Example

- Consider a call with strike \$100 and an expiration date in September.
- The underlying asset is a forward contract with a delivery date in December.
- Suppose the forward price in July is \$110.
- Upon exercise, the call holder receives a forward contract with a delivery price of \$100.
- If an offsetting position is then taken in the forward market, a \$10 profit in December will be assured.
- A call on the futures would realize the \$10 profit in July.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 385

Some Pricing Relations

- Let delivery take place at time T, the current time be 0, and the option on the futures or forward contract have expiration date t ($t \leq T$).
- Assume a constant, positive interest rate.
- Although forward price equals futures price, a forward option does not have the same value as a futures option.
- \bullet The payoffs at time t are

futures option =
$$\max(F_t - X, 0)$$
, (68)

forward option = $\max(F_t - X, 0) e^{-r(T-t)}$. (69)

Some Pricing Relations (concluded)

- A European futures option is worth the same as the corresponding European option on the underlying asset if the futures contract has the same maturity as the options.
- Futures price equals spot price at maturity.
- This conclusion is independent of the model for the spot price.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 387

Put-Call Parity

The put-call parity is slightly different from the one in Eq. (42) on p. 188.

Theorem 15 (1) For European options on futures contracts, $C = P - (X - F)e^{-rt}$. (2) For European options on forward contracts, $C = P - (X - F)e^{-rT}$.

• Consider a portfolio of one short call, one long put, one long futures contract, and a loan of $(X - F)e^{-rt}$.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 386 Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 388

The Proof (continued)

• Cash flow at time t:

$$F_t \leq X \quad F_t > X$$
 A short call
$$0 \quad X - F_t$$
 A long put
$$X - F_t \quad 0$$
 A long futures
$$F_t - F \quad F_t - F$$
 A loan of
$$(X - F)e^{-rt} \quad F - X \quad F - X$$
 Total
$$0 \quad 0$$

 Since the net future cash flow is zero in both cases, the portfolio must have zero value today.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 389

The Proof (concluded)

- This proves the theorem for futures option.
- The proof for forward options is identical except that the loan amount is $(X F) e^{-rT}$ instead.

Early Exercise and Forward Options

The early exercise feature is not valuable.

Theorem 16 American forward options should not be exercised before expiration as long as the probability of their ending up out of the money is positive.

• The proof is in the text.

Early exercise may be optimal for American futures options even if the underlying asset generates no payouts.

Theorem 17 American futures options may be exercised optimally before expiration.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 391

Black Model (Black, 1976)

Formulas for European futures options:

$$C = Fe^{-rt}N(x) - Xe^{-rt}N(x - \sigma\sqrt{t}), \qquad (70)$$

$$P = Xe^{-rt}N(-x + \sigma\sqrt{t}) - Fe^{-rt}N(-x),$$

where
$$x \equiv \frac{\ln(F/X) + (\sigma^2/2)t}{\sigma\sqrt{t}}$$
.

- Formulas (70) are related to those for options on a stock paying a continuous dividend yield.
- In fact, they are exactly Eqs. (55) on p. 266 with the dividend yield q set to the interest rate r and the stock price S replaced by the futures price F.

Black Model (concluded)

- This observation incidentally proves Theorem 17 on p. 391.
- For European forward options, just multiply the above formulas by $e^{-r(T-t)}$.
- Because forward options differ from futures options by a factor of $e^{-r(T-t)}$ based on Eqs. (68)–(69).

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 393

Binomial Model for Forward and Futures Options

- \bullet Futures price behaves like a stock paying a continuous dividend yield of r.
- Under the BOPM, the risk-neutral probability for the futures price is

$$p_{\rm f} \equiv (1-d)/(u-d)$$

by Eq. (56) on p. 267.

- The futures price moves from F to Fu with probability $p_{\rm f}$ and to Fd with probability $1-p_{\rm f}$.
- The binomial tree algorithm for forward options is identical except that Eq. (69) on p. 386 is the payoff.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 394

Spot and Futures Prices under BOPM

- The futures price is related to the spot price via $F = Se^{rT}$ if the underlying asset pays no dividends
- The stock price moves from $S=Fe^{-rT}$ to $Fue^{-r(T-\Delta t)}=Sue^{r\Delta t}$ with probability $p_{\rm f}$ per period.
- The stock price moves from $S = Fe^{-rT}$ to $Sde^{r\Delta t}$ with probability $1 p_f$ per period.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 395

Negative Probabilities Revisited

- As $0 < p_{\rm f} < 1$, we have $0 < 1 p_{\rm f} < 1$ as well.
- Solve the problem of negative risk-neutral probabilities:
- Suppose the stock pays a continuous dividend yield of a.
- Build the tree for the futures price F of the futures contract expiring at the same time as the option.
- Calculate S from F at each node via $S = Fe^{-(r-q)(T-t)}$.

