Example

e Consider a call with strike $100 and an expiration date
in September.

e The underlying asset is a forward contract with a
delivery date in December.

e Suppose the forward price in July is $110.

e Upon exercise, the call holder receives a forward
contract with a delivery price of $100.

e If an offsetting position is then taken in the forward
market, a $10 profit in December will be assured.

e A call on the futures would realize the $10 profit in July.
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Some Pricing Relations (concluded)

e A European futures option is worth the same as the
corresponding European option on the underlying asset
if the futures contract has the same maturity as the
options.

— Futures price equals spot price at maturity.

— This conclusion is independent of the model for the
spot price.

Some Pricing Relations

e Let delivery take place at time T, the current time be 0,
and the option on the futures or forward contract have
expiration date t (¢ <T).

e Assume a constant, positive interest rate.

e Although forward price equals futures price, a forward
option does not have the same value as a futures option.

e The payoffs at time ¢ are

futures option = max(F; — X,0), (68)
forward option = max(F, — X,0)e "D (69)
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Put-Call Parity

The put-call parity is slightly different from the one in
Eq. (42) on p. 188.
Theorem 15 (1) For European options on futures
contracts, C = P — (X — F)e~". (2) For European options
on forward contracts, C = P — (X — F)e T,
e Consider a portfolio of one short call, one long put, one
long futures contract, and a loan of (X — F)e ™.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 388



The Proof (continued)

e Cash flow at time ¢:
F,<X F,>X

A short call 0 X —F;
A long put X - F 0
A long futures F,—F F,—-F
Aloanof (X —F)ee™ F-X F-X
Total 0 0

e Since the net future cash flow is zero in both cases, the
portfolio must have zero value today.
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The Proof (concluded)

e This proves the theorem for futures option.

e The proof for forward options is identical except that

rT

the loan amount is (X — F)e™"" instead.

Early Exercise and Forward Options
The early exercise feature is not valuable.

Theorem 16 American forward options should not be
exercised before expiration as long as the probability of their
ending up out of the money is positive.

e The proof is in the text.

Early exercise may be optimal for American futures options
even if the underlying asset generates no payouts.

Theorem 17 American futures options may be exercised
optimally before expiration.
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Black Model (Black, 1976)

e Formulas for European futures options:

C = Fe "N(z)— Xe ""N(z—oVi), (70)
P = Xe "N(—z+0Vt)— Fe "'N(—z),
where ¢ = %

e Formulas (70) are related to those for options on a stock
paying a continuous dividend yield.

e In fact, they are exactly Egs. (55) on p. 266 with the
dividend yield ¢ set to the interest rate r and the stock
price S replaced by the futures price F'.
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Black Model (concluded)

e This observation incidentally proves Theorem 17 on
p. 391.

e For European forward options, just multiply the above

formulas by e~ "(T—1),

— Because forward options differ from futures options
by a factor of e~"(T=!) based on Egs. (68)—(69).
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Spot and Futures Prices under BOPM

e The futures price is related to the spot price via
F = Se™ if the underlying asset pays no dividends.

e The stock price moves from S = Fe™ " to
Fue "(T=A1) — SyeAt with probability ps per period.

e The stock price moves from S = Fe~"T to Sde™? with

probability 1 — p¢ per period.

Binomial Model for Forward and Futures Options

e Futures price behaves like a stock paying a continuous
dividend yield of r.

e Under the BOPM, the risk-neutral probability for the
futures price is

pe=(1—d)/(u—d)

by Eq. (56) on p. 267.
— The futures price moves from F to Fu with
probability pr and to F'd with probability 1 — ps.

e The binomial tree algorithm for forward options is
identical except that Eq. (69) on p. 386 is the payoff.
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Negative Probabilities Revisited
e As 0<ps<1,wehave 0 <1—pr<1 as well

e Solve the problem of negative risk-neutral probabilities:
— Suppose the stock pays a continuous dividend yield
of q.
— Build the tree for the futures price F' of the futures
contract expiring at the same time as the option.

