutrality.

In the limit where the portfolio is adjusted continuously,
perfect hedge is achieved and the strategy becomes
self-financing.

This was the gist of the Black-Scholes-Merton argument.
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Implementing Delta Hedge
We want to hedge IV short derivatives.
Assume the stock pays no dividends.

The delta-neutral portfolio maintains N x A shares of
stock plus B borrowed dollars such that

—Nxf+NxAxS—-B=0.

At next rebalancing point when the delta is A’, buy
N x (A" — A) shares to maintain N x A’ shares with a
total borrowing of B’ =N x A’ x §' — N x f'.

Delta hedge is the discrete-time analog of the
continuous-time limit and will rarely be self-financing.
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Example
A hedger is short 10,000 European calls.
o =30%, and r = 6%.

This call’s expiration is four weeks away, its strike price
is $50, and each call has a current value of f = 1.76791.

As an option covers 100 shares of stock, N = 1,000,000.
The trader adjusts the portfolio weekly.

The calls are replicated well if the cumulative cost of
trading stock is close to the call premium’s FV.
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Example (continued)

e As A =0.538560, N x A = 538,560 shares are
purchased for a total cost of 538,560 x 50 = 26,928,000
dollars to make the portfolio delta-neutral.

e The trader finances the purchase by borrowing
B=NxAxS§—N x f= 25,160,090
dollars net.

e The portfolio has zero net value now.
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Example (continued)

e In fact, the tracking error is positive about 68% of the
time even though its expected value is essentially zero
(Boyle and Emanuel, 1980).

e It is furthermore proportional to vega.

e In practice tracking errors will cease to decrease beyond
a certain rebalancing frequency.

e With a higher delta A’ = 0.640355, the trader buys
N x (A" — A) =101,795 shares for $5,191,545.

e The number of shares is increased to N x A’ = 640, 355.

Example (continued)
e At 3 weeks to expiration, the stock price rises to $51.
e The new call value is f' = 2.10580.

e So the portfolio is worth
—N x f'+538,560 x 51 — Be®06/52 = 171,622 (102)

before rebalancing.

— A delta hedge does not replicate the calls perfectly; it
is not self-financing as $171,622 can be withdrawn.

— The magnitude of the tracking error—the variation
in the net portfolio value—can be mitigated if
adjustments are made more frequently.
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Example (continued)

e The cumulative cost is
26,928,000 x ¢%%6/52 1 5,191,545 = 32,150,634.
e The net borrowed amount is
B’ = 640,355 x 51 — N x f' = 30,552,305.
— Alternatively, the number could be arrived at via
Be%%/52 1 5,191,545 + 171,622 = 30,552,305.

e The portfolio is again delta-neutral with zero value.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 503




Option Change in No. shares Cost of Cumulative
value Delta delta bought shares cost
T S f A N x(5) (1)x(6) FV(8)+(7)
(1) (2) (3) (5) (6) ()] (8)
4 50 1.7679 0.53856 — 538,560 26,928,000 26,928,000
3 51 2.1058 0.64036 0.10180 101,795 5,191,545 32,150,634
2 53 3.3509 0.85578 0.21542 215,425 11,417,525 43,605,277
1 52 2.2427 0.83983 —0.01595 —15,955 —829,660 42,825,960
0 54 4.0000 1.00000 0.16017 160,175 8,649,450 51,524,853

The total number of shares is 1,000,000 at expiration
(trading takes place at expiration, t00).
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Example (concluded)

At expiration, the trader has 1,000,000 shares.

They are exercised against by the in-the-money calls for
$50,000,000.

The trader is left with an obligation of
51,524,853 — 50,000,000 = 1,524,853,

which represents the replication cost.

Compared with the FV of the call premium,
1,767,910 x €%-06x4/52 — 1 776 088,

the net gain is 1,776,088 — 1,524,853 = 251,235.

Delta-Gamma Hedge

Delta hedge is based on the first-order approximation to
changes in the derivative price, Af, due to changes in
the stock price, AS.

When AS is not small, the second-order term, gamma
I' = 62f/05?, helps (theoretically).

A delta-gamma hedge is a delta hedge that maintains

zero portfolio gamma, or gamma neutrality.

To meet this extra condition, one more security needs to
be brought in.
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Delta-Gamma Hedge (concluded)
e Suppose we want to hedge short calls as before.

e A hedging call fs is brought in.

e To set up a delta-gamma hedge, we solve

—NXf+nixS+nex fa—B = 0 (self-financing),
—NXA+ni+n2xAz3—0 = 0 (delta neutrality),
—NxI'+0+4ny3xI'2—0 = 0 (gamma neutrality),

for nq, ne, and B.

— The gammas of the stock and bond are 0.
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Other Hedges

e If volatility changes, delta-gamma hedge may not work
well.

e An enhancement is the delta-gamma-vega hedge, which
also maintains vega zero portfolio vega.

e To accomplish this, one more security has to be brought
into the process.

e In practice, delta-vega hedge, which may not maintain
gamma neutrality, performs better than delta hedge.
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