Swaps

- Swaps are agreements between two counterparties to exchange cash flows in the future according to a predetermined formula.
- There are two basic types of swaps: interest rate and currency.
- An interest rate swap occurs when two parties exchange interest payments periodically.
- Currency swaps are agreements to deliver one currency against another (our focus here).

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 397

Currency Swaps

- A currency swap involves two parties to exchange cash flows in different currencies.
- Consider the following fixed rates available to party A and party B in U.S. dollars and Japanese yen:

$Y_{ m B}\%$	$D_{ m B}\%$	В
$Y_{ m A}$ %	$D_{ m A}\%$	Α
Yen	Dollars	

• Suppose A wants to take out a fixed-rate loan in yen, and B wants to take out a fixed-rate loan in dollars.

Currency Swaps (continued)

- A straightforward scenario is for A to borrow yen at $Y_{\rm A}\%$ and B to borrow dollars at $D_{\rm B}\%$.
- But suppose A is *relatively* more competitive in the dollar market than the yen market, and vice versa for B.

$$-Y_{\mathrm{B}} - Y_{\mathrm{A}} < D_{\mathrm{B}} - D_{\mathrm{A}}.$$

- Consider this alternative arrangement:
- A borrows dollars.
- B borrows yen.
- They enter into a currency swap with a bank as the intermediary.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 399

Currency Swaps (concluded)

- The counterparties exchange principal at the beginning and the end of the life of the swap.
- This act transforms A's loan into a yen loan and B's yen loan into a dollar loan.
- The total gain is $((D_B D_A) (Y_B Y_A))\%$:
- The total interest rate is originally $(Y_{\rm A} + D_{\rm B})\%$.
- The new arrangement has a smaller total rate of $(D_{\mathrm{A}} + Y_{\mathrm{B}})\%$.
- Transactions will happen only if the gain is distributed so that the cost to each party is less than the original.

Example

• A and B face the following borrowing rates:

В	Α	
12%	9%	Dollars
11%	10%	Yen

- A wants to borrow yen, and B wants to borrow dollars.
- A can borrow yen directly at 10%.
- B can borrow dollars directly at 12%

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 401

Example (concluded)

- As the rate differential in dollars (3%) is different from that in yen (1%), a currency swap with a total saving of 3-1=2% is possible.
- A is relatively more competitive in the dollar market, and B the yen market.
- Figure next page shows an arrangement which is beneficial to all parties involved.
- A effectively borrows yen at 9.5%. B borrows dollars at 11.5%.
- The gain is 0.5% for A, 0.5% for B, and, if we treat dollars and yen identically, 1% for the bank.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 403

As a Package of Cash Market Instruments

- Assume no default risk
- Take B on p. 403 as an example.
- The swap is equivalent to a long position in a yen bond paying 11% annual interest and a short position in a dollar bond paying 11.5% annual interest.
- The pricing formula is $SP_{\rm Y}-P_{\rm D}$.
- $-P_{\rm D}$ is the dollar bond's value in dollars
- $-P_{Y}$ is the yen bond's value in yen.
- S is the \$/yen spot exchange rate.

As a Package of Cash Market Instruments (concluded)

- The value of a currency swap depends on the term structures of interest rates in the currencies involved and the spot exchange rate.
- It has zero value when $SP_Y = P_D$.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 405

Example

- Take a two-year swap on p. 403 with principal amounts of US\$1 million and 100 million yen.
- The payments are made once a year
- The spot exchange rate is 90 yen/\$ and the term structures are flat in both nations—8% in the U.S. and 9% in Japan.
- For B, the value of the swap is (in millions of USD)

$$\frac{1}{90} \times \left(11 \times e^{-0.09} + 11 \times e^{-0.09 \times 2} + 111 \times e^{-0.09 \times 3}\right)$$
$$-\left(0.115 \times e^{-0.08} + 0.115 \times e^{-0.08 \times 2} + 1.115 \times e^{-0.08 \times 3}\right) = 0.074.$$

As a Package of Forward Contracts

• From Eq. (65) on p. 368, the forward contract maturing i years from now has a dollar value of

$$f_i \equiv (SY_i) e^{-qi} - D_i e^{-ri}$$
. (71)

