A Puzzle

e The option value is independent of the stock’s expected
return p —q.

e So replace it by 7.

e Then why not use
mﬂD» —d
u—d

as the risk-neutral probability?

Diagonal Traversal of the Tree (Curran, 1995)

Properties of the propagation of early exercise nodes (E) and
non-early-exercise nodes (C) during backward induction.

1. A node is an early-exercise node if both its successor
nodes are exercised early.

e A terminal node that is in-the-money is considered
an early exercise node.

e A terminal node that is out-the-money is considered

a non-early-exercise node.

2. If a node is a non-early-exercise node, then all the earlier
nodes at the same horizontal level are also
non-early-exercise nodes (assume ud = 1).
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Traversal Sequence

e Can the standard quadratic-time binomial tree
algorithm for American options be improved?
— By an order.

— By a constant factor.
e It helps to skip nodes.

e Note the traversal sequence of backward induction on
the tree.

— By time.

Ve
E *
Ve v N
E C C
N N Ve
E *
Rule 1 Rule 2 N
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Diagonal Traversal of the Tree (continued)

An early-exercise node is trivial to evaluate.

— The difference of the strike price and the stock price.

e A non-early-exercise node must be evaluated by
backward induction.

e Suppose we traverse the tree diagonally.

e Convince yourself that this procedure is well-defined.
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max(0, X — Su’)

max(0, X — Sud)

max(0, X — Sud®)

START

max(0, X — Sd°)

>rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 273
P P g Yy

Diagonal Traversal of the Tree (continued)

e Nothing is achieved if the whole tree needs to be
explored.

e Need a stopping rule.

e The process stops when a diagonal D consisting entirely
of non-early-exercise nodes has been encountered.

— By Rule 2, all early-exercise nodes have been found.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 274

Diagonal Traversal of the Tree (continued)

e When the algorithm finds an early exercise node in
traversing a diagonal, it can stop immediately and move
on to the next diagonal.

— By Rule 1 and the sequence by which the nodes on
the diagonals are traversed, the rest of the nodes on
the current diagonal must all be early-exercise nodes.

— They are hence computable on the fly when needed.

e Also by Rule 1, the traversal can start from the

zero-valued terminal node just above the strike price.

e The upper triangle above the strike price can be skipped
since its nodes are all zero valued.
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Traverse from here

Stop at diagonal D
Visited nodes

Strike price d

| o o o o

Exercise boundary
Early exercise nodes

Early exercise nodes by Rule 1
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Percent of nodes visited
by the di agonal nethod
25

20 /5
15
10

20 40 60 80 iopvolatility
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Diagonal Traversal of the Tree (continued)
e It remains to calculate the option value.

e It is the sum of the discounted option values of the nodes
on D, each multiplied by the probability that the stock
price hits the diagonal for the first time at that node.

— How do the payoff influence the root?

— Cannot go from the root to a node at which the
option will be exercised without passing through D.
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Diagonal Traversal of the Tree (continued)
e For a node on D which is the result of ¢ up moves and
j down moves, the said probability is AT&\J pi(1 —p)l.
— A valid path must pass through the node which is
the result of ¢ up moves and j — 1 down moves.

e (Call the option value on this node P;.

e The desired option value then equals

a—1 ,. .

M ” ? AT.N -1 E&AH |Bvu.~us.m\®.+u.vﬁbw.
7

=0
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Diagonal Traversal of the Tree (continued)

e Since each node on D has been evaluated by that time,
this part of the computation consumes O(n) time.

e The space requirement is also linear in n since only the
diagonal has to be allocated space.

e This idea can save computation time when D does not
take long to find.
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Diagonal Traversal of the Tree (continued)

Rule 2 is true with or without dividends.

e Suppose now that the stock pays a continuous dividend
yield ¢ <7 (or r < g for calls by parity).