— Calculate S from F' at each node via
\m_ = NMJQ\?.\QXNJ\S.
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Swaps

e Swaps are agreements between two counterparties to
exchange cash flows in the future according to a
predetermined formula.

e There are two basic types of swaps: interest rate and

currency.

An interest rate swap occurs when two parties exchange
interest payments periodically.

e Currency swaps are agreements to deliver one currency
against another (our focus here).
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Currency Swaps

e A currency swap involves two parties to exchange cash

flows in different currencies.

e Consider the following fixed rates available to party A
and party B in U.S. dollars and Japanese yen:
Dollars  Yen
A Da% Ya%
B Dg% Y%

e Suppose A wants to take out a fixed-rate loan in yen,
and B wants to take out a fixed-rate loan in dollars.

>rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 398

Currency Swaps (continued)

e A straightforward scenario is for A to borrow yen at
Y2% and B to borrow dollars at Dg%.

e But suppose A is relatively more competitive in the
dollar market than the yen market, and vice versa for B.
— Yg — YA < D — Da.

e Consider this alternative arrangement:
— A borrows dollars.
— B borrows yen.

— They enter into a currency swap with a bank as the

intermediary.
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Currency Swaps (concluded)

e The counterparties exchange principal at the beginning
and the end of the life of the swap.

e This act transforms A’s loan into a yen loan and B’s yen
loan into a dollar loan.

e The total gain is ((Dg — Da) — (Yg — Ya))%:
— The total interest rate is originally (Ya + Dp)%.
— The new arrangement has a smaller total rate of

(Da + Y8)%.

e Transactions will happen only if the gain is distributed
so that the cost to each party is less than the original.
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Example
e A and B face the following borrowing rates:

Dollars  Yen
A 9% 10%
B 12% 11%

e A wants to borrow yen, and B wants to borrow dollars.
e A can borrow yen directly at 10%.

e B can borrow dollars directly at 12%.
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Dollars 9% Yen 9.5% _ Yen 11% . Yen 11%

<4—— PartyA < bl Bank - bl Party B —
Dollars 9% Dollars 11.5%

Example (concluded)

e As the rate differential in dollars (3%) is different from
that in yen (1%), a currency swap with a total saving of
3 —1=2% is possible.

e A is relatively more competitive in the dollar market,
and B the yen market.

e Figure next page shows an arrangement which is
beneficial to all parties involved.

— A effectively borrows yen at 9.5%. B borrows dollars
at 11.5%.

— The gain is 0.5% for A, 0.5% for B, and, if we treat
dollars and yen identically, 1% for the bank.
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As a Package of Cash Market Instruments
e Agsume no default risgk.
e Take B on p. 403 as an example.

e The swap is equivalent to a long position in a yen bond
paying 11% annual interest and a short position in a
dollar bond paying 11.5% annual interest.

e The pricing formula is SPy — Pp.

— Pp is the dollar bond’s value in dollars.
— Py is the yen bond’s value in yen.

— S is the $/yen spot exchange rate.
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As a Package of Cash Market Instruments (concluded)

e The value of a currency swap depends on the term
structures of interest rates in the currencies involved and

the spot exchange rate.

e It has zero value when SPy = Pp.
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Example

e Take a two-year swap on p. 403 with principal amounts
of US$1 million and 100 million yen.

e The payments are made once a year.

e The spot exchange rate is 90 yen/$ and the term
structures are flat in both nations—8% in the U.S. and
9% in Japan.

e For B, the value of the swap is (in millions of USD)

1
g X (11 % €009 4 11 x ¢70:09%2 1 117 x ¢70:09%3)

—(0.115 x 7908 4 0.115 x e70-08%2 1 1.115 x e70-08%3) = (.074.

As a Package of Forward Contracts

e From Eq. (65) on p. 368, the forward contract maturing
1 years from now has a dollar value of

fi=(SY;)e ¥ — Die ™. (71)

— Y; is the yen inflow at year 1.

— S is the $/yen spot exchange rate.
— q is the yen interest rate.

— D; is the dollar outflow at year 3.