- $-Y_i$ is the yen inflow at year i.
- -S is the \$/yen spot exchange rate.
- -q is the yen interest rate.
- D_i is the dollar outflow at year i.
- -r is the dollar interest rate.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 407

As a Package of Forward Contracts (concluded)

- This formulation may be preferred to the cash market approach in cases involving costs of carry and convenience yields because forward prices already incorporate them.
- For simplicity, flat term structures were assumed.
- Generalization is straightforward

Example

- Take the swap in the example on p. 406.
- Every year, B receives 11 million yen and pays 0.115 million dollars.
- In addition, at the end of the third year, B receives 100 million yen and pays 1 million dollars.
- Each of these transactions represents a forward contract.
- $Y_1 = Y_2 = 11$, $Y_3 = 111$, S = 1/90, $D_1 = D_2 = 0.115$, $D_3 = 1.115$, q = 0.09, and r = 0.08.
- Plug in these numbers to get $f_1 + f_2 + f_3 = 0.074$ million dollars as before.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 409

Stochastic Processes and Brownian Motion

Stochastic Processes

- A stochastic process $X = \{X(t)\}$ is a time series of random variables.
- X(t) (or X_t) is a random variable for each time t and is usually called the state of the process at time t.
- ullet A realization of X is called a sample path
- ullet A sample path defines an ordinary function of t.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 411

Stochastic Processes (concluded)

- If the times t form a countable set, X is called a discrete-time stochastic process or a time series.
- In this case, subscripts rather than parentheses are usually employed, as in $X = \{X_n\}$.
- ullet If the times form a continuum, X is called a continuous-time stochastic process.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 410

Random Walks

- The binomial model is a random walk in disguise.
- Consider a particle on the integer line, $0, \pm 1, \pm 2, \dots$
- In each time step, it can make one move to the right with probability p or one move to the left with probability 1-p.
- This random walk is symmetric when p = 1/2.
- Connection with the BOPM: The particle's position denotes the cumulative number of up moves minus that of down moves.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 413

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 414

Random Walk with Drift

$$X_n = \mu + X_{n-1} + \xi_n. (72)$$

- ξ_n are independent and identically distributed with zero mean.
- Drift μ is the expected change per period.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 415

Martingales

 $\{X(t), t \ge 0\}$ is a martingale if $E[|X(t)|] < \infty$ for t > 0 and

$$E[X(t) | X(u), 0 \le u \le s] = X(s).$$
 (73)

In the discrete-time setting, a martingale means

$$E[X_{n+1} | X_1, X_2, \dots, X_n] = X_n. \tag{74}$$

• X_n can be interpreted as a gambler's fortune after the nth gamble.

Martingales (concluded)

- Identity (74) says the expected fortune after the (n+1)th gamble equals the fortune after the nth gamble regardless of what may have occurred before
- A martingale is therefore a notion of fair games
- Apply the law of iterated conditional expectations to both sides of Eq. (74) to yield

$$E[X_n] = E[X_1] \tag{75}$$

for all n

• E[X(t)] = E[X(0)] in the continuous-time case.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 417

Example

- Consider the stochastic process $\{Z_n \equiv \sum_{i=1}^n X_i, n \geq 1\}$, where X_i are independent random variables with zero mean.
- This process is a martingale because

$$E[Z_{n+1} | Z_1, Z_2, \dots, Z_n]$$

$$= E[Z_n + X_{n+1} | Z_1, Z_2, \dots, Z_n]$$

$$= E[Z_n | Z_1, Z_2, \dots, Z_n] + E[X_{n+1} | Z_1, Z_2, \dots, Z_n]$$

$$= Z_n + E[X_{n+1}] = Z_n.$$

Probability Measure

- A martingale is defined with respect to a probability measure, under which the expectation is taken.
- A probability measure assigns probabilities to states of the world.
- A martingale is also defined with respect to an information set.
- In the characterizations (73)–(74), the information set contains the current and past values of X by default.
- But it needs not be so.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 419

Probability Measure (continued)

• A stochastic process $\{X(t), t \geq 0\}$ is a martingale with respect to information sets $\{I_t\}$ if, for all $t \geq 0$, $E[|X(t)|] < \infty$ and

$$E[\,X(u)\,|\,I_t\,]=X(t)$$

for all u > t.

• The discrete-time version: For all n > 0,

$$E[X_{n+1} | I_n] = X_n,$$

given the information sets $\{I_n\}$.