DAt _g

Recall p = &——

Rule 1 continues to hold since, for a current stock price
of Suid’:

Diagonal Traversal of the Tree (concluded)

(pPu+ (1 —p) Pa)e ™
= [p(X —Sud)+(1-p) (X - Su'd)]e "2
Xe ™A — Suld (pu + (1 — p)d) e "4
Xe A _ Sutdie 10t
Xe—TA _ Gyigie—TAt

X — Su'd?.

IAN AN
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Sensitivity Analysis of Options
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Sensitivity Measures (“The Greeks”)

Understanding how the value of a security changes
relative to changes in a given parameter is key to
hedging.

— Duration, for instance.

We now ask same questions of options.

Let z = _uﬁm\wi$+qu\m? (recall p. 253).

N'(y) = (1/V2n) e v /2 > 0, the density function of
standard normal distribution.
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Delta (concluded)

e The delta of a European call on a non-dividend-paying
stock equals

ocC
— =N .
35 () >0 (57)
e The delta of a European put equals
oP
— =N(z)—1 .
55 (x) <0

e The delta of a long stock is 1.

Delta
e Defined as A =9f/0S.

— f is the price of the derivative.

— S is the price of the underlying asset.

e The delta of a portfolio of derivatives on the same
underlying asset is the sum of their individual deltas.

e The delta used in the BOPM is the discrete analog.
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Delta Neutrality

A position with a total delta equal to 0 is delta-neutral.

A delta-neutral portfolio is immune to small price
changes in the underlying asset.

Creating one serves for hedging purposes.

— A portfolio consisting of a call and —A shares of
stock is delta-neutral.

— Short A shares of stock to hedge a long call.

Hedge a position in a security with a delta of A; by
shorting A;/As units of a security with a delta of As.
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Theta (Time Decay)

e Defined as the rate of change of a security’s value with
respect to time, or © = —9f/0T.
e For a European call on a non-dividend-paying stock,
SN’
0= I% —rXe ""N(z —o/T) <0.
— The call loses value with the passage of time.
e For a European put,
SN'(z)o
21

— Can be negative or positive.

CES +rXe ""N(—z + o/T).
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Gamma

e Defined as the rate of change of its delta with respect to
the price of the underlying asset, or T’ = §211/052.

e Measures how sensitive delta is to changes in the price of
the underlying asset.

e A portfolio with a high gamma needs in practice be
rebalanced more often to maintain delta neutrality.

e Delta ~ duration, gamma ~ convexity.

e The gamma of a European call or put on a
non-dividend-paying stock is N'(z)/(So+/7) > 0.

Vega® (Lambda, Kappa, Sigma)

e Defined as the rate of change of its value with respect to
the volatility of the underlying asset A = 0I1/00.

e Volatility often changes over time.

e A security with a high vega is very sensitive to small
changes in volatility.

e The vega of a European call or put on a
non-dividend-paying stock is S+/7 N’(z) > 0.

— Higher volatility increases option value.

2Vega is not Greek.
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Rho

e Defined as the rate of change in its value with respect to
interest rates p = OI1/0r.

e The rho of a European call on a non-dividend-paying
stock is

X7e ""N(z —oy/T) > 0.

e The rho of a European put on a non-dividend-paying
stock is

—X7e ""N(—z + a/T) <0.
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. Numerical Gamma
Numerical Greeks
. o At the stock price (Suu + Sud)/2, delta is
e Needed when closed-form formulas do not exist. approximately (fuw — fua)/(Suu — Sud).
o Take delta as an example. e At the stock price (Sud + Sdd)/2, delta is
e A standard method computes the finite difference, approximately (fuq — faa)/(Sud — Sdd).
f(S+AS)— f(S—AS) e Gamma is the rate of change in deltas between
2A8 . (Suu + Sud)/2 and (Sud + Sdd)/2, that is,
e The computation time roughly doubles that for Suu—fud _ _fua—fad
luating the derivati ity itself Sun-Sud__Sud_2dd (58)
evaluating the derivative security itself. (Suu — Sdd)/2
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An Alternative Numerical Delta

e Use the intermediate results of the binomial tree

algorithm (Pelsser and Vorst, 1994). Finite Difference Fails for Numerical Gamma

When the algorithm reaches the end of the first period,

p df cod e Numerical differentiation gives
«» and fy are computed.