— r is the dollar interest rate.
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As a Package of Forward Contracts (concluded)

e This formulation may be preferred to the cash market
approach in cases involving costs of carry and
convenience yields because forward prices already
incorporate them.

e For simplicity, flat term structures were assumed.

e Generalization is straightforward.
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Example
e Take the swap in the example on p. 406.
Stochastic Processes
e Every year, B receives 11 million yen and pays 0.115
million dollars. e A stochastic process X = { X(¢) } is a time series of
d iables.
e In addition, at the end of the third year, B receives 100 randot varlabies
million yen and pays 1 million dollars. e X(t) (or X;)is a random variable for each time ¢ and
i lly called the state of th t ti t.
e Each of these transactions represents a forward contract. 18 usually catle ¢ state of LAC process at time
e Yi=Y,=11,Y =111, § = 1/90, Dy = Dy = 0.115 e A realization of X is called a sample path.
1= 12 = ; 13 = ) = , Y1 = a2 = V. ’
D3 =1.115, ¢ = 0.09, and r = 0.08. e A sample path defines an ordinary function of .
e Plug in these numbers to get fi + fo + f3 = 0.074
million dollars as before.
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Stochastic Processes (concluded)

e If the times ¢t form a countable set, X is called a
discrete-time stochastic process or a time series.

Stochastic Processes and Brownian Motion e In this case, subscripts rather than parentheses are
usually employed, as in X = { X, }.
e If the times form a continuum, X is called a

continuous-time stochastic process.
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Random Walks

e The binomial model is a random walk in disguise.
e Consider a particle on the integer line, 0, 1, £2,....

e In each time step, it can make one move to the right
with probability p or one move to the left with
probability 1 — p.

— This random walk is symmetric when p =1/2.
e Connection with the BOPM: The particle’s position

denotes the cumulative number of up moves minus that

of down moves.
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Posi tion
4}

A
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Random Walk with Drift

e ¢, are independent and identically distributed with zero
mean.

e Drift u is the expected change per period.
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Martingales
e {X(t),t >0} is a martingale if E[| X(¢)|] < oo for
t >0 and
E[X(t)|X(u),0<u<s]=X(s). (73)

e In the discrete-time setting, a martingale means
N_TN:‘TH_;NTNMV ukz_nkz A‘NRC

e X, can be interpreted as a gambler’s fortune after the
nth gamble.
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Martingales (concluded)

e Identity (74) says the expected fortune after the
(n + 1)th gamble equals the fortune after the nth
gamble regardless of what may have occurred before.

e A martingale is therefore a notion of fair games.

e Apply the law of iterated conditional expectations to
both sides of Eq. (74) to yield

E[X,]|=E[X1] (75)
for all n.

e E[X(t)]=E[X(0)] in the continuous-time case.
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Example

e Consider the stochastic process
{Z,=3",Xi,n>1}, where X; are independent

random variables with zero mean.
e This process is a martingale because
E|Zni1|Z1,Z9,... . Zn]
= E[Z,+Xnt1|21,Z2,... ,Zn]
= E|Z,|Z1,Za,...,Z,|+E|[Xnt1|21,2Z2,... ,2Zy]
= Zn+E[Xnp1]=Zy.
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Probability Measure
e A martingale is defined with respect to a probability
measure, under which the expectation is taken.
— A probability measure assigns probabilities to states
of the world.
e A martingale is also defined with respect to an
information set.

— In the characterizations (73)—(74), the information
set contains the current and past values of X by
default.

— But it needs not be so.
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Probability Measure (continued)

e A stochastic process { X(¢),t > 0} is a martingale with
respect to information sets { I; } if, for all ¢ > 0,
E[|X(t)|] < oo and

E[X(u)| L] = X(t)
for all u > t.
e The discrete-time version: For all n > 0,
E[Xni1 | In] = X,

given the information sets { I,, }.
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Probability Measure (concluded)
e The above implies E[ X, 4m | I, ] = X, for any m >0
by Eq. (39) on p. 144.
— A typical I, is the price information up to time n.

— The above says the FVs of X will not deviate
systematically from today’s value given the price
history.
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Example

e Consider the stochastic process { Z, — nu,n > 1}.