Probability Measure (concluded)

- The above implies $E[X_{n+m} | I_n] = X_n$ for any m > 0 by Eq. (39) on p. 144.
- A typical I_n is the price information up to time n.
- The above says the FVs of X will not deviate systematically from today's value given the price history.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 421

Example

- Consider the stochastic process $\{Z_n n\mu, n \ge 1\}$.
- $Z_n \equiv \sum_{i=1}^n X_i.$
- $-X_1,X_2,\ldots$ are independent random variables with mean μ .
- Now,

$$E[Z_{n+1} - (n+1) \mu | X_1, X_2, \dots, X_n]$$

$$= E[Z_{n+1} | X_1, X_2, \dots, X_n] - (n+1) \mu$$

$$= Z_n + \mu - (n+1) \mu$$

$$= Z_n - n\mu.$$

Example (concluded)

Define

$$I_n \equiv \{X_1, X_2, \dots, X_n\}.$$

• Then $\{Z_n - n\mu, n \ge 1\}$ is a martingale with respect to $\{I_n\}$.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 423

Martingale Pricing

- The price of a European option is the expected discounted future payoff at expiration in a risk-neutral economy.
- This principle can be generalized using the concept of martingale.
- Recall the recursive valuation of European option via

$$C = [pC_u + (1-p)C_d]/R.$$

- p is the risk-neutral probability.
- \$1 grows to R in a period.

Martingale Pricing (continued)

- Let C(i) denote the value of the option at time i.
- Consider the discount process

$$\{C(i)/R^i, i = 0, 1, \dots, n\}.$$

 \bullet Then,

$$E\left[\left. \frac{C(i+1)}{R^{i+1}} \, \right| \, C(i) = C \right] = \frac{pC_u + (1-p)\,C_d}{R^{i+1}} = \frac{C}{R^i}.$$

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 425

Martingale Pricing (continued)

• In general,

$$E\left[\left.\frac{C(k)}{R^k}\right|C(i)=C\right] = \frac{C}{R^i}, \quad i \le k.$$
 (76)

• The discount process is a martingale:

$$\frac{C(i)}{R^i} = E_i^{\pi} \left[\frac{C(k)}{R^k} \right], \quad i \le k. \tag{77}$$

- E_i^{π} is taken under the risk-neutral probability conditional on the price information up to time i.
- This risk-neutral probability is also called the equivalent martingale (probability) measure (EMM).

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 426

Martingale Pricing (continued)

- In general, Eq. (77) holds for all assets, not just options
- In the general case where interest rates are stochastic, the equation becomes

$$\frac{C(i)}{M(i)} = E_i^{\pi} \left[\frac{C(k)}{M(k)} \right], \quad i \le k.$$
 (78)

- -M(j) is the balance in the money market account at time j using the rollover strategy with an initial investment of \$1.
- So it is called the bank account process.
- It says the discount process is a martingale under π .

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 427

Martingale Pricing (concluded)

- If interest rates are stochastic, then M(j) is a random variable.
- -M(0)=1.
- -M(j) is known at time j-1.
- Identity (78) is the general formulation of risk-neutral valuation.

Theorem 18 A discrete-time model is arbitrage-free if and only if there exists a probability measure such that the discount process is a martingale. This probability measure is called the risk-neutral probability measure.

Futures Price under the BOPM

- Futures prices form a martingale under the risk-neutral probability.
- The expected futures price in the next period is

$$p_{\mathrm{f}}Fu+\left(1-p_{\mathrm{f}}
ight)Fd=F\left(rac{1-d}{u-d}\,u+rac{u-1}{u-d}\,d
ight)=F$$

 $({\rm see \ p.\ 394}).$

• Can be generalized to

$$F_i = E_i^{\pi}[F_k], \quad i \le k, \tag{79}$$

where F_i is the futures price at time i.

• It holds under stochastic interest rates.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 429

Martingale Pricing and Numeraire

- The martingale pricing formula (78) uses the money market account as numeraire. a
- It expresses the price of any asset relative to the money market account.
- The money market account is not the only choice for numeraire.
- ullet Suppose asset S's value is positive at all times

Martingale Pricing and Numeraire (concluded)

- Choose S as numeraire
- Martingale pricing says there exists a risk-neutral C is a martingale: probability π under which the relative price of any asset

$$\frac{C(i)}{S(i)} = E_i^{\pi} \left[\frac{C(k)}{S(k)} \right], \quad i \le k.$$
 (80)

- -S(j) denotes the price of S at time j.
- So the discount process remains a martingale

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 431

Example

- Take the binomial model with two assets
- In a period, asset one's price can go from S to S_1 or
- In a period, asset two's price can go from P to P_1 or
- Assume

$$(S_1/P_1) < (S/P) < (S_2/P_2)$$

opportunities for market completeness and to rule out arbitrage

^aWalras (1834–1910).