F(S+ AS)—2f(S)+ f(S— Dmv.

e These values correspond to derivative values at stock (AS)?

prices Su and Sd, respectively.
e Why doesn’t it work?

Delta is approximated by
.\.ﬁ - .\.&

Su—Sd’

e Why did the binomial tree version work?

Almost zero extra computational effort.
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Other Numerical Greeks

e The theta can be computed as

.\.:&|.\.

2(t/n)
— In fact, the theta of a European option will be shown
to be computable from delta and gamma.

e For vega and rho, there is no alternative but to run the
binomial tree algorithm twice.
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Ezxtensions of Options Theory

Pricing Corporate Securities (Black and Scholes, 1973)

e Interpret the underlying asset interpretated as the total
value of the firm.

e The option pricing methodology can be applied to
pricing corporate securities.

e Assume:
— A firm can finance payouts by the sale of assets.

— If a promised payment to an obligation other than
stock is missed, the claim holders take ownership of
the firm and the stockholders get nothing.
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Risky Zero-Coupon Bonds and Stock
Consider XYZ.com.

Capital structure:
— n shares of its own common stock, S.

— Zero-coupon bonds with an aggregate par value of X.
e What is the value of the bonds, B?
What is the value of the XYZ.com stock?
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Risky Zero-Coupon Bonds and Stock (continued)

e On the bonds’ maturity date, if the total value of the
firm V* is less than the bondholders’ claim X, the firm
declares bankruptcy and the stock becomes worthless.

e If V* > X, then the bondholders obtain X and the
stockholders V* — X.

VF<X V*>X
Bonds % X
Stock 0 V- X
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Risky Zero-Coupon Bonds and Stock (continued)
e Thus nS=C and B=V - C.

e Knowing C' amounts to knowing how the value of the
firm is divided between stockholders and bondholders.

e Whatever the value of C, the total value of the stock
and bonds at maturity remains V*.

e The relative size of debt and equity is irrelevant to the
firm’s current value V.

Risky Zero-Coupon Bonds and Stock (continued)

e The stock is a call on the total value of the firm with a
strike price of X and an expiration date equal to the
bonds’.

— This call provides the limited liability for the
stockholders.

e The bonds are a covered call on the total value of the

firm.

e (' stands for this call and V' the total value of the firm.
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Risky Zero-Coupon Bonds and Stock (continued)

e From Theorem 12 (p. 253) and the put-call parity,

nS = VN(z)— Xe ""N(z—o\/T),
B = VN(—z)+ Xe ""N(z — a\/T).
—r= In(V/X)+(r+02/2)r
= e .

e The continuously compounded yield to maturity of the
firm’s bond is (1/7)In(X/B).
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Risky Zero-Coupon Bonds and Stock (concluded)

e Define default premium as the yield difference between
risky and riskless bonds,

(1/7)In(X/B) — r
1

- 5 ZAINV+WZANIQ,\MV

—w=Xe "/V.
—z=(lnw)/(oy7)+ (1/2)0/T = —x+ 0\/T.

— Note that w is the debt-to-total-value ratio.
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A Numerical Example

e XYZ.com’s assets consist of 1,000 shares of Merck as of
March 20, 1995.

— Merck’s market value per share is $44.5.
e XYZ.com’s securities consist of 1,000 shares of common

stock and 30 zero-coupon bonds maturing on July 21,
1995.