- NS = MUWHH LX‘s
— X1, X5,... are independent random variables with
mean U.
e Now,

ElZyy1—(n+ D) p| X1, X, ..., X0 ]
= E[Z,1] X1, X2, Xn]—(n+1)p
= Zntpu—(n+1l)p
= Z,—npu.
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Example (concluded)

e Define
.Nﬁ = ANTNM“... QNSW

e Then {Z,, — np,n > 1} is a martingale with respect to

{In}
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Martingale Pricing

e The price of a European option is the expected
discounted future payoff at expiration in a risk-neutral

economy.

e This principle can be generalized using the concept of
martingale.

e Recall the recursive valuation of European option via
C = [pCu+ (1 —-p)C4]/R.

— p is the risk-neutral probability.
— $1 grows to $R in a period.
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Martingale Pricing (continued)
e Let C(i) denote the value of the option at time 4.

e Consider the discount process

{C(#)/R',i=0,1,...,n}.

. @Q:._‘AHIEQ&Q
QA@V == Q = .WWTTH = m
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Martingale Pricing (continued)

e In general,

C(k) . c .
e The discount process is a martingale:
C(7) C(k) :
=~ =FET | —= <k.
R E] zE | S k (77)

— ET is taken under the risk-neutral probability

conditional on the price information up to time 1.

e This risk-neutral probability is also called the equivalent
martingale (probability) measure (EMM).
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Martingale Pricing (continued)
e In general, Eq. (77) holds for all assets, not just options.

e In the general case where interest rates are stochastic,
the equation becomes

C(i)
M(i)

= ET Clk) |y o, (78)

M) |T

— M(j) is the balance in the money market account at
time j using the rollover strategy with an initial
investment of $1.

— So it is called the bank account process.

e It says the discount process is a martingale under 7.
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Martingale Pricing (concluded)

e If interest rates are stochastic, then M (j) is a random
variable.

— M(0) =1.
— M(j) is known at time j — 1.

o Identity (78) is the general formulation of risk-neutral
valuation.

Theorem 18 A discrete-time model is arbitrage-free if and
only if there exists a probability measure such that the
discount process is a martingale. This probability measure is
called the risk-neutral probability measure.
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Futures Price under the BOPM

e Futures prices form a martingale under the risk-neutral

probability.
— The expected futures price in the next period is
peFu+ (1 —p) Fd=F Mwm:l Muwg —F
(see p. 394).
e Can be generalized to
F, =ET[Fy], i<k, (79)

where F; is the futures price at time 1.

e It holds under stochastic interest rates.
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Martingale Pricing and Numeraire
e The martingale pricing formula (78) uses the money
market account as numeraire.?
— It expresses the price of any asset relative to the

money market account.

e The money market account is not the only choice for

numeraire.

e Suppose asset S’s value is positive at all times.

aWalras (1834-1910).

Martingale Pricing and Numeraire (concluded)

e Choose S as numeraire.

e Martingale pricing says there exists a risk-neutral
probability w under which the relative price of any asset

C is a martingale:

CO) _pr [CET s g (80)

5(2) S(k)
— S(j) denotes the price of S at time j.

e So the discount process remains a martingale.
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Example

Take the binomial model with two assets.

In a period, asset one’s price can go from S to S; or

Sa.

e In a period, asset two’s price can go from P to P; or
P

e Assume

(S1/P1) < (S/P) < (S2/P»)

for market completeness and to rule out arbitrage

opportunities.
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Example (continued)

e For any derivative security, let C7 be its price at time
one if asset one’s price moves to Sj.

e Let C5 be its price at time one if asset one’s price
moves to Ss.

e Replicate the derivative by solving

aS1+ 8P = O
aSs +Q~um = (5

using o units of asset one and [ units of asset two.
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Example (continued)
e This yields

. wMQH — wHQm MmQH - %HQM

= -~ --“° d = = — =
*=p5 ps, ™ P=5 5 5p

e The derivative costs

C = aS+pBP
_ P,S-PS, PS, — P.S
o .NUM‘WH|.~UHMNQH+.~UM%H|.~UH%NQN.
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Example (concluded)

e It is easy to verify that

WH M+ﬁ|3|. (81)

_ (S/P)—(S2/Ps)

= (51/P1)—(S2/P2)"
e The derivative’s price using asset two as numeraire is
thus a martingale under the risk-neutral probability p.

e The expected returns of the two assets are irrelevant.
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Brownian Motion

e Brownian motion is a stochastic process { X(¢),t >0}

with the following properties.