Example (continued)

- For any derivative security, let C_1 be its price at time one if asset one's price moves to S_1 .
- Let C_2 be its price at time one if asset one's price moves to S_2 .
- Replicate the derivative by solving

$$\alpha S_1 + \beta P_1 = C_1$$
$$\alpha S_2 + \beta P_2 = C_2$$

using α units of asset one and β units of asset two.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 433

Example (continued)

• This yields

$$\alpha = \frac{P_2C_1 - P_1C_2}{P_2S_1 - P_1S_2}$$
 and $\beta = \frac{S_2C_1 - S_1C_2}{S_2P_1 - S_1P_2}$

• The derivative costs

$$C = \alpha S + \beta P$$

$$= \frac{P_2 S - P S_2}{P_2 S_1 - P_1 S_2} C_1 + \frac{P S_1 - P_1 S}{P_2 S_1 - P_1 S_2} C_2.$$

Example (concluded)

• It is easy to verify that

$$\frac{C}{P} = p \frac{C_1}{P_1} + (1 - p) \frac{C_2}{P_2}.$$
 (81)

$$- p \equiv rac{(S/P) - (S_2/P_2)}{(S_1/P_1) - (S_2/P_2)}$$

- The derivative's price using asset two as numeraire is thus a martingale under the risk-neutral probability p.
- The expected returns of the two assets are irrelevant.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 435

Brownian Motion

- Brownian motion is a stochastic process $\{X(t), t \geq 0\}$ with the following properties.
- 1. X(0) = 0, unless stated otherwise;
- **2.** for any $0 \le t_0 < t_1 < \cdots < t_n$, the random variables $X(t_k) X(t_{k-1})$ for $1 \le k \le n$ are independent^a;
- **3.** for $0 \le s < t$, X(t) X(s) is normally distributed with mean $\mu(t-s)$ and variance $\sigma^2(t-s)$, where μ and $\sigma \ne 0$ are real numbers.

^aSo X(t) - X(s) is independent of X(r) for $r \le s < t$.

Brownian Motion (concluded)

- Such a process will be called a (μ, σ) Brownian motion with drift μ and variance σ^2 .
- The existence and uniqueness of such a process is guaranteed by Wiener's theorem.
- Although Brownian motion is a continuous function of t with probability one, it is almost nowhere differentiable.
- \bullet The (0, 1) Brownian motion is also called the Wiener process.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 437

Example

- If $\{X(t), t \geq 0\}$ is the Wiener process, then $X(t) X(s) \sim N(0, t s)$.
- A (μ, σ) Brownian motion $Y = \{Y(t), t \ge 0\}$ can be expressed in terms of the Wiener process:

$$Y(t) = \mu t + \sigma X(t). \tag{82}$$

• As $Y(t+s) - Y(t) \sim N(\mu s, \sigma^2 s)$, uncertainty about the future value of Y grows as the square root of how far we look into the future.

Brownian Motion as Limit of Random Walk

Claim 1 $A(\mu, \sigma)$ Brownian motion is the limiting case of random walk.

- A particle moves Δx to the left with probability 1-p.
- It moves to the right with probability p after Δt time.
- Assume $n \equiv t/\Delta t$ is an integer.
- Its position at time t is

$$Y(t) \equiv \Delta x \left(X_1 + X_2 + \dots + X_n \right).$$

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 439

Brownian Motion as Limit of Random Walk (continued)

- (continued)
- Here

$$X_i \equiv \left\{ egin{array}{ll} +1 & ext{if the ith move is to the right} \\ -1 & ext{if the ith move is to the left} \end{array}
ight.$$

 $-X_i$ are independent with

$$\operatorname{Prob}[\,X_i=1\,]=p=1-\operatorname{Prob}[\,X_i=-1\,].$$

• Recall $E[X_i] = 2p - 1$ and $Var[X_i] = 1 - (2p - 1)^2$.