Each bond promises to pay $1,000 at maturity.

n = 1000, V = 44.5 x n = 44500, and
X = 30 x n = 30000.
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—Call— —Put—
Option  Strike Exp. Vol Last Vol. Last
Merck 30 Jul 328 151/4
441/2 35 Jul 150 91/2 10 1/16
441/2 40 Apr 887 43/4 136 1/16
441/2 40 Jul 220 5172 297 1/4
441/2 40 Oct 58 6 10 1/2
441/2 45 Apr 3050 7/8 100 11/8
441/2 45 May 462 13/8 50 13/8
441/2 45 Jul 883 1i5/16 147 13/4
441/2 45 Oct 367 23/4 188 21/16
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A Numerical Example (continued)

e The Merck option relevant for pricing is the July call
with a strike price of X/n = 30 dollars.

e Such an is selling for $15.25.

e So XYZ.com’s stock is worth 15.25 x n = 15250 dollars.

e The entire bond issue is worth

B = 44500 — 15250 = 29250 dollars—$975 per bond.
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A Numerical Example (continued)

e The XYZ.com bonds are equivalent to a default-free
zero-coupon bond with $X par value plus n written
European puts on Merck at a strike price of $30.

— By the put-call parity.
e The difference between B and the price of the

default-free bond is the value of these puts.

e The table next page shows the total market values of the

XYZ.com stock and bonds under various debt amounts
X.
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A Numerical Example (continued)

e If the promised payment to bondholders is $45,000, the
relevant option is the July call with a strike price of
45000/n = 45 dollars.

e Since that option is selling for $115/16, the market value
of the XYZ.com stock is (1+ 15/16) x n = 1937.5
dollars.

e The market value of the stock decreases as the
debt-equity ratio increases.

Promised payment  Current market  Current market  Current total

to bondholders value of bonds value of stock value of firm
X B nS v
30,000 29,250.0 15,250.0 44,500
35,000 35,000.0 9,500.0 44,500
40,000 39,000.0 5,500.0 44,500
45,000 42,562.5 1,937.5 44,500
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A Numerical Example (continued)

e There are conflicts between stockholders and
bondholders.

e An option’s terms cannot be changed after issuance.
e But a firm can change its capital structure.

e There lies one difference between options and corporate

securities.

e So parameters such volatility, dividend, and strike price
are under partial control of the stockholders.
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A Numerical Example (continued)

Suppose XYZ.com issues 15 more bonds with the same

terms to buy back stock.
The total debt is now X = 45,000 dollars.

Table on p. 309 says the total market value of the bonds
should be $42,562.5.

The new bondholders pay 42562.5 x (15/45) = 14187.5
dollars.

The remaining stock is worth $1,937.5.
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A Numerical Example (continued)

e The stockholders therefore gain
14187.5 4+ 1937.5 — 15250 = 875

dollars.

e The original bondholders lose an equal amount,

30
29250 — 5 x 42562.5 = 875. (59)

A Numerical Example (continued)

Suppose the stockholders distribute $14,833.3 cash
dividends by selling (1/3) x n Merck shares.

e They now have $14,833.3 in cash plus a call on
(2/3) x n Merck shares.

The strike price remains X = 30000.

This is equivalent to owning two-thirds of a call on n
Merck shares with a total strike price of $45,000.

e Since n such calls are worth $1,937.5 from table on
p- 306, the total market value of the XYZ.com stock is
(2/3) x 1937.5 = 1291.67 dollars.
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A Numerical Example (concluded)

e The market value of the XYZ.com bonds is hence
(2/3) x n x 44.5 — 1291.67 = 28375 dollars.

e Hence the stockholders gain
14833.3 + 1291.67 — 15250 =~ 875

dollars.

e The bondholders watch their value drop from $29,250 to
$28,375, a loss of $875.
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Other Examples
Subordinated debts as bull call spreads.
Warrants as calls.
Callable bonds as American calls with 2 strike prices.

Convertible bonds.
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Barrier Options

Their payoff depends on whether the underlying asset’s
price reaches a certain price level H.

A knock-out option is an ordinary European option
which ceases to exist if the barrier H is reached by the
price of its underlying asset.

A call knock-out option is sometimes called a
down-and-out option if H < §.

A put knock-out option is sometimes called an
up-and-out option when H > S.