1. X(0) = 0, unless stated otherwise;

2. for any 0 <tg <t; <:--<ty, the random variables
X (tx) — X(tg—1) for 1 <k <n are independent?;

3. for 0 <s<t, X(t)—X(s) is normally distributed
with mean pu(t — s) and variance o?(t — s), where pu
and o # 0 are real numbers.

aSo X(t) — X (s) is independent of X(r) for r < s < t.
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Brownian Motion (concluded)

Such a process will be called a (i, o) Brownian motion

with drift p and variance o2.

e The existence and uniqueness of such a process is
guaranteed by Wiener’s theorem.

Although Brownian motion is a continuous function of ¢
with probability one, it is almost nowhere differentiable.

The (0,1) Brownian motion is also called the Wiener

process.
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Example

o If {X(t),t >0} is the Wiener process, then
X(t)— X(s) ~N(0,t—s).

e A (u,0) Brownian motion Y = {Y(¢),t >0} can be
expressed in terms of the Wiener process:

Y(t) = ut+oX(t). (82)

o As Y(t+s) —Y(t) ~ N(us,02s), uncertainty about the
future value of Y grows as the square root of how far
we look into the future.

Brownian Motion as Limit of Random Walk

Claim 1 A (u,0) Brownian motion is the limiting case of
random walk.

e A particle moves Az to the left with probability 1 — p.
e It moves to the right with probability p after At time.
e Assume n = t¢/At is an integer.

e Its position at time ¢ is

M\TUWD&?XMuTN‘MIT...IT;Nﬁv.
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Brownian Motion as Limit of Random Walk
(continued)

e (continued)

— Here

+1 if the 4th move is to the right
—1 if the 4th move is to the left

Ns.m

— X, are independent with
WHOUTXM = ”: =p=1-— HUH.O_UTNM = |”:

e Recall E[X;]=2p—1 and Var[X;]=1—(2p— 1)
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Brownian Motion as Limit of Random Walk
(continued)

e Therefore,
E[Y(t)] = n(Az)(2p - 1),
Var[Y (t)] = n(Az)? (1 — (2p — 1)?).
e With Az =0V/At and p = (1+ (u/0)VAt)/2,

E[Y(®t)] = noVAt(u/o)VAt = put
Var[Y(t)] = no’At [1- At\qvaL — ot

as At — 0.
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Geometric Brownian Motion

Let X ={X(t),t >0} be a Brownian motion process.

The process {Y (t) = eX(® ¢t > 0}, is called geometric

Brownian motion.

Suppose further that X is a (u, o) Brownian motion.

X (t) ~ N(ut,0%t) with moment generating function

B[eX0] = B[y (5] = ettt/

from Eq. (40) on p 146.

Brownian Motion as Limit of Random Walk
(concluded)

Thus, {Y(t),t > 0} converges to a (u,o) Brownian

motion by the central limit theorem.

e Brownian motion with zero drift is the limiting case of
symmetric random walk by choosing u = 0.

[ ]
Var| Y (t + At) — Y ()]
=Var[Az X, 1] = (Az)? x Var[ X,,11] — o?At.
e Similarity to the the BOPM: The p is identical to the

probability in Eq. (54) on p. 248 and Az = Inwu.
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Geometric Brownian Motion (continued)

e In particular,

E[Y(t)] = ert("t/2), (83)
Var[Y(t)| = E[Y()?] — E[Y(t) ]2
_ mmtiqmuﬂmqm“ —1). (83)
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Y(t)
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Continuous-Time Financial Mathematics

Geometric Brownian Motion (concluded)

Useful for situations in which percentage changes are
independent and identically distributed.

e Let Y,, denote the stock price at time n and Yy = 1.

e Assume relative returns X; =Y;/Y;_1 are independent
and identically distributed.

e Then InY,, =Y " InX; is a sum of independent,
identically distributed random variables.