Brownian Motion as Limit of Random Walk (continued)

• Therefore

$$E[Y(t)] = n(\Delta x)(2p-1),$$
 $Var[Y(t)] = n(\Delta x)^{2} (1 - (2p-1)^{2}).$

• With $\Delta x \equiv \sigma \sqrt{\Delta t}$ and $p \equiv (1 + (\mu/\sigma)\sqrt{\Delta t})/2$,

$$E[Y(t)] = n\sigma\sqrt{\Delta t} (\mu/\sigma)\sqrt{\Delta t} = \mu t$$
$$Var[Y(t)] = n\sigma^2 \Delta t \left[1 - (\mu/\sigma)^2 \Delta t\right] \to \sigma^2 t$$

as $\Delta t \to 0$.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 441

Brownian Motion as Limit of Random Walk (concluded)

- Thus, $\{Y(t), t \geq 0\}$ converges to a (μ, σ) Brownian motion by the central limit theorem.
- Brownian motion with zero drift is the limiting case of symmetric random walk by choosing $\mu=0$.

•

$$\begin{aligned} &\operatorname{Var}[Y(t+\Delta t)-Y(t)] \\ =& \operatorname{Var}[\Delta x \, X_{n+1}] = (\Delta x)^2 \times \operatorname{Var}[X_{n+1}] \to \sigma^2 \Delta t. \end{aligned}$$

• Similarity to the the BOPM: The p is identical to the probability in Eq. (54) on p. 248 and $\Delta x = \ln u$.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 442

Geometric Brownian Motion

- Let $X \equiv \{X(t), t \ge 0\}$ be a Brownian motion process.
- The process $\{Y(t)\equiv e^{X(t)}, t\geq 0\}$, is called geometric Brownian motion.
- Suppose further that X is a (μ, σ) Brownian motion.
- $X(t) \sim N(\mu t, \sigma^2 t)$ with moment generating function

$$E\left[e^{sX(t)}\right] = E[Y(t)^{s}] = e^{\mu t s + (\sigma^{2} t s^{2}/2)}$$

from Eq. (40) on p 146

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 443

Geometric Brownian Motion (continued)

• In particular,

$$E[Y(t)] = e^{\mu t + (\sigma^2 t/2)},$$

$$Var[Y(t)] = E[Y(t)^2] - E[Y(t)]^2$$

$$= e^{2\mu t + \sigma^2 t} (e^{\sigma^2 t} - 1).$$
(83)

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 445

Geometric Brownian Motion (concluded)

Useful for situations in which percentage changes are independent and identically distributed.

• Let V denote the stock price at time n and V.

- Let Y_n denote the stock price at time n and $Y_0 = 1$.
- Assume relative returns $X_i \equiv Y_i/Y_{i-1}$ are independent and identically distributed.
- Then $\ln Y_n = \sum_{i=1}^n \ln X_i$ is a sum of independent, identically distributed random variables.
- Thus $\{\ln Y_n, n \geq 0\}$ is approximately Brownian motion.

Continuous-Time Financial Mathematics

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 447

• Use $W \equiv \{W(t), t \ge 0\}$ to denote the Wiener process.

Stochastic Integrals

• The goal is to develop integrals of X from a class of stochastic processes,^a

$${
m I}_t(X) \equiv \int_0^t X\,dW, \ \ t \geq 0.$$

- $I_t(X)$ is a random variable called the stochastic integral of X with respect to W.
- The stochastic process $\{I_t(X), t \geq 0\}$ will be denoted by $\int X \, dW$.

^aIto (1915–).

Stochastic Integrals (concluded)

- $\bullet\,$ Typical requirements for $\,X\,$ in financial applications are:
- Prob $\left[\int_0^t X^2(s) \, ds < \infty\right] = 1$ for all $t \ge 0$ or the stronger $\int_0^t E[X^2(s)] \, ds < \infty$.
- The information set at time t includes the history of X and W up to that point in time.
- But it contains nothing about the evolution of X or W after t (nonanticipating, so to speak).
- The future cannot influence the present.
- $\{X(s), 0 \le s \le t\}$ is independent of $\{W(t+u) W(t), u > 0\}$.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 449

Ito Integral

- A theory of stochastic integration.
- As with calculus, it starts with step functions.
- A stochastic process $\{X(t)\}\$ is simple if there exist $0=t_0 < t_1 < \cdots$ such that

$$X(t) = X(t_{k-1})$$
 for $t \in [t_{k-1}, t_k), k = 1, 2, ...$

for any realization (see figure next page).

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 451

Ito Integral (continued)

• The Ito integral of a simple process is defined as

$$I_t(X) \equiv \sum_{k=0}^{n-1} X(t_k) [W(t_{k+1}) - W(t_k)], \qquad (84)$$

where $t_n = t$.