Barrier Options (concluded)

e A knock-in option comes into existence if a certain

barrier is reached.

e A down-and-in option is a call knock-in option that
comes into existence only when the barrier is reached
and H < S.

e An up-and-in is a put knock-in option that comes into
existence only when the barrier is reached and H > S.

e Formulas exist for all kinds of barrier options.
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Binomial Tree Algorithms

e Barrier options can be priced by binomial tree
algorithms.

e Convergence is erratic because H is not on a price level.
e Hence the algorithms are useless.

e Solutions will be presented later.
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Down- and-in call val ue

100 150 200 250 300 350 400
#Peri ods

Foreign Exchange Options

Foreign exchange options are settled via delivery of the
underlying currency.

e A primary use of foreign exchange (or forex) options is
to hedge currency risk.

Consider a U.S. company expecting to receive 100
million Japanese yen in March 2000.

Those 100 million Japanese yen will be exchanged for
U.S. dollars.
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Foreign Currencies

S denotes the spot exchange rate in domestic/foreign

terms.

o denotes the volatility of the exchange rate.

r denotes the domestic interest rate.

e 7 denotes the foreign interest rate.

A foreign currency is analogous to a stock paying a
known dividend yield.

— Foreign currencies pay a “continuous dividend yield”

A

equal to 7 in the foreign currency.
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Foreign Exchange Options (continued)

e The contract size for the Japanese yen option is
JPY6,250,000.

e The company purchases 100,000,000/6,250,000 = 16
puts on the Japanese yen with a strike price of $.0088
and an exercise month in March 2000.

e This gives the company the right to sell 100,000,000
Japanese yen for 100,000,000 x .0088 = 880,000 U.S.
dollars.
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Foreign Exchange Options (concluded)

e The formulas derived for stock index options in Egs. (55)

~

on p. 266 apply with the dividend yield equal to #:
C =8¢ "N(z)— Xe ""N(z — ov/7), (60)
P=Xe " N(—z+0/7)— Se "' N(-z). (60")

= In(S/X)+(r—ito?/2) T
= e .
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Path-Dependent Derivatives

e Let Sg,S1,...,S, denote the prices of the underlying
asset over the life of the option.

e Sy is the known price at time zero.
e S, is the price at expiration.

e The standard European call has a terminal value
depending only on the last price, max(S,, — X, 0).

e Its value thus depends only on the underlying asset’s
terminal price regardless of how it gets there.
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Path-Dependent Derivatives (continued)

e In contrast, some derivatives are path-dependent in that
their terminal payoffs depend “critically” on the paths.

e The (arithmetic) average-rate call has a terminal value
given by

H 3
S.IN“O
me 3+HWWM

e The average-rate put’s terminal value is given by

H_. n
X — Si, 0
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Path-Dependent Derivatives (continued)
e Average-rate options are also called Asian options.

e They are useful hedging tools for firms that will make a
stream of purchases over a time period because the costs
are likely to be linked to the average price.

e They are mostly European.
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Path-Dependent Derivatives (concluded)
(S+Su+Suu )\
. . . . Suu Cp = wa_ |no_
e A lookback call option on the minimum has a terminal v3 /
payoff of S,, — ming<;<y S;. PG+ (1= p)Coa
<i< e
. . . [ \
e A lookback put option on the maximum has a terminal Sud C,, = max ﬁ.of
payoff of maxo<i<n Si — Sn.
e The fixed-strike lookback option provides a payoff of (St SdaSdn
Sd Cyy = max| ———0|
max(maxo<i<n S; — X,0) for the call and " ! 3 /
max (X — minp<i<p S;,0) for the put. c, _ PCu (=)
e’
e Lookback call and put options on the average are called Sdd FPNg ¢, = max| SH54+5dd )
” — 0|
average-strike options.
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Average-Rate Options
e Average-rate options are notoriously hard to price.

e The binomial tree for the averages does not combine.

A straightforward algorithm is to enumerate the 2™
price paths for an n-period binomial tree and then
average the payoffs.

But the exponential complexity makes this naive
algorithm impractical.

As a result, the Monte Carlo method and approximation
algorithms are some of the alternatives left.
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