e Thus {InY,,n >0} is approximately Brownian motion.
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Stochastic Integrals

e Use W={W(t),t >0} to denote the Wiener process.

e The goal is to develop integrals of X from a class of

stochastic processes,?®

t
Euom\ X dW, t>0.
0

e I;(X) is a random variable called the stochastic integral

of X with respect to W.

e The stochastic process {I;(X),t > 0} will be denoted

by [XdW.
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2Ito (1915-).
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Stochastic Integrals (concluded)

e Typical requirements for X in financial applications are:
- WHOU:%NMA& ds <oo]=1 forall t>0 or the
stronger %%@Cmm@v |ds < cc.
— The information set at time ¢ includes the history of
X and W up to that point in time.
— But it contains nothing about the evolution of X or
W after ¢ (nonanticipating, so to speak).

e The future cannot influence the present.

e {X(s),0<s<t} is independent of
{W({t+u)—W(t),u>0}.
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X(z)
o——0
o——0
—0
—-0
—-0
t

N,o N_ Nw Nw ; Nm

Ito Integral
e A theory of stochastic integration.
e As with calculus, it starts with step functions.

e A stochastic process { X(t)} is simple if there exist
0=ty < t; <--- such that

»X‘Qv = N‘@wlwv for t € TQIT?Y k=1,2,.

for any realization (see figure next page).
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Ito Integral (continued)

e The Ito integral of a simple process is defined as

LX) = 3 X Wit - W], (84)
k=0

where t, = t.
— The integrand X is evaluated at tx, not tgi1.
e Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple
stochastic processes.
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Ito Integral (continued)
e Let X ={X(t),t >0} be a general stochastic process.

e Then there exists a random variable I;(X), unique
almost certainly, such that I,(X,,) converges in
probability to I;(X) for each sequence of simple
stochastic processes Xi, Xo,... such that X,, converges
in probability to X.

e If X is continuous with probability one, then I;(X,)
converges in probability to I,(X) as
0n = maxi<k<n(tr —tk—1) goes to zero.
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Discrete Approximation
e Recall Eq. (84) on p. 452.

e The following simple stochastic process { X ()} can be
used in place of X to approximate the stochastic
integral %o“ X dw,

~

X(s) = X(tg—1) for s € [tp_1,tx), k=1,2,... ,n.

e Note the nonanticipating feature of X.

— The information up to time s,
{X(t),W(t),0<t<s},

cannot determine the future evolution of X or W.

Ito Integral (concluded)

e It is a fundamental fact that % X dW 1is continuous
almost surely.

e The following theorem says the Ito integral is a

martingale.
e A corollary is the mean value formula E|[ .\H XdW]=0.

Theorem 19 The Ito integral [ X dW is a martingale.
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Discrete Approximation (concluded)

e Suppose we defined the stochastic integral as
i X (b ) [W (tn) — W (k) -

e Then we would be using the following different simple
stochastic process in the approximation,

M\v@u = X (t) for s € [ty_1,t), k=1,2,... ,n.

e This clearly anticipates the future evolution of X.
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Ito Process

e The stochastic process X = { X;,t > 0} that solves

t t
NwHNOLv\ QANE&%+\ b(Xs,8)dWs, t>0
0 0

is called an Ito process.

e Here, X is a scalar starting point, and
{a(X¢,t) 1t >0} and {b(X;,t) :t >0} are stochastic
processes satisfying certain regularity conditions.

e The terms a(X;,t) and b(Xy,t) are the drift and the
diffusion, respectively.