- The integrand X is evaluated at t_k , not t_{k+1} .
- Define the Ito integral of more general processes as a limiting random variable of the Ito integral of simple stochastic processes.

Ito Integral (continued)

- Let $X = \{X(t), t \ge 0\}$ be a general stochastic process.
- Then there exists a random variable $I_t(X)$, unique almost certainly, such that $I_t(X_n)$ converges in probability to $I_t(X)$ for each sequence of simple stochastic processes X_1, X_2, \ldots such that X_n converges in probability to X.
- If X is continuous with probability one, then $I_t(X_n)$ converges in probability to $I_t(X)$ as $\delta_n \equiv \max_{1 \le k \le n} (t_k t_{k-1})$ goes to zero.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 453

Ito Integral (concluded)

- It is a fundamental fact that $\int X dW$ is continuous almost surely.
- The following theorem says the Ito integral is a martingale.
- A corollary is the mean value formula $E[\int_a^b X dW] = 0$.

Theorem 19 The Ito integral $\int X dW$ is a martingale.

(continued)

Discrete Approximation

- Recall Eq. (84) on p. 452
- The following simple stochastic process $\{\widehat{X}(t)\}$ can be used in place of X to approximate the stochastic integral $\int_0^t X \ dW$,

$$X(s) \equiv X(t_{k-1})$$
 for $s \in [t_{k-1}, t_k), k = 1, 2, \dots, n$.

- Note the nonanticipating feature of \widehat{X} .
- The information up to time s,

$$\{X(t), W(t), 0 \le t \le s\},\$$

cannot determine the future evolution of X or W

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 455

Discrete Approximation (concluded)

- Suppose we defined the stochastic integral as $\sum_{k=0}^{n-1} X(t_{k+1}) [W(t_{k+1}) W(t_k)].$
- Then we would be using the following different simple stochastic process in the approximation,

$$Y(s) \equiv X(t_k) \text{ for } s \in [t_{k-1}, t_k), \ k = 1, 2, \dots, n.$$

ullet This clearly anticipates the future evolution of X.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 457

Ito Process

• The stochastic process $X = \{X_t, t \geq 0\}$ that solves

$$X_t = X_0 + \int_0^t a(X_s, s) \, ds + \int_0^t b(X_s, s) \, dW_s, \quad t \ge 0$$

is called an Ito process.

- Here, X_0 is a scalar starting point, and $\{a(X_t,t):t\geq 0\}$ and $\{b(X_t,t):t\geq 0\}$ are stochastic processes satisfying certain regularity conditions.
- The terms $a(X_t, t)$ and $b(X_t, t)$ are the drift and the diffusion, respectively.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 458

Ito Process (continued)

• A shorthand is the following stochastic differential equation for the Ito differential dX_t ,

$$dX_t = a(X_t, t) dt + b(X_t, t) dW_t.$$
 (85)

- Or simply $dX_t = a_t dt + b_t dW_t$.
- ullet This is Brownian motion with an instantaneous drift a_t and an instantaneous variance b_t^2 .
- X is a martingale if the drift a_t is zero by Theorem 19

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 459

Ito Process (concluded)

- dW is normally distributed with mean zero and variance dt.
- An equivalent form to Eq. (85) is

$$dX_t = a_t dt + b_t \sqrt{dt} \, \xi, \tag{86}$$

where $\xi \sim N(0, 1)$.

• This formulation makes it easy to derive Monte Carlo simulation algorithms.

^aLangevin, 1904.

Euler Approximation

• The following approximation follows from Eq. (86),

$$\widehat{X}(t_{n+1})$$

$$=\widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \Delta t + b(\widehat{X}(t_n), t_n) \Delta W(t_n), \quad (87)$$
where $t_n \equiv n\Delta t$.

- Called the Euler or Euler-Maruyama method.
- Under mild conditions, $\widehat{X}(t_n)$ converges to $X(t_n)$.
- Recall that $\Delta W(t_n)$ should be interpreted as $W(t_{n+1}) W(t_n)$ instead of $W(t_n) W(t_{n-1})$.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 461

More Discrete Approximations

 Under fairly loose regularity conditions, approximation (87) can be replaced by

$$\begin{split} &\widehat{X}(t_{n+1}) \\ =&\widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \Delta t + b(\widehat{X}(t_n), t_n) \sqrt{\Delta t} \, Y(t_n). \end{split}$$

 $-Y(t_0),Y(t_1),\ldots$ are independent and identically distributed with zero mean and unit variance.

More Discrete Approximations (concluded)

• A simpler discrete approximation scheme:

$$\widehat{X}(t_{n+1})$$

$$=\widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \Delta t + b(\widehat{X}(t_n), t_n) \sqrt{\Delta t} \xi.$$
 (88)

- $\text{ Prob}[\xi = 1] = \text{Prob}[\xi = -1] = 1/2.$
- Note that $E[\xi] = 0$ and $Var[\xi] = 1$.
- This clearly defines a binomial model.
- As Δt goes to zero, \widehat{X} converges to X.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 463

Trading and the Ito Integral

- Consider an Ito process $dS_t = \mu_t dt + \sigma_t dW_t$.
- S_t is the vector of security prices at time t.
- Let ϕ_t be a trading strategy denoting the quantity of each type of security held at time t.
- \bullet The stochastic process $\phi_t S_t$ is the value of the portfolio ϕ_t at time t.
- $\phi_t dS_t \equiv \phi_t(\mu_t dt + \sigma_t dW_t)$ represents the change in the value from security price changes occurring at time t.

Trading and the Ito Integral (concluded)

The equivalent Ito integral,

$$G_T(\phi) \equiv \int_0^T oldsymbol{\phi}_t \, doldsymbol{S}_t = \int_0^T oldsymbol{\phi}_t \mu_t \, dt + \int_0^T oldsymbol{\phi}_t \sigma_t \, dW_t,$$

measures the gains realized by the trading strategy over the period $[\,0,T\,].$

• A strategy is self-financing if

$$\phi_t S_t = \phi_0 S_0 + G_t(\phi) \tag{89}$$

for all $0 \le t < T$.

The investment at any time equals the initial investment plus the total capital gains.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 465

lto's Lemma

Theorem 20 Suppose $f: R \to R$ is twice continuously differentiable and $dX = a_t dt + b_t dW$. Then f(X) is the Ito process,

$$f(X_t)$$
= $f(X_0) + \int_0^t f'(X_s) a_s ds + \int_0^t f'(X_s) b_s dW + \frac{1}{2} \int_0^t f''(X_s) b_s^2 ds$
for $t \ge 0$.

• Basically says a smooth function of an Ito process is itself an Ito process.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 466

Ito's Lemma (continued)

• In differential form, Ito's lemma becomes

$$df(X) = f'(X) a dt + f'(X) b dW + \frac{1}{2} f''(X) b^2 dt.$$
 (90)

- Compared with calculus, the interesting part is the third term on the right-hand side.
- A convenient formulation of Ito's lemma is

$$df(X) = f'(X) dX + \frac{1}{2} f''(X) (dX)^{2}.$$
 (91)

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 467

Ito's Lemma (continued)

• We are supposed to multiply out $(dX)^2 = (a\,dt + b\,dW)^2 \mbox{ symbolically according to}$

dt	dW	×
0	dt	dW
0	0	dt

– The $(dW)^2 = dt$ entry is justified by a known result.

• This form is easy to remember because of its similarity to Taylor expansion.

Ito's Lemma (continued)

Theorem 21 (Higher-Dimensional Ito's Lemma) Let

 W_1, W_2, \ldots, W_n be independent Wiener processes and $X \equiv (X_1, X_2, \ldots, X_m)$ be a vector process. Suppose $f: R^m \to R$ is twice continuously differentiable and X_i is an Ito process with $dX_i = a_i dt + \sum_{j=1}^n b_{ij} dW_j$. Then df(X) is an Ito process with the differential,

$$df(X) = \sum_{i=1}^{m} f_i(X) dX_i + \frac{1}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} f_{ik}(X) dX_i dX_k,$$

where
$$f_i \equiv \partial f/\partial x_i$$
 and $f_{ik} \equiv \partial^2 f/\partial x_i \partial x_k$.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 469

lto's Lemma (concluded)

• The multiplication table for Theorem 21 is

dt	dW_k	×
0	$\delta_{ik} dt$	dW_i
0	0	dt

in which

$$\delta_{ik} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{otherwise} \end{cases}$$

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 470

Geometric Brownian Motion

- -X(t) is a (μ, σ) Brownian motion.
- Ito's formula (90) implies

$$\frac{dY}{Y} = \left(\mu + \sigma^2/2\right)dt + \sigma dW.$$

• The instantaneous rate of return is $\mu + \sigma^2/2$ not μ .