Ito Process (continued)

e A shorthand? is the following stochastic differential
equation for the Ito differential dX;,

&»XM = QAN? ﬁv dt + WAN? ﬁv &ﬁ\ﬁ\w Amwv
— Or simply dX; = a; dt + by dW4.

e This is Brownian motion with an instantaneous drift a,
and an instantaneous variance b?.

e X is a martingale if the drift a; is zero by Theorem 19.

aLangevin, 1904.
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Ito Process (concluded)

e dW is normally distributed with mean zero and
variance dt.

e An equivalent form to Eq. (85) is
dX; = ay dt + bVt €, (86)
where £ ~ N(0,1).

e This formulation makes it easy to derive Monte Carlo

simulation algorithms.
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Euler Approximation

e The following approximation follows from Eq. (86),

~

X (tnt1)
=X (tn) + a(X (tn), tn) At + (X (tn), ta) AW (t,), (87)
where t, = nAt.
e (Called the Euler or Euler-Maruyama method.
e Under mild conditions, X (t,) converges to X (ty).

e Recall that AW (t,) should be interpreted as
W (tns1) — W(t,) instead of W(t,) — W (tn_1)-
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More Discrete Approximations

e Under fairly loose regularity conditions, approximation
(87) can be replaced by

~

X (tnt1)
=X (tn) + a(X (tn), tn) At + b(X (tn), tn) VALY (t,).

— Y(tg),Y(t1),-... are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

e A simpler discrete approximation scheme:

~

X (tnt1)
=X (tn) + a(X (tn), tn) At + b(X (tn), ta) VALE.  (88)
— Prob[{ =1] =Prob[{ = 1] =1/2.
— Note that E[£] =0 and Var[{] = 1.
e This clearly defines a binomial model.

~

o As At goes to zero, X converges to X.
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Trading and the Ito Integral

Consider an Ito process dS; = u; dt + oy dWy.

— S, is the vector of security prices at time t.

Let ¢, be a trading strategy denoting the quantity of
each type of security held at time t.

The stochastic process ¢,S; is the value of the portfolio
¢, at time t.

&, dS; = ¢, (uy dt + oy dWy) represents the change in the
value from security price changes occurring at time t.
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Trading and the Ito Integral (concluded)

e The equivalent Ito integral,

T T T
Gr(@) = [ dudsi= [ s+ [ doaw,
0 0 0
measures the gains realized by the trading strategy over
the period [0,T'].

e A strategy is self-financing if

¢St = PgSo + Gi() (89)

forall 0<t<T.

— The investment at any time equals the initial
investment plus the total capital gains.
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[to’s Lemma

Theorem 20 Suppose f: R — R is twice continuously
differentiable and dX = a;dt + by dW. Then f(X) is the
Ito process,

F(Xe)
_ ¢ I E ! W t 11 2
= 1)+ [ pyasdst [t beaw 3 [ s
for t > 0.

e Basically says a smooth function of an Ito process is
itself an Ito process.

Ito's Lemma (continued)

e In differential form, Ito’s lemma becomes
1
df (X) = f'(X)adt+ f'(X)bdW + 3 (X)) b2 dt. (90)

e Compared with calculus, the interesting part is the third
term on the right-hand side.

e A convenient formulation of Ito’s lemma is

d(X) = f(X)dX + 3 f((X)XP. (o)
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Ito’s Lemma (continued)

e We are supposed to multiply out
(dX)? = (adt + bdW)? symbolically according to

x | dW dt
aw | dt 0
dt 0 0

— The (dW)? = dt entry is justified by a known result.

e This form is easy to remember because of its similarity

to Taylor expansion.
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lto’s Lemma (continued)

Theorem 21 (Higher-Dimensional Ito’s Lemma) Let
Wi, Wa, ... ,W,, be independent Wiener processes and

X = (X1,Xo,...,Xm) be a vector process. Suppose
f:R™ — R s twice continuously differentiable and X; is
an Ito process with dX; = a; dt + MUMHH b;; dW;. Then

df (X) is an Ito process with the differential,

m

4(X) = 32 HX)dXi + 5 30D Fa(X) dXidXi,

=1 i=1 k=1

where f; = 0f/0z; and fi, = 0%f/0x;0xy.
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lto's Lemma (concluded)

e The multiplication table for Theorem 21 is

X dw,; dt
dWi | 6 dt 0
dt 0 0
in which
1 ifi=k

Oik =

0 otherwise

Geometric Brownian Motion

e Consider the geometric Brownian motion process
Y (t) = eX®
— X(t) is a (u,0) Brownian motion.

e Ito’s formula (90) implies

% = (p+0%/2) dt + o dW.

e The instantaneous rate of return is p + 02?/2 not u.
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